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Abstract

Background: Little is known about the changes of brain structural and functional connectivity networks underlying the
pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent
cortical overstimulation associated with migraine.

Methodology/Principal Findings: Gray matter volumes and resting-state functional magnetic resonance imaging signal
correlations were employed to construct structural and functional networks between brain regions in 43 female patients
with migraine (PM) and 43 gender-matched healthy controls (HC) by using graph theory-based approaches. Compared with
the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by
higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that
the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed
abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the
inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal
gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with
abnormal centrality. Furthermore, the dysfunctional connections in patients’ cortical networks formed into a connected
component and three dysregulated modules were identified involving pain-related information processing and motion-
processing visual networks.

Conclusions: Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and
high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The
disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure
progressively.
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Introduction

Migraine is an idiopathic headache disorder that has been an

important healthcare and social problem for its great influence on

the quality of life, accompanied by severe headaches, nausea and

light sensitivity [1]. Functional and structural neuroimaging has

provided unique insights for evaluating brain alteration in

migraine [2]. Several studies on structural differences in gray

matter revealed that the brain altered its shape as a result of

repetitive migraine attacks, and the structural differences in

patients were associated with headache frequency [3,4]. Func-

tional connectivity analysis also found regional homogeneity

abnormalities in the migraine-afflicted brain [5–7]. These studies

focused on the local variation in migraine from different angles.

Meanwhile, it has been suggested that properties of the underlying

anatomical network may constrain the main organizing principles

of functional connectivity [8,9]; the functional connectivity, in

turn, may reflect the underlying structural connectivity [10,11].

Combining measures of altered functional and structural infor-

mation from cortical networks may enrich our understanding of

the mechanisms responsible for brain alteration during migraine

[12]. So far, however, there has been little discussion on the

coupling of brain functional and structural network dysregulation

underlying the pathophysiology in migraine.

Due to frequent migraine-related nociceptive input, migraine

has had serious secondary effects upon the central nervous system

(CNS) [13], causing irregular functional connectivity in patients’

cortical networks leading to irregular brain circuits associated with

pain-related information processing [1]. Several studies demon-

strated that chronic pain not only harmed brain regions involved
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in central pain processing but also resulted in selective alteration of

cortical areas unrelated to pain [14–19]. In particular, a

morphometric study by Granziera et al. found structural

abnormalities in the visual network of motion-processing areas

in patients with migraine, providing a noninvasively acquirable

migraine biomarker for researchers [20]; DaSilva et al. showed

that migraine sufferers had a thicker somatosensory cortex [21].

Here, we hypothesized that the brain cortical networks would

progressively reorganize in individuals with migraine as the result

of long-term and high-frequency headache attacks. Valfrè et al.

(2008) observed that gray matter abnormalities were associated

with the duration of migraine, indicating that migraine is a

progressive disease and gets worse over time [3]. Progression of

this disease could be depicted by alterations in the topological

properties of the brain’s networks [22]. It would be very important

to investigate how the brain functional and structural network

organization is altered by frequent cortical overstimulation

associated with headaches.

To be able to fully understand structural/functional connectiv-

ity patterns, a comprehensive map of connection patterns of the

human brain is needed [23–25]. The recent application of graph

theory analysis (GTA), which defines a graph as a set of nodes

(brain regions) and edges (functional connections), has become a

powerful tool to investigate complex brain networks on a whole

brain scale [23,26]. While a graph serves as a powerful

representation for characterizing the topological properties of

brain networks [24,25], it describes the basis of cognitive

processing for distributed functional interactions between brain

regions [27]. Structural connectivity networks are constructed

from the measure of morphological association [28], and

functional connectivity networks are based on correlations

between functional MRI signals from different brain regions

[29,30]. Previously, our group considered gender-related differ-

ences in the topological property of resting networks in migraine

sufferers and found widely distributed disorganization in their

whole-brain networks. We found that migraine may have an

additional influence on females and lead to more dysfunctional

organization in their resting functional networks [29]. To test our

hypothesis, we compared the intrinsic brain networks between

female patients with migraine (PM) and gender-matched healthy

controls (HC). Between-group differences and their associations

with clinical variables were investigated.

Materials and Methods

All research procedures were approved by the West China

Hospital Subcommittee on Human Studies and were conducted in

accordance with the Declaration of Helsinki. All participants in

our study gave written informed consent.

2.1 Participants
Forty-three right-handed migraine patients (female,

32.6611.1 years (mean age 6 SD), 14.566.8 years (mean

migraine duration6 SD)) were recruited (Table 1). The migraine

patients without aura fulfilled the ICHD-II criteria. Inclusion

criteria for the PM group were according to Detsky et al. (2006): 1)

It is a unilateral and/or pulsating headache; 2) Headache attacks

last 4–72 hours (untreated or unsuccessfully treated); 3) There is

nausea and/or vomiting, photophobia and phonophobia during

headache and 4) Headache is disabling [31]. During the past 4

weeks, patients carefully rated the average pain intensity of the

attacks (5.561.6, 0–10 scale, 10 being the most intense pain

imaginable), migraine attack frequency (4.362.1 days/month) and

migraine attack duration (13.769.9 hours). All patients had been

free from a typical migraine attack for at least 1 week prior to MRI

examination. Forty-three age-, education- and gender-matched,

healthy, right-handed controls (age 33.4610.2 years) were re-

cruited from the local community. The controls neither had any

headache days per year nor had family members who suffered

regularly from a migraine or other headaches.

For both groups, exclusion criteria were: 1) macroscopic brain

T2-visible lesions on MRI scans; 2) existence of a neurological

disease; 3) pregnancy or menstrual period; 4) use of prescription

medications within the last month; 5) alcohol, nicotine or drug

abuse; and 6) claustrophobia. All subjects gave written, informed

consent after the experimental procedures had been fully

explained.

2.2 Data Acquisition
All subjects underwent a resting-state functional MRI scan using

a 3T magnetic resonance system (GE EXCITE, Milwaukee,

Wisconsin) with an 8-channel phased array head coil. Prior to the

functional run, a high-resolution structural image for each subject

was acquired using three-dimensional MRI sequences using an

axial Fast Spoiled Gradient Recalled sequence (3D-FSGPR)

(matrix 2566256; FOV = 256 mm 6256 mm; spatial resolu-

tion = 1 mm 61 mm 61 mm; TE = 7.8 ms; TR = 3.0 ms). The

functional images were obtained with an EPI (30 continuous slices

with a slice thickness = 5 mm, TR = 2,000 ms, TE = 30 ms, FA

= 90u, FOV = 2406240 mm2, data matrix = 64664). For each

subject, a total of 205 volumes were acquired, resulting in a total

scan time of 410 s. Subjects were instructed to rest with their eyes

closed, not to think about anything in particular, and not to fall

asleep. After the scan, the subjects were asked whether they

remained awake during the whole procedure.

Table 1. Demographic characteristics of subjects.

Information Healthy controls (n = 43 ) Patients with migraine (n = 43) p-value

Age (years) 33.4610.2 32.6611.1 0.4

Education (years) 11.966.3 12.267.4 0.4

Disease duration (years) N/A 14.566.8 -

Migraine attacks during past four weeks

Attack duration (hours) N/A 13.769.9 -

Attack frequency (times) N/A 4.362.1 -

Average pain intensity (0–10) N/A 5.561.6 -

doi:10.1371/journal.pone.0051250.t001
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2.3 Measure of gray matter volume
The structural images were processed using voxel-based

morphometry (VBM) with Statistical Parametric Mapping-5

(SPM5) (http://www.fil.ion.ucl.ac.uk/spm). The average gray

matter volumes were estimated. Specifically, the structural images

were first corrected for non-uniformity artifacts; second, by using

nonlinear normalization, the corrected images were registered to

an asymmetrical T1-weighted template; third, the gray matter,

white matter, and cerebrospinal fluid were obtained from then

normalized images; and fourth, the resulting gray matter images

were smoothed by a 4 mm isotropic Gaussian kernel.

2.4 fMRI data preprocessing
Image preprocessing was carried out using SPM5. The first five

volumes were discarded to eliminate non-equilibrium effects of

magnetization and allow subjects to get used to the scanning

environment. Data preprocessing procedures included slice timing,

realignment, and normalization: first, all datasets were initially

corrected for temporal offsets using sinc interpolation and head

movement-related effects using a six-parameter spatial transfor-

mation [32]; second, to minimize movement artifacts, individuals

with an estimated maximum displacement in any direction larger

than 1.5 mm or head rotation larger than 1.5u were discarded

from the study. No data were excluded under this criterion; third,

all datasets were spatially normalized to the Montreal Neurological

Institute (MNI) echoplanar imaging template image and resam-

pled to 2-mm isotropic voxels; and finally, a band-pass filter

(0.01 Hz ,f,0.1 Hz) was applied to remove the effects of low-

frequency drift and high frequency physiological noise.

2.5 Defining nodes for cortical network analysis
In the network analysis, nodes must be first defined, and in this

case, automated anatomically labeled (AAL) template images were

used to parcellate the entire cerebral cortex into 90 anatomical

regions of interests (ROIs) (Table 2)[33]. These 90 brain regions

were considered as a set of nodes in our network analysis. This

definition mode is widely used in current network studies

[29,30,34].

2.6 Defining edges for cortical network analysis
For brain structural networks, the average gray matter volumes

within each ROI (n = 90) were calculated. We measured the

correlations based on the ROIs’ averaged gray matter volumes

[28,35]. For each group, we obtained a structural connection

matrix (90690) across individuals between all possible connections

of the node pairs.

For brain functional networks, we measured the regions’ mutual

association, expressing their functional coupling to define the

network connection [25]. The mean time courses from deep white

matter, ventricles and the 6 rigid-body motion parameters were

regressed from the fMRI time series of 90 ROIs. After that, we

computed the mean time series of each seed region and obtained a

90*90 matrix of the Pearson correlation coefficients between all

possible connections of node pairs. The correlation coefficient was

preserved as the functional connective intensity between the two

regions.

The structural/functional connections of the cortical networks

were defined if the correlation coefficient in the above structural/

functional connection matrix between the two nodes achieved a

correlation threshold. In the current study, the sparsity value used

a network threshold which was defined as the total number of

edges in a network divided by the maximum possible number of

edges [36], resulting in cortical networks that had the same

number of connections. Thus, it made cortical networks in the HC

and PM groups to have the same network wiring cost [35]. We

thresholded each correlation matrix repeatedly over a wide range

of sparsity values ranging from 0.15 to 0.3 in 0.01 increments.

2.7 Network properties
The clustering coefficient of a node 0, Ci ,1 is a ratio that

defines the proportion of possible connections that actually exist

between the nearest neighbors of a node [37]:

Ci~
XN

j~1

#Ej

#Vj(#Vj{1)=2

where N is the total number of nodes in the network, #Ej is the

number of edges connecting the neighbors of node j, and #Vj is

the number of neighbors of node j.

The mean clustering coefficient of network C is the average over

each node’s clustering coefficient:

C~
1

N
Ci

The minimum path length L is the average of the shortest path

lengths over each possible pair of vertices [37]:

L~
1

N(N{1)

X

i=j

minfLi,jg

where minfLi,jg is the shortest path length between the ith node

and the jth node, and the path length is defined as the number of

edges included in the path.

Corresponding parameters for a random graph of C and L with

the same number of nodes were also calculated, as denoted by

Crand and Lrand . A graph is considered small-world if its average

clustering coefficient C is significantly higher than a random graph

constructed on the same number of nodes, and if the graph has a

small average shortest path length. We examined the ratio

c~Cnet=Crand and the ratio l~Lnet=Lrand in our resting networks.

In a small-world network, we expected the ratio to be cw1 and the

ratio l*1 [37,38].

2.8 Nodal centrality
The betweenness centrality of the brain regions was defined as

the number of shortest paths between any two nodes in the

network that pass through that particular node [39], which could

assess the degree of information flow of a brain region in the

cortical networks:

Bi~
X

i=j=k

djk(i)

djk

where Bi is the betweenness centrality of a node i, djk is the

shortest path number from node j to node k, and djk(i) is the

shortest path number from node j to node k that passes through

node i.

Hierarchical Dysconnectivity in Migraineurs
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2.9 Network modularity
Modularity Q of the brain cortical networks is defined as

Q~
1

4m

X

ij

(Aij{
kikj

2m
)sisj , where ki and kj are the degrees of

nodes i and j, m~
1

2

X

i

ki is the total number of edges in the

network, and Aij is the number of edges between the ith node and

jth node. If the network could be divided into two groups, si~1
indicates that node i belongs to group 1 and si~{1 indicates that

node i belongs to group 2. The expected number of edges linked at

random between nodes i and j is
kikj

2m
[40], and the modularity Q

quantifies the difference between the number of edges within the

actual module and those that are randomly connected. Therefore,

the module evaluation is to find the optimal partition that could

result in the largest network modularity [41]. The modularity

matrix resulting from the algorithm is related to the modularity

score. There were 1000 ranked solutions from the connection

matrices; the optimal solution was chosen.

2.10 Statistical analysis
To estimate whether there existed significant group differences

in the functional connections, a recently developed network-based

statistic (NBS) was used in the current study [42]. To evaluate

whether there existed significant group differences in the

structural/functional network properties (the mean clustering

coefficient C, the mean minimum path length and degree

centrality), nonparametric permutation tests were used in the

current study [43]. The false discovery rate was used to correct the

multiple comparisons. A fixed sparsity value S = 0.17 was selected

as being typical in the network analysis (Fig. 1).

Table 2. Cortical and subcortical regions defined by the AAL template image in standard stereotaxic space.

Region Abbreviation Region Abbreviation

Superior frontal gyrus, dorsolateral SFGdor Superior temporal gyrus STG

Superior frontal gyrus, orbital ORBsup Superior temporal gyrus, temporal pole TPOsup

Superior frontal gyrus, medial SFGmed Middle temporal gyrus MTG

Superior frontal gyrus, medial orbital ORBsupmed Middle temporal gyrus, temporal pole TPOmid

Middle frontal gyrus MFG Inferior temporal gyrus ITG

Middle frontal gyrus, orbital ORBmid Heschl gyrus HES

Inferior frontal gyrus, opercular IFGoperc Hippocampus HIP

Inferior frontal gyrus, triangular IFGtriang Parahippocampal gyrus PHG

Inferior frontal gyrus, orbital ORBinf Amygdala AMYG

Gyrus rectus REC Insula ANG

Anterior cingulate gyrus ACG Thalamus THA

Olfactory cortex OLF Caudate nucleus CAU

Superior parietal gyrus SPL Lenticular nucleus, putamen PUT

Paracentral lobule PCL Lenticular nucleus, pallidum PAL

Postcentral gyrus PoCG Calcarine fissure and surrounding cortex CAL

Inferior parietal gyrus IPL Cuneus CUN

Supramarginal gyrus SMG Lingual gyrus LING

Angular gyrus ANG Superior occipital gyrus SOG

Precuneus PCUN Middle occipital gyrus MOG

Posterior cingulate gyrus PCG Inferior occipital gyrus IOG

Precentral gyrus PreCG Fusiform gyrus FFG

Supplementary motor area SMA Rolandic operculum ROL

Median- and para-cingulate gyrus MCG

doi:10.1371/journal.pone.0051250.t002

Figure 1. Largest cluster size as a function of sparsity S for the
healthy controls’ (HC) structural networks (black line) and
patients’ with migraine (PM) structural networks (red line).
S = 0.17 is the lowest sparsity value that could guarantee each network
was fully connected with all of the nodes.
doi:10.1371/journal.pone.0051250.g001
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Results

3.1 Abnormal topological properties in cortical networks
In our results, we constructed the structural/functional connec-

tivity networks at sparsity values ranging from 0.15 to 0.3, and the

small-world properties were obtained at different thresholds

respectively (Fig. 2). The typical features of small-world properties

were found in both structural and functional connectivity

networks. Compared with random networks, cortical networks

had higher mean clustering coefficients (cw1), but with a similar

shortest absolute path length (l*1). As shown in Figure 2A, the

mean value of the clustering coefficient C (p,0.01, corrected) and

normalized clustering coefficient c (p,0.01, corrected) were

significantly higher in PM structural networks on a whole sparsity

range. No significant differences were found in the shortest

absolute path length L and l (p.0.05). Moreover, similar results

were found in patients’ functional networks. The comparisons

revealed significantly increased clustering coefficients C and c
(p,0.01, corrected), but they had an unaltered shortest absolute

path length as compared with HC. Furthermore, the mean

clustering coefficient C was positively correlated with the duration

of migraine in the patients’ functional networks (Figure 3, r = 0.51,

p = 0.005, controlling for age). No significant correlation was found

in the shortest absolute path length L (Fig. 3).

3.3 Abnormal nodal centrality
Twelve regions exhibited a betweenness abnormality in PM

structural networks (p,0.01, corrected, Fig. 4), including the

inferior parietal gyrus (IPL), inferior temporal gyrus (ITG),

temporal pole of the middle temporal gyrus (TPOmid), precentral

gyrus (PreCG), triangular part of the inferior frontal gyrus

(IFGtriand), orbital part of the inferior frontal gyrus (ORBinf),

supplementary motor area (SMA), calcarine (CAL), anterior

cingulate gyrus (ACG), parahippocampal gyrus (PHG), median-

and para-cingulate gyri (MCG) and thalamus (THA); eight regions

revealed significantly decreased betweenness centrality in PM

functional networks (p,0.01, corrected), including the PreCG,

dorsolateral part of the superior frontal gyrus (SFGdor), PHG,

ACG, THA, amygdala (AMYG), TPOmid and IPL. Furthermore,

some of these regions showed a significant correlation with

migraine duration (Table 3). We found that seven regions

commonly had abnormal betweenness centrality across the

structural and functional connectivity networks (PreCG, ORBinf,

PHG, ACG, THA, TPOmid and IPL).

3.4 Dysregulated interregional correlations
In the PM structural networks, several pairs of connections were

significantly altered (nonparametric permutation test, p = 0.005).

We focused on the largest connected component, and these

abnormal connections were widely distributed in the patients’

structural networks including connections between different lobes,

mainly in the ACC, THA, hippocampus (HIP), caudate (CAU),

putamen (PUT), pallidum (PAL), orbital part of the prefrontal

cortex, parietal lobule, temporal lobes, and occipital cortex. All of

these connections revealed increased values in patients compared

with HC (Fig. 5).

In the PM functional networks, a single component network was

found to be most significantly altered in the PM by using NBS

(p = 0.005). The functional network of patients was more

dysregulated as compared with their structural networks, and

connections showed significant increases in interregional correla-

tions (Fig. 6). Furthermore, mean connectivity values of these

dysfunctional connections were significantly correlated with the

mean clustering coefficient C of their networks (r = 0.35, p,0.05)

(Fig. 7).

3.5 Modularity
Modularity is defined as a set of nodes the have many intra-

modular connections but sparser inter-modular connections,

indicating a decomposability of the system into smaller subsystems

[23]. As shown in our results, optimal modularity was achieved in

three modules (Fig. 6). Module I included 23 regions (red), including

Figure 2. Between-group differences in the mean clustering coefficient C, normalized clustering coefficient gamma, the shortest
path length L, and normalized shortest path length lambda over a range of sparsity values. (A) Differences between the HC and PM
groups in subjects’ structural networks. The black solid points represent the 99% confidence intervals of the between-group differences obtained
from 5000 permutation tests at each sparsity value. The red open circles describe the mean values and the red solid points indicate significant
between-group differences in network metrics. (B) Differences between the HC and PM groups in the subjects’ functional networks. The red lines
represent the network metrics in the PM. The black lines describe the network metrics in the HC. The horizontal stars indicate the significant
between-group differences (p,0.01, FDR corrected).
doi:10.1371/journal.pone.0051250.g002
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Figure 3. Correlation between the mean clustering coefficient C/the shortest path length L and migraine duration while controlling
for patients’ age. Significant correlation was found in the mean clustering coefficient (r = 0.51, p = 0.005), but not in the shortest absolute path
length L.
doi:10.1371/journal.pone.0051250.g003

Figure 4. Significant between-group differences of betweenness centrality. Regions with abnormal betweenness centralities in patients’
structural networks were rendered on the brain surface by visualizing it with the BrainNet viewer (red, HC.PM; blue, HC, PM). The black and grey
bar graphs indicate dysregulated brain regions in patients’ functional networks (nonparametric permutation test, p,0.01, corrected).
doi:10.1371/journal.pone.0051250.g004

Hierarchical Dysconnectivity in Migraineurs
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the prefrontal cortex, ACC, MCG, PCG, PHG, HIP, AMYG,

thalamus, pallidum, caudate and putamen, which were largely

considered to be involved in pain processing [44]. Module II (yellow)

showed a cluster mainly in the orbital part of the prefrontal cortex,

insula, temporal cortex and sensorimotor cerebral cortex. Module

III (green) exhibited brain regions that predominantly consisted of

the occipital gyrus, cuneus, lingual and inferior temporal gyrus,

which are areas recognized as the visual cortex.

Discussion

In this study, we presented graph theoretical analyses of

topological properties of whole-brain networks by examining the

structural and functional connectivity network disorganization in

migraine sufferers as compared with HC. Exploring the similarity

of functional and structural network changes, we found that

migraine disrupts the topological organization of cortical networks,

and the vital brain hubs related to pain-processing revealed

abnormal nodal centrality in both structural and functional

networks; brain alteration occurring in patients with migraine

was not limited to the local abnormal CNS but to a disruption in

the topological organization of intrinsic whole-brain networks.

Furthermore, disrupted information exchange between brain areas

was reorganized into a hierarchical modular structure. Taken

together, our results indicated that long-term and high-frequency

headache attacks may lead to pathological cortical network

reorganization in PM, reflecting abnormal brain dynamics due

to the effects of brain disease. It has profound implications for our

Table 3. Foci with significant changes in the betweeness centrality from normal controls (NC) versus patients with migraine (PM).

Regions NC(FC) PM(FC) corrected p (NC vs. PM) correlation with migraine duration

mean ± sd mean ± sd value r p

PreCG_r 221.26138.8 69.1679.2 ,0.05 20.48 0.002

ORBinf_r 225.56160.2 69.5684.2 ,0.05 20.5 0.001

SFGdor_l 252.26124.8 107.56115.8 ,0.05 20.11 .0.05

PHG_r 151.86179.3 38677.2 ,0.05 20.1 .0.05

ACG_r 90.7695 31.8647.1 ,0.05 20.34 0.03

THA_r 217.96153.6 76.86115 ,0.05 20.35 0.03

AMYG_r 42665.5 10623.7 ,0.05 20.33 0.04

TPOmid_l 79.46134 23.1659 ,0.05 20.07 .s0.05

IPL_l 114.56103.3 51.4659.3 ,0.05 20.24 .0.05

doi:10.1371/journal.pone.0051250.t003

Figure 5. Significant between-group differences in the intensity of the brain connections in PM structural networks (nonparametric
permutation test, p = 0.005). For the abbreviations of the regions, see Table 2.
doi:10.1371/journal.pone.0051250.g005

Hierarchical Dysconnectivity in Migraineurs

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e51250



understanding of topological organization of complex brain

networks in migraine.

In our findings, both structural and functional connectivity

networks of the PM showed significantly increased clustering

coefficients over a wide range of sparsity values as compared with

HC. Given that the clustering coefficient is an index of local

structure, such results could be attributed to the increased degree

that more brain regions in patients tend to cluster together,

involving networks comprised of pain processing and the visual

cortex (Fig. 5 and Fig. 6). These topological features in migraine-

affected brain networks potentially indicated substantial reorgani-

zation of cortical networks in a long-term pathological condition.

Several studies demonstrated that the brain region within the

structural core was composed of a number of highly connected

and highly central neocortical hub regions that linked all of the

major structural modules, thus playing an important role for

information flow between separate groups of brain regions [10,45].

Nodal centrality, a powerful measure for the relative importance of

a node in a network, has been applied to evaluate the information

integration ability of a brain region in patients’ cortical networks.

Compared with the HC group, nine regions exhibited abnormal

centrality in both structural and functional connectivity networks

in PM (the PreCG, ORBinf, PHG, ACG, thalamus, TPOmid and

IPL) (Fig. 4 and Table 3). Moreover, we found that betweenness

values were negatively correlated with the duration of disease in

the PreCG, thalamus, ACG and ORBinf. Patients with migraine

exhibited a focal gray matter decrease in the ACG and abnormal

activation during task-related functional MRI or in a resting state

together with other pain-related areas (PreCG and thalamus)

[3,5,17–19]. A recent fMRI study reported that migraine patients

had a significant decrease in regional homogeneity values in the

orbital part of the prefrontal cortex [5]. On the other hand, Kaiser

et al. suggested that the generation of cortical hubs was governed

by the development of the human brain to achieve optimal

Figure 6. Significant between-group differences in the intensity of the brain connections in PM functional networks (NBS,
p = 0.005). These dysfunctional connections in patients’ cortical networks were formed into a connected component and three dysregulated
communities were identified. Besides the topological space, the brain regions were also projected onto the brain surface according to their MNI
centroid stereotaxic coordinates. Different colors represent distinct modules. For the abbreviations of the regions, see Table 2. This figure was
visualized with the BrainNet viewer.
doi:10.1371/journal.pone.0051250.g006

Figure 7. Correlation between the mean clustering coefficient C/the shortest path length L and the mean connectivity values of
dysfunctional connections in the patients’ functional networks.
doi:10.1371/journal.pone.0051250.g007
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information transmission [46].Our results are compatible with

these previous findings. Decreased nodal centralities of these

regions in PM cortical networks indicated their structural and

functional dysfunctions in integrating diverse global information in

the pain-processing network.

In our results, compared with the matching HC, several

abnormal interregional correlations were found in PM cortical

networks and were formed into a large connected network, which

refers to several brain circuits (Fig. 5 and Fig. 6). Notably,

abnormal connectivities in the chronically migraine-inflicted brain

have a skewed balance between structural and functional

networks. More dysfunctional connections were found in the

patients’ functional brain networks (Fig. 6). Our findings revealed

migraine affected brain topology and regional interaction in both

structural and functional connectivity networks. Computational

work suggested that the underlying structural connectivity

networks may shape functional connectivity networks on multiple

time scales [8,47]. Recently, several studies also found that the

coupling of functional and structural connectivity networks was

significantly disrupted in disease-specific states [12,48]. Park et al.

suggested that anatomical connectivity, as a major constraint of

functional connectivity, has a relatively stable structure; the

functional connectivity network is relatively flexible [49]. Accord-

ing to our results, migraine affected structural and functional brain

networks acting differently in the organizational patterns of brain

cortical networks in PM. Functional connectivity changes were

more complex. We inferred that the structural connectivity

networks may be less affected in PM; however, the functional

connectivity networks may be more sensitive to long-term

headache attacks and therefore suffer more abnormal brain

connections.

Prior studies have noted the importance of modular structure in

the biological networks which may arise from natural selection

pressure or evolutionary constraint for adaptation to environmen-

tal demands [41,50–52]. From clinically-based studies, subclinical

posterior circulation strokes and diffuse white matter lesion load

increased with the frequency of migraine [53], which suggested

that migraine may lead to progressive alteration in the brain [54].

In our study, we found that modular structures existed within the

dysregulated brain networks in PM (Fig. 6). Three dysregulated

communities were identified in the connected component in PM

that confer with several subsystems mentioned in earlier studies in

headaches (Fig. 6), such as in the pain-related information

processing and motion-processing visual network [1,13]. These

results reflect a fundamental principle of migraine-related alter-

ation in the balance of functional segregation and integration for

the long period of experiencing and anticipating a headache, and

exhibiting the consequences of the secondary effect of having

migraine. He et al. (2009) reported that there was highly

organized modular architecture in the functional networks of the

healthy human brain, and they speculated that such module-

specific brain organization may be due to an evolutionary

conserved pattern in human functional brain maturity over

development [41]. According to our findings, the formation of a

dysregulated cortical network may be constrained by migraine-

influenced network dynamics, and such pathological network

dynamics may progressively reshape the network organization into

a hierarchical modular structure. While brain injury becomes

progressively worse, it may be accompanied by light to heavy and

infrequent to frequent headaches and other clinical symptoms in

the patients’ daily lives [54]. Our results provide new insight into

migraine-related brain network reorganization and support the

concept that migraine may be a progressive disorder.

There are several issues that need to be further addressed in the

present study. First, in our network analysis, we employed AAL

template images and had 90 ROIs covering the entire cerebral

cortex which were used in several published studies [41,55].

However, different parcellation strategies of graph analytical

techniques may result in distinct topological architecture [56–59].

To test the reproducibility of our results, future studies need to

consider the effect that a specific parcellation approach has on

graph analytical findings. Secondly, aside from a chronic headache

attack, one major differentiating feature between healthy controls

and migraine patients was the use of powerful drugs for treating

migraine. These drugs have additional effects on brain structural

and functional connectivity. Thus, this may also be a confound in

our study. To test the reproducibility of our results, longitudinal

studies are needed. Thirdly, migraine is a predominantly

genetically determined disorder, and a recent study found that a

flawed gene in a family of migraine sufferers could trigger severe

headaches. Hence, whole-brain network dysregulation should be

considered in a migraine-related genetic risk. There is the high

possibility that migraine may have a different influence on the

organization of cortical networks for individual genetic variants.

In summary, by exploring the topological properties of the

structural and functional connectivity networks in patients with

migraine, the patients showed a dysregulated brain organization in

their cortical networks. This migraine-affected brain alteration had

a skewed balance between structural and functional connectivity

networks in patients. More abnormal brain connections were

found in migraine sufferers; furthermore, disrupted information

exchange between brain regions was formed into a hierarchical

modular structure. Our results provide valuable insights into the

understanding of brain network reorganization that could be

attributed to developmental aberration and the underlying

pathophysiology resulting from migraine. In our future longitudi-

nal study, direct evidence will be provided to prove that migraine

is a progressive disease and results in dysregulated brain network

reorganization.

Author Contributions

Conceived and designed the experiments: J. Liu LZ WQ FL JT. Performed

the experiments: J. Liu J. Li JN SX GL KY. Analyzed the data: J. Liu LZ.

Contributed reagents/materials/analysis tools: LZ. Wrote the paper: J. Liu

KMD.

References

1. May A (2009) New insights into headache: an update on functional and

structural imaging findings. Nat Rev Neurol 5: 199–209.

2. Chiapparini L, Ferraro S, Grazzi L, Bussone G (2010) Neuroimaging in chronic

migraine. Neurol Sci 31: 19–22.
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