Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 27;68(Pt 11):o3227–o3228. doi: 10.1107/S1600536812043899

dl-Tyrosinium chloride dihydrate

Fatiha Guenifa a, Lamia Bendjeddou a,*, Aouatef Cherouana a, Slimane Dahaoui b, Claude Lecomte b
PMCID: PMC3515310  PMID: 23284530

Abstract

In the title compound, C9H12NO3 +·Cl·2H2O, the cation has a protonated amino group resulting from proton transfer from chloridric acid. The structure displays double layers parallel to the [010] direction held together by N—H⋯O, N—H⋯Cl, O—H⋯O and O—H⋯Cl hydrogen bonds. These layers are stacked along the c axis at b = 1/2; within each layer, the tyrosinium cations are arranged in an alternating head-to-tail sequence, forming inversion dimers [R 2 2(10) motif]. The water mol­ecules allow for the construction of a three-dimensional hydrogen-bonded network formed by centrosymmetric R 6 6(28) and R 8 8(34) motifs.

Related literature  

For other examples of organic salts of amino acids, see: Zeghouan et al. (2012); Guenifa et al. (2009). For the structure of bis­(l-tyrosinium) sulfate monohydrate, see: Sridhar et al. (2002). For other examples of amino acids with non-polar side chains, see: Torii & Iitaka (1973); Harding & Long (1968). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o3227-scheme1.jpg

Experimental  

Crystal data  

  • C9H12NO3 +·Cl·2H2O

  • M r = 253.68

  • Triclinic, Inline graphic

  • a = 5.3330 (2) Å

  • b = 10.9634 (5) Å

  • c = 11.2500 (4) Å

  • α = 113.642 (4)°

  • β = 94.359 (3)°

  • γ = 98.465 (3)°

  • V = 589.34 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.3 × 0.03 × 0.02 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire CCD diffractometer

  • 12044 measured reflections

  • 3445 independent reflections

  • 2780 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.084

  • S = 1.02

  • 3445 reflections

  • 172 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004)’.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812043899/nk2187sup1.cif

e-68-o3227-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043899/nk2187Isup2.hkl

e-68-o3227-Isup2.hkl (165.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.90 (1) 2.36 (1) 3.2326 (12) 162 (1)
N1—H2N⋯Cl1i 0.92 (1) 2.44 (1) 3.2872 (12) 154 (1)
N1—H2N⋯O3i 0.92 (1) 2.40 (2) 2.9574 (15) 119 (1)
N1—H3N⋯Cl1ii 0.90 (1) 2.32 (1) 3.2151 (12) 176 (1)
O1—H1⋯Cl1iii 0.84 (2) 2.36 (2) 3.1858 (11) 169 (1)
O2—H2⋯O2W i 0.89 (1) 1.64 (1) 2.5319 (15) 174 (2)
O1W—H11W⋯O1iv 0.84 (1) 2.10 (1) 2.9044 (13) 162 (2)
O1W—H12W⋯Cl1v 0.85 (1) 2.33 (1) 3.1784 (11) 172 (2)
O2W—H21W⋯O1W i 0.83 (1) 1.91 (1) 2.7429 (14) 173 (2)
O2W—H22W⋯O1W vi 0.85 (2) 2.02 (2) 2.8318 (15) 161 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.

supplementary crystallographic information

Comment

We report the crystal structure of DL-tyrosinium chloride dihydrate (I), as part of our research with organic salts of amino acids (Zeghouan et al., 2012; Guenifa et al., 2009).

The asymmetric unit of (I) contains a tyrosinium cation, chloride anion and two water molecules (Fig.1). As expected, tyrosine form protonated units in (I) with the transfer of an H atom from chloridric acid. A similar situation is observed in bis(L-tyrosinium) sulfate monohydrate, (Sridhar et al., 2002).

In the crystal structure of (I), the ions are connected into a three-dimensional hydrogen-bonded network via N—H···O, N—H···Cl, O—H···O and O—H···Cl hydrogen bonds (Table 1). The tyrosinium cations are held together by N—H···O hydrogen bonds, forming a centrosymmetric dimer (R22(10) motif; Bernstein et al., 1995) centred at (1/2, 1/2, 1/2). This centrosymmetric dimer is further connected along [100] direction to either side of the chloride anions by N—H···Cl hydrogen bonds [R24(8) and R35(13) motifs] (Fig. 2). The aggregation of the rings motifs results in an overall two-dimensional hydrogen-bonded network.

The water molecules, which plays a dual role as both donor and acceptor in hydrogen bonding interactions, generating the centrosymmetric hydrogen-bonded (R24(8) motif) via O2w—H21w···O1w(i) and O2w—H22w···O1w(vi) (Fig. 3), and are involved in two centred hydrogen bonding with the cations to produce a centrosymmetric R66(28) and R88(34) motifs, thus completing the three-dimensional hydrogen-bonded network. The structures of many amino acids with non-polar side chains have the arrangement of a double layers of carboxyl and amino groups held together by hydrogen bonds (Torii & Iitaka, 1973; Harding & Long, 1968).

The molecule packing of (I), consists of double layers stacked along the c axis, at b = 1/2, where in each layer the tyrosinium cations are arranged with alternating head-to-tail sequence.

Experimental

The compound was obtained as colourless crystals with melting points of 370°, after few days, by slow evaporation from an aqueous solution of tyrosine and chloridric acid in stoechiometric ratio of 1:1.

Refinement

The methine, methylene, and aromatic H atoms were placed at calculated positions respectively with C—H fixed at 0.98 Å (AFIX 13), 0.97 Å (AFIX 23), and C—H = 0.93 Å (Afix 43). All H atom attached to N or O were initially located by difference maps with restraint of the N—H bond length to 0.90 (2) Å (DFIX), and U fixed to be 1.2 times that of the N1; and O—H bond length to 0.85 (2) Å (DFIX) for hydroxyl group and 0.85 (1) Å (DFIX) for water molecule with H···H = 1.39 (2) and U fixed to be 1.5 times that of the o1, O2, o1w and o2w.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) (Fig.1), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal structures, showing the formation of dimers via N—H···O hydrogen bonds, and the aggregation of R22(10), R24(8) and R35(13) motifs [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z]. For the sake of clarity, the water molecules in (I), and H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled.

Fig. 3.

Fig. 3.

Packing view of (I) showing the aggregation of R24(8), R66(28) and R88(34) hydrogen-bonding motifs. [Symmetry codes:(i) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 2]. For the sake of clarity, the chloride anions, and H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled.

Crystal data

C9H12NO3+·Cl·2H2O Z = 2
Mr = 253.68 F(000) = 268
Triclinic, P1 Dx = 1.43 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.3330 (2) Å Cell parameters from 12044 reflections
b = 10.9634 (5) Å θ = 3.4–30.0°
c = 11.2500 (4) Å µ = 0.33 mm1
α = 113.642 (4)° T = 100 K
β = 94.359 (3)° Needle, colourless
γ = 98.465 (3)° 0.3 × 0.03 × 0.02 mm
V = 589.34 (5) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire CCD diffractometer 2780 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
Graphite monochromator θmax = 30.0°, θmin = 3.4°
ω scans h = −7→7
12044 measured reflections k = −15→15
3445 independent reflections l = −15→15

Refinement

Refinement on F2 11 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0483P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.43 e Å3
3445 reflections Δρmin = −0.30 e Å3
172 parameters

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.26233 (5) 0.45517 (3) 0.68584 (3) 0.01279 (8)
O2 0.63481 (17) 0.90937 (9) 0.68369 (9) 0.0169 (2)
O1 0.43456 (17) 0.69839 (9) 1.18096 (9) 0.0162 (2)
O1W 0.07015 (18) 0.82478 (9) 0.34641 (9) 0.0165 (2)
H12W −0.008 (3) 0.7497 (11) 0.3437 (15) 0.025*
H11W 0.177 (2) 0.8037 (15) 0.2947 (14) 0.025*
O3 0.40595 (16) 0.69671 (9) 0.58151 (9) 0.01381 (19)
O2W 0.7642 (2) 0.02475 (10) 0.39042 (10) 0.0255 (2)
H22W 0.832 (3) −0.0447 (13) 0.3609 (15) 0.038*
H21W 0.807 (3) 0.0653 (16) 0.4715 (9) 0.038*
N1 0.7923 (2) 0.58230 (10) 0.62048 (11) 0.0113 (2)
C5 0.8819 (2) 0.66936 (12) 0.94214 (12) 0.0130 (2)
H5 1.0026 0.6179 0.9052 0.016*
C6 0.7489 (2) 0.64160 (12) 1.03283 (12) 0.0135 (2)
H6 0.7796 0.572 1.0558 0.016*
C1 0.6041 (2) 0.77693 (12) 0.63928 (12) 0.0107 (2)
C7 0.5693 (2) 0.71907 (12) 1.08898 (12) 0.0116 (2)
C3 0.9865 (2) 0.80241 (12) 0.80762 (12) 0.0121 (2)
H3A 1.1505 0.7748 0.8117 0.015*
H3B 1.0206 0.8997 0.8337 0.015*
C9 0.6553 (2) 0.84770 (12) 0.96215 (12) 0.0122 (2)
H9 0.6224 0.9165 0.9384 0.015*
C2 0.8520 (2) 0.73226 (12) 0.66507 (12) 0.0108 (2)
H2A 0.9708 0.7523 0.6101 0.013*
C8 0.5211 (2) 0.82194 (12) 1.05327 (12) 0.0128 (2)
H8 0.3999 0.8731 1.0901 0.015*
C4 0.8385 (2) 0.77273 (12) 0.90528 (11) 0.0109 (2)
H3N 0.925 (2) 0.5502 (14) 0.6426 (14) 0.013*
H2N 0.758 (3) 0.5428 (14) 0.5303 (12) 0.013*
H1N 0.657 (2) 0.5615 (14) 0.6569 (13) 0.013*
H1 0.500 (3) 0.6478 (14) 1.2082 (15) 0.016*
H2 0.494 (2) 0.9367 (14) 0.6636 (14) 0.016*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01191 (14) 0.01584 (14) 0.01394 (15) 0.00480 (11) 0.00313 (10) 0.00869 (11)
O2 0.0146 (4) 0.0119 (4) 0.0229 (5) 0.0042 (4) −0.0028 (4) 0.0065 (4)
O1 0.0190 (5) 0.0204 (5) 0.0170 (5) 0.0102 (4) 0.0075 (4) 0.0128 (4)
O1W 0.0177 (5) 0.0145 (4) 0.0176 (5) 0.0041 (4) 0.0055 (4) 0.0061 (4)
O3 0.0111 (4) 0.0137 (4) 0.0161 (5) 0.0032 (3) 0.0010 (3) 0.0055 (4)
O2W 0.0305 (6) 0.0247 (5) 0.0180 (5) 0.0184 (5) −0.0029 (4) 0.0022 (4)
N1 0.0103 (5) 0.0130 (5) 0.0108 (5) 0.0045 (4) 0.0012 (4) 0.0045 (4)
C5 0.0127 (5) 0.0140 (6) 0.0121 (6) 0.0066 (5) 0.0013 (4) 0.0041 (5)
C6 0.0161 (6) 0.0136 (6) 0.0128 (6) 0.0066 (5) 0.0014 (5) 0.0064 (5)
C1 0.0127 (5) 0.0131 (5) 0.0084 (6) 0.0045 (5) 0.0031 (4) 0.0056 (4)
C7 0.0113 (5) 0.0134 (5) 0.0091 (6) 0.0018 (4) 0.0006 (4) 0.0043 (4)
C3 0.0105 (5) 0.0136 (6) 0.0115 (6) 0.0020 (5) −0.0004 (4) 0.0050 (5)
C9 0.0140 (6) 0.0106 (5) 0.0126 (6) 0.0037 (5) 0.0001 (5) 0.0053 (5)
C2 0.0103 (5) 0.0120 (5) 0.0113 (6) 0.0026 (4) 0.0016 (4) 0.0058 (5)
C8 0.0133 (6) 0.0122 (5) 0.0131 (6) 0.0059 (5) 0.0024 (5) 0.0041 (5)
C4 0.0095 (5) 0.0115 (5) 0.0087 (6) 0.0002 (4) −0.0021 (4) 0.0025 (4)

Geometric parameters (Å, º)

O1—C7 1.3754 (16) C3—C4 1.5096 (17)
O2—C1 1.3117 (17) C4—C9 1.3961 (16)
O3—C1 1.2150 (15) C4—C5 1.3962 (19)
O1—H1 0.837 (17) C5—C6 1.3900 (18)
O2—H2 0.894 (12) C6—C7 1.3925 (17)
O1W—H11W 0.835 (12) C7—C8 1.390 (2)
O1W—H12W 0.854 (14) C8—C9 1.3882 (18)
O2W—H21W 0.834 (9) C2—H2A 0.9800
O2W—H22W 0.847 (16) C3—H3A 0.9700
N1—C2 1.4887 (18) C3—H3B 0.9700
N1—H2N 0.920 (12) C5—H5 0.9300
N1—H1N 0.901 (13) C6—H6 0.9300
N1—H3N 0.896 (13) C8—H8 0.9300
C1—C2 1.5225 (16) C9—H9 0.9300
C2—C3 1.5334 (17)
C7—O1—H1 109.9 (11) O1—C7—C8 117.48 (10)
C1—O2—H2 112.8 (10) C6—C7—C8 120.27 (11)
H11W—O1W—H12W 105.2 (16) O1—C7—C6 122.25 (12)
H21W—O2W—H22W 109.8 (16) C7—C8—C9 119.46 (11)
H1N—N1—H2N 111.9 (13) C4—C9—C8 121.56 (13)
C2—N1—H2N 108.2 (10) N1—C2—H2A 108.00
C2—N1—H3N 112.5 (10) C3—C2—H2A 108.00
H1N—N1—H3N 109.5 (13) C1—C2—H2A 108.00
C2—N1—H1N 108.3 (10) C2—C3—H3B 109.00
H2N—N1—H3N 106.6 (14) C4—C3—H3A 109.00
O2—C1—O3 125.48 (11) H3A—C3—H3B 108.00
O2—C1—C2 111.91 (10) C4—C3—H3B 109.00
O3—C1—C2 122.60 (12) C2—C3—H3A 109.00
N1—C2—C3 110.77 (11) C4—C5—H5 119.00
C1—C2—C3 115.02 (10) C6—C5—H5 119.00
N1—C2—C1 107.62 (10) C7—C6—H6 120.00
C2—C3—C4 114.94 (10) C5—C6—H6 120.00
C3—C4—C9 121.35 (12) C7—C8—H8 120.00
C3—C4—C5 120.83 (10) C9—C8—H8 120.00
C5—C4—C9 117.82 (11) C8—C9—H9 119.00
C4—C5—C6 121.52 (11) C4—C9—H9 119.00
C5—C6—C7 119.36 (13)
O2—C1—C2—N1 175.77 (10) C9—C4—C5—C6 −0.28 (18)
O2—C1—C2—C3 51.79 (15) C3—C4—C9—C8 −179.15 (11)
O3—C1—C2—N1 −5.77 (16) C5—C4—C9—C8 0.53 (18)
O3—C1—C2—C3 −129.75 (13) C4—C5—C6—C7 −0.41 (18)
N1—C2—C3—C4 −57.63 (13) C5—C6—C7—O1 −178.84 (11)
C1—C2—C3—C4 64.66 (16) C5—C6—C7—C8 0.88 (18)
C2—C3—C4—C5 94.83 (14) O1—C7—C8—C9 179.09 (11)
C2—C3—C4—C9 −85.50 (15) C6—C7—C8—C9 −0.64 (18)
C3—C4—C5—C6 179.40 (11) C7—C8—C9—C4 −0.07 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···Cl1 0.90 (1) 2.36 (1) 3.2326 (12) 162 (1)
N1—H2N···Cl1i 0.92 (1) 2.44 (1) 3.2872 (12) 154 (1)
N1—H2N···O3i 0.92 (1) 2.40 (2) 2.9574 (15) 119 (1)
N1—H3N···Cl1ii 0.90 (1) 2.32 (1) 3.2151 (12) 176 (1)
O1—H1···Cl1iii 0.84 (2) 2.36 (2) 3.1858 (11) 169 (1)
O2—H2···O2Wi 0.89 (1) 1.64 (1) 2.5319 (15) 174 (2)
O1W—H11W···O1iv 0.84 (1) 2.10 (1) 2.9044 (13) 162 (2)
O1W—H12W···Cl1v 0.85 (1) 2.33 (1) 3.1784 (11) 172 (2)
O2W—H21W···O1Wi 0.83 (1) 1.91 (1) 2.7429 (14) 173 (2)
O2W—H22W···O1Wvi 0.85 (2) 2.02 (2) 2.8318 (15) 161 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) x, y, z−1; (v) −x, −y+1, −z+1; (vi) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2187).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264–o2265. [DOI] [PMC free article] [PubMed]
  6. Harding, M. M. & Long, H. A. (1968). Acta Cryst. B24, 1096–1102.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Wrocław, Poland.
  10. Persistence of Vision Team (2004). POV-RAY Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2002). Acta Cryst. E58, o211–o214.
  13. Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799–2807.
  14. Zeghouan, O., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68, o2959–o2960. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812043899/nk2187sup1.cif

e-68-o3227-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043899/nk2187Isup2.hkl

e-68-o3227-Isup2.hkl (165.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES