Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 6;68(Pt 11):m1337. doi: 10.1107/S1600536812040706

μ2-Oxalato-bis­[triphen­yl(thio­urea-κS)tin(IV)]

Yaya Sow a,*, Libasse Diop a, Kieran C Molloy b, Gabrielle Kociok-Kohn b
PMCID: PMC3515101  PMID: 23284328

Abstract

The asymmetric unit of the binuclear title compound, [Sn2(C2O4)(C6H5)6(CH4N2S)2], consists of one half of the organotin(IV) mol­ecule. The remainder is generated by a twofold rotation axis passing through the mid-point of the oxalate C—C bond. The SnIV atom exhibits a distorted trigonal–bipyramidal coordination environment with the phenyl groups in equatorial positions and the thio­urea and the monodentately bridging oxalate anion in axial positions. The mol­ecules are linked through N—H⋯O hydrogen bonds involving the amino group of the thio­urea ligand and the uncoordinating oxalate O atoms, forming layers parallel to (001). Weak C—H⋯O inter­actions are also present.

Related literature  

For background to organotin(IV) chemistry, see: Evans & Karpel (1985); Gielen et al. (1995). For triphenyl­tin(IV)-containing compounds and their biological activity, see: Kamruddin et al. (1996). For related compounds, see: Diallo et al. (2009); Diasse-Sarr et al. (1997); Diop et al. (1997, 1999, 2003); Tiekink (1992).graphic file with name e-68-m1337-scheme1.jpg

Experimental  

Crystal data  

  • [Sn2(C2O4)(C6H5)6(CH4N2S)2]

  • M r = 940.24

  • Monoclinic, Inline graphic

  • a = 12.9161 (2) Å

  • b = 13.9870 (2) Å

  • c = 21.8215 (3) Å

  • β = 99.238 (1)°

  • V = 3891.09 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 150 K

  • 0.30 × 0.30 × 0.20 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.659, T max = 0.747

  • 31403 measured reflections

  • 4472 independent reflections

  • 3665 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.066

  • S = 1.09

  • 4472 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.34 e Å−3

  • Δρmin = −1.11 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812040706/wm2662sup1.cif

e-68-m1337-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040706/wm2662Isup2.hkl

e-68-m1337-Isup2.hkl (214.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.81 (4) 2.06 (4) 2.824 (3) 157 (4)
N2—H2A⋯O2ii 0.86 (4) 2.14 (4) 2.970 (3) 164 (3)
C6—H6⋯O1 0.95 2.44 2.957 (3) 114
C18—H18⋯O2 0.95 2.39 3.234 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Interest in organotin (IV) chemistry remains high because of several applications found in molecules belonging to this family (Evans & Karpel, 1985; Gielen et al., 1995), specifically triphenyltin(IV)-residue containing compounds for which biological activity has been reported (Kamruddin et al., 1996). Our specific interest lies also in the coordinating behavior of oxy-anions to these organometallic centers; we have previously published several crystal structures dealing with such systems (Diallo et al., 2009; Diasse-Sarr et al., 1997; Diop et al., 1997). Moreover, we have reported spectroscopic data (Diop et al., 1999) and the crystal structure of [Sn2(C2O4)(C6H5)6] which exhibits tetrahedrally coordinate tin atoms (Diop et al., 2003). Here we report a study of the interactions between this species and thiourea, which has yielded the title compound, [Sn2(C2O4)(C6H5)6(CH4N2S)2].

The molecule of the title compound has site symmetry 2 with the twofold rotation axcis passing through the mid-point of the central oxalate C—C bond. The Sn(IV) atom is five-coordinate by one oxygen atom of the oxalate anion, a sulfur atom of the thiourea ligand [Sn—O 2.2471 (17), Sn—S 2.6945 (7) Å] which are in apical positions and to three phenyl groups [Sn—C 2.146 (2), 2.139 (2), 2.139 (2) Å] occupying the equatorial positions of the trigonal bipyramid (Fig. 1). The Sn—S bond length is longer than the Sn—S bond length [2.573 (1) Å] found, for example, in {t(C4H9)2Sn[S2CN(CH3)2]2} which contains a trigonal bipyramidally coordinate tin(IV) atom (Tiekink, 1992). The angle S—Sn—O [175.97 (5)°] deviates slightly from linearity. The sum of the C—Sn—C angles (359.96°) indicates a nearly perfectly planar Sn(C6H5)3 residue consistent with the near linearity of the axial substituents. The Sn—O bond length is remarkably long when compared with the Sn—O distance [2.111 (1) Å] in the tetrahedrally coordinate tin(IV) atom in [Sn2(C2O4)(C6H5)6] (Diop et al., 2003). The addition of SC(NH2)2 apparently has caused a change in the coordination from tetrahedral to trigonal-bipyramidal along with a Sn—O bond length increase. The two C—O bond length of the oxalate anion are slightly different because the O atom of the C19—O1 bond [1.269 (3) Å] is also involved in bonding to the Sn(IV) atom, whereas the O atom of the C19—O2 bond [1.243 (3) Å] is involved in hydrogen bonding with the amino group. These interactions lead to the formation of layers parallel to (001) (Figs. 2,3). Weak C—H···O hydrogen bonding is also observed.

Experimental

All chemicals were purchased from Aldrich or Merck and used without any further purification. [Sn2(C2O4)(C6H5)6] has been obtained on allowing Sn(C6H5)3OH to react with oxalic acid in a 2:1 ratio in ethanol. A white powder is collected after slow evaporation. When [Sn2(C2O4)(C6H5)6] is mixed with SC(NH2)2 in a 1:2 ratio, both as ethanolic solutions, a colorless solution is obtained which gives crystals of [Sn2(C2O4)(C6H5)6(CH4N2S)2] suitable for X-ray work, after a slow solvent evaporation.

Refinement

The maximum remaining electron density is 0.79 Å from C3 while the minimum density is in the immediate vicinity of tin. Hydrogen atoms bonded to the N atom have been located in difference Fourier maps and have been freely refined. The other hydrogen atoms have been placed onto calculated position and refined using a riding model, with C—H distances of 0.95 Å and Uiso(H)= 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecule of the title complex showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code a) -x, y, -z + 1/2.]

Fig. 2.

Fig. 2.

View of the N—H···O hydrogen bonding system (dashed lines) assured by pairs of oxygen atoms of the oxalate and H atoms of thiourea.

Fig. 3.

Fig. 3.

The packing of the structure showing N—H···O hydrogen bonding interactions as dashed lines

Crystal data

[Sn2(C2O4)(C6H5)6(CH4N2S)2] F(000) = 1880
Mr = 940.24 Dx = 1.605 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 26977 reflections
a = 12.9161 (2) Å θ = 2.9–27.5°
b = 13.9870 (2) Å µ = 1.44 mm1
c = 21.8215 (3) Å T = 150 K
β = 99.238 (1)° Block, colourless
V = 3891.09 (10) Å3 0.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 4472 independent reflections
Radiation source: fine-focus sealed tube 3665 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
400 1.5 degree images with φ and ω scans θmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan (SORTAV; Blessing, 1995) h = −16→16
Tmin = 0.659, Tmax = 0.747 k = −18→18
31403 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0248P)2 + 7.4801P] where P = (Fo2 + 2Fc2)/3
4472 reflections (Δ/σ)max = 0.001
251 parameters Δρmax = 1.34 e Å3
0 restraints Δρmin = −1.11 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn 0.165377 (13) 0.128741 (12) 0.141781 (7) 0.01783 (7)
S 0.33347 (5) 0.18709 (5) 0.09290 (3) 0.02648 (16)
O1 0.03210 (13) 0.08111 (13) 0.18919 (8) 0.0223 (4)
O2 0.09855 (14) −0.05868 (13) 0.22806 (8) 0.0247 (4)
N1 0.3214 (2) 0.34372 (19) 0.16116 (13) 0.0319 (6)
H1A 0.340 (3) 0.385 (3) 0.1866 (18) 0.050 (12)*
H1B 0.256 (3) 0.351 (2) 0.1449 (16) 0.040 (10)*
N2 0.4815 (2) 0.2725 (2) 0.17068 (13) 0.0342 (6)
H2A 0.509 (3) 0.319 (3) 0.1931 (16) 0.044 (10)*
H2B 0.519 (3) 0.228 (3) 0.1620 (17) 0.050 (12)*
C1 0.07308 (19) 0.25438 (17) 0.11628 (11) 0.0190 (5)
C2 0.0815 (2) 0.30357 (19) 0.06162 (12) 0.0245 (6)
H2 0.1363 0.2876 0.0392 0.029*
C3 0.0110 (2) 0.3755 (2) 0.03950 (14) 0.0308 (6)
H3 0.0181 0.4082 0.0023 0.037*
C4 −0.0697 (2) 0.3998 (2) 0.07159 (14) 0.0317 (7)
H4 −0.1187 0.4480 0.0560 0.038*
C5 −0.0780 (2) 0.35315 (19) 0.12646 (13) 0.0266 (6)
H5 −0.1323 0.3702 0.1491 0.032*
C6 −0.0075 (2) 0.28136 (19) 0.14865 (12) 0.0229 (6)
H6 −0.0140 0.2500 0.1865 0.027*
C7 0.2578 (2) 0.11799 (18) 0.23207 (12) 0.0215 (5)
C8 0.2292 (2) 0.1691 (3) 0.28081 (13) 0.0410 (8)
H8 0.1752 0.2157 0.2724 0.049*
C9 0.2764 (3) 0.1547 (4) 0.34114 (15) 0.0574 (11)
H9 0.2549 0.1913 0.3735 0.069*
C10 0.3516 (3) 0.0900 (3) 0.35449 (15) 0.0576 (12)
H10 0.3830 0.0797 0.3964 0.069*
C11 0.3848 (4) 0.0368 (3) 0.3069 (2) 0.0700 (14)
H11 0.4388 −0.0095 0.3162 0.084*
C12 0.3373 (3) 0.0529 (2) 0.24521 (16) 0.0515 (10)
H12 0.3605 0.0184 0.2125 0.062*
C13 0.15172 (19) 0.01853 (18) 0.07300 (11) 0.0202 (5)
C14 0.1501 (2) 0.0447 (2) 0.01093 (12) 0.0298 (6)
H14 0.1558 0.1102 0.0004 0.036*
C15 0.1403 (2) −0.0245 (2) −0.03532 (13) 0.0360 (7)
H15 0.1396 −0.0062 −0.0773 0.043*
C16 0.1317 (2) −0.1194 (2) −0.02054 (14) 0.0333 (7)
H16 0.1249 −0.1665 −0.0523 0.040*
C17 0.1328 (2) −0.1461 (2) 0.04042 (14) 0.0343 (7)
H17 0.1266 −0.2117 0.0506 0.041*
C18 0.1429 (2) −0.0774 (2) 0.08685 (12) 0.0270 (6)
H18 0.1438 −0.0964 0.1287 0.032*
C19 0.03827 (19) 0.01088 (18) 0.22640 (11) 0.0190 (5)
C20 0.3813 (2) 0.2744 (2) 0.14526 (12) 0.0260 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn 0.02036 (10) 0.01769 (10) 0.01559 (9) 0.00087 (7) 0.00337 (6) −0.00049 (7)
S 0.0272 (3) 0.0299 (4) 0.0242 (3) −0.0054 (3) 0.0098 (3) −0.0070 (3)
O1 0.0227 (9) 0.0238 (10) 0.0211 (9) 0.0002 (8) 0.0056 (7) 0.0060 (8)
O2 0.0294 (10) 0.0208 (10) 0.0254 (10) 0.0042 (8) 0.0093 (8) 0.0000 (8)
N1 0.0311 (15) 0.0292 (14) 0.0346 (14) −0.0033 (12) 0.0029 (11) −0.0081 (12)
N2 0.0297 (14) 0.0301 (15) 0.0427 (16) −0.0074 (13) 0.0057 (12) −0.0087 (13)
C1 0.0217 (13) 0.0153 (12) 0.0193 (12) −0.0001 (10) 0.0011 (10) 0.0000 (10)
C2 0.0277 (14) 0.0250 (14) 0.0208 (13) 0.0001 (11) 0.0039 (11) 0.0013 (11)
C3 0.0364 (16) 0.0237 (15) 0.0309 (15) 0.0021 (13) 0.0015 (12) 0.0069 (12)
C4 0.0295 (15) 0.0247 (15) 0.0389 (17) 0.0063 (12) −0.0006 (12) 0.0012 (13)
C5 0.0222 (14) 0.0216 (14) 0.0358 (15) 0.0014 (11) 0.0046 (11) −0.0065 (12)
C6 0.0255 (14) 0.0197 (13) 0.0240 (13) −0.0012 (11) 0.0054 (10) −0.0013 (11)
C7 0.0205 (12) 0.0232 (14) 0.0201 (12) −0.0027 (11) 0.0015 (10) 0.0026 (11)
C8 0.0254 (15) 0.072 (2) 0.0251 (15) 0.0055 (16) 0.0021 (12) −0.0117 (15)
C9 0.0331 (18) 0.117 (4) 0.0207 (16) −0.010 (2) 0.0009 (13) −0.0065 (19)
C10 0.069 (3) 0.075 (3) 0.0207 (16) −0.046 (2) −0.0189 (16) 0.0201 (17)
C11 0.077 (3) 0.037 (2) 0.077 (3) 0.012 (2) −0.045 (2) 0.006 (2)
C12 0.062 (2) 0.039 (2) 0.044 (2) 0.0230 (18) −0.0196 (17) −0.0121 (16)
C13 0.0170 (12) 0.0228 (14) 0.0202 (12) 0.0005 (10) 0.0017 (10) −0.0059 (10)
C14 0.0387 (17) 0.0275 (15) 0.0224 (14) 0.0005 (13) 0.0024 (12) −0.0017 (11)
C15 0.0424 (18) 0.046 (2) 0.0187 (14) −0.0021 (15) 0.0026 (12) −0.0073 (13)
C16 0.0330 (16) 0.0374 (18) 0.0292 (15) −0.0032 (14) 0.0036 (12) −0.0176 (13)
C17 0.0414 (17) 0.0265 (16) 0.0350 (16) −0.0030 (13) 0.0064 (13) −0.0084 (13)
C18 0.0292 (14) 0.0288 (15) 0.0234 (14) −0.0015 (12) 0.0051 (11) −0.0032 (12)
C19 0.0217 (13) 0.0192 (13) 0.0164 (12) −0.0032 (11) 0.0042 (10) −0.0016 (10)
C20 0.0303 (15) 0.0252 (14) 0.0241 (14) −0.0062 (12) 0.0095 (11) 0.0012 (11)

Geometric parameters (Å, º)

Sn—C7 2.139 (2) C6—H6 0.9500
Sn—C13 2.139 (2) C7—C12 1.368 (4)
Sn—C1 2.146 (2) C7—C8 1.381 (4)
Sn—O1 2.2471 (17) C8—C9 1.374 (4)
Sn—S 2.6945 (7) C8—H8 0.9500
S—C20 1.718 (3) C9—C10 1.325 (6)
O1—C19 1.269 (3) C9—H9 0.9500
O2—C19 1.243 (3) C10—C11 1.398 (6)
N1—C20 1.321 (4) C10—H10 0.9500
N1—H1A 0.81 (4) C11—C12 1.406 (5)
N1—H1B 0.86 (4) C11—H11 0.9500
N2—C20 1.324 (4) C12—H12 0.9500
N2—H2A 0.85 (4) C13—C18 1.384 (4)
N2—H2B 0.82 (4) C13—C14 1.400 (4)
C1—C2 1.396 (3) C14—C15 1.389 (4)
C1—C6 1.400 (4) C14—H14 0.9500
C2—C3 1.391 (4) C15—C16 1.375 (4)
C2—H2 0.9500 C15—H15 0.9500
C3—C4 1.388 (4) C16—C17 1.380 (4)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.383 (4) C17—C18 1.388 (4)
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.390 (4) C18—H18 0.9500
C5—H5 0.9500 C19—C19i 1.538 (5)
C7—Sn—C13 124.52 (10) C9—C8—C7 122.0 (3)
C7—Sn—C1 120.08 (9) C9—C8—H8 119.0
C13—Sn—C1 115.36 (9) C7—C8—H8 119.0
C7—Sn—O1 84.87 (8) C10—C9—C8 120.5 (4)
C13—Sn—O1 97.26 (8) C10—C9—H9 119.7
C1—Sn—O1 85.84 (8) C8—C9—H9 119.7
C7—Sn—S 91.14 (7) C9—C10—C11 120.1 (3)
C13—Sn—S 85.49 (7) C9—C10—H10 120.0
C1—Sn—S 95.66 (7) C11—C10—H10 120.0
O1—Sn—S 175.97 (5) C10—C11—C12 119.2 (3)
C20—S—Sn 100.29 (9) C10—C11—H11 120.4
C19—O1—Sn 123.37 (16) C12—C11—H11 120.4
C20—N1—H1A 126 (3) C7—C12—C11 120.3 (3)
C20—N1—H1B 123 (2) C7—C12—H12 119.8
H1A—N1—H1B 111 (3) C11—C12—H12 119.8
C20—N2—H2A 121 (2) C18—C13—C14 118.4 (2)
C20—N2—H2B 119 (3) C18—C13—Sn 123.08 (19)
H2A—N2—H2B 120 (3) C14—C13—Sn 118.5 (2)
C2—C1—C6 117.7 (2) C15—C14—C13 120.4 (3)
C2—C1—Sn 120.59 (19) C15—C14—H14 119.8
C6—C1—Sn 121.12 (18) C13—C14—H14 119.8
C3—C2—C1 121.1 (3) C16—C15—C14 120.2 (3)
C3—C2—H2 119.4 C16—C15—H15 119.9
C1—C2—H2 119.4 C14—C15—H15 119.9
C4—C3—C2 120.3 (3) C15—C16—C17 120.0 (3)
C4—C3—H3 119.8 C15—C16—H16 120.0
C2—C3—H3 119.8 C17—C16—H16 120.0
C5—C4—C3 119.4 (3) C16—C17—C18 120.1 (3)
C5—C4—H4 120.3 C16—C17—H17 120.0
C3—C4—H4 120.3 C18—C17—H17 120.0
C4—C5—C6 120.3 (3) C13—C18—C17 120.9 (3)
C4—C5—H5 119.9 C13—C18—H18 119.5
C6—C5—H5 119.9 C17—C18—H18 119.5
C5—C6—C1 121.2 (3) O2—C19—O1 126.8 (2)
C5—C6—H6 119.4 O2—C19—C19i 116.57 (17)
C1—C6—H6 119.4 O1—C19—C19i 116.58 (18)
C12—C7—C8 117.9 (3) N1—C20—N2 118.6 (3)
C12—C7—Sn 121.9 (2) N1—C20—S 122.2 (2)
C8—C7—Sn 119.6 (2) N2—C20—S 119.2 (2)

Symmetry code: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2ii 0.81 (4) 2.06 (4) 2.824 (3) 157 (4)
N2—H2A···O2iii 0.86 (4) 2.14 (4) 2.970 (3) 164 (3)
C6—H6···O1 0.95 2.44 2.957 (3) 114
C18—H18···O2 0.95 2.39 3.234 (3) 147

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2662).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Diallo, W., Okio, K. Y. A., Diop, C. A. K., Diop, L., Diop, L. A. & Russo, U. (2009). Main Group. Met. Chem 32, 93–100.
  4. Diasse-Sarr, A., Diop, L., Mahon, M. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223–229.
  5. Diop, C. A. K., Diop, L. & Russo, U. (1999). Main Group. Met. Chem. 22, 217–220.
  6. Diop, C. A. K., Lahlou, M., Diop, L., Mahieu, B. & Russo, U. (1997). Main Group Met. Chem. 20, 681–686.
  7. Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem 17, 881–882.
  8. Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  11. Gielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet Chem 9, 251–257.
  12. Kamruddin, S. K., Chattopadhyaya, T. K., Roy, A. & Tiekink, E. R. T. (1996). Appl. Organomet. Chem. 10, 513–521.
  13. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W.Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Tiekink, E. R. T. (1992). Main Group Met.Chem 15, 161–186.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812040706/wm2662sup1.cif

e-68-m1337-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040706/wm2662Isup2.hkl

e-68-m1337-Isup2.hkl (214.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES