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Abstract
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the
least angle regression (LAR). They showed that a slight modification of the LAR leads to the
whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear.
Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood
method. In this work we extend the LAR further to handle Cox’s proportional hazards model. The
goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in
Cox’s proportional hazards model. This goal is achieved in two steps. First we extend the LAR to
optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path
modification, which leads to the solution path of the elastic net regularized log partial likelihood.
Our solution path is exact and piecewise determined by ordinary differential equation systems.
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1. Introduction
The main goal of survival analysis is to characterize the dependence of the survival time Y
on a covariate vector X = (X1, . . . , Xp)T. Cox’s proportional hazards model (Cox (1972))
assumes that the hazard function h(y|x) of a subject with covariate vector x takes the form

(1.1)

where h0(y) is a completely unspecified baseline hazard function and β = (β1, . . ., βp)T. In
practice, it is not necessary that all covariates contribute to predicting survival outcomes.
Thus, another goal of survival analysis is to identify important risk factors and quantify their
risk contributions. As survival data with many predictors prevail in clinical trial studies, risk
factor identification becomes more important than ever for analyzing high-dimensional
survival data. The problem is to select a submodel of (1.1) by providing a sparse estimate of
β.

There are many model selection techniques in the literature and most of them have been
successfully extended to survival analysis. They include such classical methods as the best-
subset selection and stepwise selection. More recently, Tibshirani (1996) proposed to use the
L1 penalty to regularize least squares regression; sparse estimate of the regression parameter
is made possible due to the L1 penalty’s singularity at the origin. This technique was named
the least absolute shrinkage and selection operator (LASSO), and later extended to the Cox
proportional hazards model in Tibshirani (1997). However the LASSO penalty leads to
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biased estimates for true non-zero coefficients. To alleviate this bias issue, Fan and Li
(2001) proposed the SCAD penalty, which is symmetric and piecewise quadratic. It is linear
around the origin and flattens out near the two ends; in between, it is smoothly connected by
two quadratic pieces. They showed that asymptotically the SCAD penalized estimate
behaves like the oracle estimate were the true sparsity pattern known a priori. The oracle
property of the SCAD was later extended to survival models in Fan and Li (2002). The
adaptive-LASSO was proposed for least squares regression by Zou (2006), and for Cox’s
proportional hazards model by Zhang and Lu (2007), and its oracle properties were
established as well. There are many other techniques available for variable selection,
including the elastic net (Zou and Hastie (2005)). See Fan and Lv (2010) and references
therein for an overview of variable selection methods.

A novel least angle regression (LAR) solution path algorithm was proposed in Efron et al.
(2004). The LAR produces a piecewise linear solution path for the least squares regression.
They showed that slight modifications of the LAR lead to the LASSO and Forward
Stagewise linear regression solution paths. Together they are called LARS. For data {(yi, zi),
i = 1, . . . , n} with zi = (zi1, . . . , zip)T ∈ ℝp, ordinary least squares (OLS) regression solves

(1.2)

to estimate w = (w1, . . . , wp)T. Applying location and scale transformations if necessary, we

assume without loss of generality that  for j = 1, . . . , p, and

.

For OLS, the LAR provides a solution path w(t) indexed by t ∈ [0, ∞). It starts at the origin
with w(0) = 0; for large enough t, w(t) is the same as the full solution to (1.2). The
intermediate solution path is piecewise linear; over each piece, it moves along the direction
that keeps the correlation between the current residuals and each active predictor equal in
absolute value. Denote the jth predictor vector by z(j) = (z1j , . . . , znj)T, and define the

residual vector at t by e(w(t)) = (e1(w(t)), . . . , en(w(t)))T with  for i =
1, . . . , n. Then along the LAR solution path w(t), the current correlation e(w(t))Tz(j) has the
same absolute value for each active predictor j. Note that

This implies that the objective function has the same absolute value of the first-order partial
derivatives for each active predictor along the LAR solution path. Mathematically,

(1.3)

for any j and j′ among the active set at t. For the diabetes data in the R package LARS, we
plot the LAR solution path in the top left panel of Figure 1. The first-order partial
derivatives along the LAR solution path are shown in the top right panel of Figure 1. The

derivatives in absolute value, namely , are given in the bottom
panel of Figure 1. One sees that, at the end of each LAR step, a new predictor joins the
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group of active predictors, sharing the honor of having the same largest absolute value of the
first-order partial derivatives. The LAR algorithm terminates at the full OLS estimate of
(1.2) when all the first-order partial derivatives are exactly zero. Based on this observation,
Wu (2011) proposed an extension to handle generalized linear models and more generally
the quasi-likelihood method.

In this work, we extend the LAR to the Cox’s proportional hazards model. With the elastic
net penalty in mind, we add a fixed small ridge term to the log partial likelihood function
and call this extension CoxLAR-ridge. When the ridge term is exactly zero, we have the
original log partial likelihood and call the corresponding algorithm CoxLAR. As in Efron et
al. (2004) and Wu (2011), we show that the CoxLAR-ridge can be slightly modified to get
the corresponding whole solution path for the LASSO regularized counterpart; it is called
CoxEN as the LASSO penalty with a small ridge term leads to the elastic net penalty. By
setting the ridge term to be zero the CoxEN includes the CoxLASSO, the LASSO
regularized log partial likelihood, as a special case. Together, we use CoxLARS in the same
spirit as LARS in Efron et al. (2004). In addition to considering different models, another
difference from Wu (2011) is that we include a ridge penalty term to consider the more
general elastic net penalty. The elastic net penalty is highly desirable in that it is capable of
selecting more predictors than the sample size, while it is known that the number of
predictors selected by the LASSO can be at most equal to the sample size. See more
discussion on this issue in Zou and Hastie (2005).

Previously Park and Hastie (2007) provided a solution path algorithm for L1-regularized
generalized linear models and Cox’s proportional hazards model. Their algorithm is based
on the predictor-corrector method of convex optimization. In their R package “glmpath”,
one may choose an extreme small bound for arc length (L1 norm) of each step to obtain an
exact solution path. In this case, it essentially uses a warm start each time to compute the
exact solution at a fine grid of the tuning parameter and connects these exact solutions by
straight lines. They still need to solve many optimization problems, one at each tuning
parameter point. They did not address how the solution changes when the tuning parameter
changes. Our new algorithms CoxLAR and CoxLASSO answer this question, the solution
path propagates according to ordinary differential equation (ODE) systems. Thus the
commonly used fourth-order Runge-Kutta method can be used to solve these ODE systems
to obtain the whole CoxLARS solution paths. Other papers on solution path algorithms
include Hastie et al. (2004), Rosset and Zhu (2007), Zou (2008), Friedman, Hastie, and
Tibshirani (2008), Yuan and Zou (2009), and references therein. In particular, Zou (2008)
proposed an efficient adaptive shrinkage method for the Cox’s proportional hazards model
and adapted the LARS to provide a piecewise linear solution path.

The rest of the article is organized as follows. Section 2 presents our new algorithm
CoxLARS. Properties of the CoxLARS are given in Section 3. Numerical examples in
Section 4 illustrate how our new algorithm works with data sets. A summary is given in
Section 5. The appendix gives all technical proofs.

2. Extension of LARS: CoxLARS
Consider a sample of n subjects. Let Ti and Ci be the failure time and censoring time,
respectively, for subject i = 1, . . . , n. Write Yi = min(Ti, Ci) and let the censoring indicator
be δi = I(Ti ≤ Ci). Denote the covariate vector of the ith subject by xi = (xi1, . . . , xip)T.
Assume that Ti and Ci are conditionally independent given covariate vector xi, and that the
censoring mechanism is noninformative. Our data set is {(xi, yi, δi), i = 1, . . . , n}.
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Assume the data come from model (1.1). For simplicity, we suppose there are no ties in the
observed failure times, otherwise techniques in Breslow (1974) may be used. The log partial
likelihood is given by

(2.1)

where Ri = {j = 1, . . . , n : yj ≥ yi} denotes the risk set just before the time yi.

Note that when the elastic net penalty (Zou and Hastie, 2005) is considered, we are solving

(2.2)

where γ ≥ 0 and λ ≥ 0 are two regularization parameters. In order to incorporate the elastic
net into our consideration, we include a small ridge penalty term and set

(2.3)

for some fixed small γ ≥ 0. Note that this reduces to the LASSO penalized counterpart when
γ = 0. It is known that the LASSO penalty can select at most n predictors for the p > n case.
However as long as γ > 0, we can select more than n predictors by solving (2.2) when p > n.
Our consideration is similar to the LARS-EN algorithm proposed in Zou and Hastie (2005)
in that the LARS-EN adapted the LARS algorithm to obtain elastic net solution path for
each fixed ridge term.

We use t to index our solution path. As motivated by (1.3), our extension CoxLAR-ridge
seeks a solution path β(t) of (2.3) that satisfies

(2.4)

for any two predictors j and j′ that are active at t.

For L(β), denote its vector of first-order partial derivatives by b(β) = (b1(β), . . . , bp(β))T

and its matrix of second-order partial derivatives by M(β) = (mjk(β))1≤j,k≤p, where

and  is given by
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for 1 ≤ j, k ≤ p, where I{j=k} = 1 if j = k and 0 otherwise.

At t with solution β(t), denote the corresponding active index set by β(t)) and,
interchangeably, by t. For any two index sets and ℬ, vector b, and matrix M, let b  be
the sub-vector of b consisting of those elements with index in  and M ℬ be the sub-
matrix of M consisting of those elements with row index in and column index in ℬ. When

= {j} is a singleton, we write Mj,ℬ, similarly M k when ℬ = {k}. Denote the complement
of by c = {1, . . . , p} \ 

Note that, at any t with active predictor set  the corresponding solution component is set to
zero for any inactive predictor, namely βj (t) = 0 for any j ∉  Thus it is enough to find how
the solution coefficient components, corresponding to active predictors βj(t) with j ∈  are
updated. Recall that our desired solution path should be such that the active predictors have
the same absolute value of the first-order partial derivatives as at (2.4). Thus, as t grows, |
bj(β(t))| decreases at the same speed for j ∈  Assume that in a small neighborhood of t, the
active set t remains the same as  say. Note that

(2.5)

since the active set t remains the same as and thus β c (t) = 0 in a small neighborhood
of t.

According to (2.4),

(2.6)

for some c(t) > 0. Here the negative sign on the right hand side ensures that |bj(β(t))| is
decreasing in t for each j ∈  Furthermore (2.6) guarantees that the |bj(β(t))|, j ∈ 
decrease at the same speed. Note that we can think of t as a function of τ with the solution
path indexed by τ. With an appropriate choice of t(τ), (2.6) holds with t replaced by τ and
the c(t) term replaced a constant. Different c(t) lead to different indexing systems of the
solution path. Thus, without loss of generality, we set c(t) ≡ 1 in (2.6) and write

(2.7)

In fact this turns out to be a good choice in that t here is simply related to the maximum
absolute value of the first-order derivatives at t, as we shall see later.

Based on (2.5) and (2.7), the solution path should satisfy

(2.8)

Recall that β c (t) = 0. These completely define the path updating direction . Thus for
any t* > t, we may take a tentative solution path piece

(2.9)

With this tentative solution path piece, we implicitly assume that the active set remains the
same between t and t*. Assume that, at the start with t, |bj (β(t))| = |bj′(β(t))| for any j, j′ ∈
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 Then (2.9) guarantees that |bj(β̃(t*))| = |bj′(β̃(t*))| for any j, j′ ∈ along the tentative
solution path piece β̃(t*) for t* > t and, further, that |bj(β̃ (t*))| is decreasing in t* for j ∈ 
Thus, as t* increases, some inactive predictor m ∉ may have |bm(β̃ (t*))| ≥ |bj(β̃ (t*))| for j
∈  Whenever this happens, the active predictor set has changed and we cannot use (2.9)
any more. For any j ∉  define

(2.10)

where m is any member of the active predictor set  Then the active set changes at T =
minj∉  Tj from to ∪ {j*}, where j* = argminj∉  Tj.

2.1. Algorithm CoxLAR(-ridge)
The previous discussion leads us to our extension CoxLAR(-ridge) algorithm that is
systematically presented next.

We initialize our solution path by identifying the predictor j so that the objective function
L(β) changes fastest with respect to βj beginning at β = 0; set

(2.11)

This specially defined t0 together with (2.7), leads to t = –maxj |bj (β(t))| along our solution
path. Our solution path begins with β(t0) = 0; the corresponding initial active predictor set is

.

Given t0, β(t0), and t0, we update our solution path using (2.9) until a new variable joins
the active set at some t1(> t0) to be determined. We may temporarily update the solution
using

(2.12)

for t > t0. Here β̃(t) is a temporary solution path defined for any t > t0. For any j ∉ t0, let

(2.13)

where m ∈ t0. Then

(2.14)

is a transition point because the set of active predictor variables changes there.

The CoxLAR-ridge algorithm updates by setting

(2.15)

for all t ∈ [t0, t1]. The active predictor set stays the same for t ∈ [t0, t1), namely t = t0.
At t1, we update the active predictor set by setting t1 = t0 ∪ {j ∉ t0: Tj = t1}.
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At t = t1, the number of active predictors is two. Due to (2.5), (2.8), (2.12), (2.13) and (2.14),
solution β(t1) satisfies |bj(β(t1))| = |bj′(β(t1))| > |bk(β(t1))| for any k ∉ t1 and any j, j′ ∈

t1.

The CoxLAR-ridge algorithm continues with the updated t1, β(t1), and t1, proceeding
according to Algorithm 1. Note that at the end of the mth CoxLARridge step, the transition
point tm, solution β(tm), and active predictor set tm satisfy tm = −|bj(β(tm))| for any j ∈

tm, and |bj(β(tm)| = |bj′(β(tm)| > |bk(β(tm)| for any k ∉ tm and any j, j′ ∈ tm.

At the end of the (p – 1)th CoxLAR-ridge step in Step 2 of Algorithm 1, all predictors are
active. Then, in Step 3, the CoxLAR solution path moves along a direction such that the
absolute values of the first-order partial derivatives decrease at the same speed until all the
first-order partial derivatives are exactly zero, which happens at t = 0. The solution at t = 0
exactly corresponds to the full solution argminβ L(β), just as the LAR solution ends at the
full OLS estimate. This completes our CoxLAR-ridge solution path. When the ridge term in
L(β) is exactly zero by setting γ = 0, we are essentially working directly with the original
log partial likelihood function and the CoxLAR-ridge is also the CoxLAR in this case.

Remark 1. Note that the instantaneous path updating direction is given by –
(M t, t(β(t)))−1 sign(b t(β(t))). For least squares regression, the objective function is
exactly quadratic and thus M t, t depends only on the active set t, but not on the current
solution β t (t). Note that sign(b t(β(t))) does not change in a small neighborhood of t.
This implies that, within a small neighborhood of t, the instantaneous path updating
direction is the same for least squares regression. This leads to the piecewise linearity of the
LAR path (Efron et al. (2004)) and in a more general setting (Rosset and Zhu (2007)).

Algorithm 1. CoxLAR(-ridge) for the Cox’s proportional hazards model.

1.
Initialize by setting .

2. For m = 0, 1, . . . , p − 2, take the tentative solution path using

for t ≥ tm. Let tm+1 = minj∉ tm
 Tj, where

Update the solution path with

for t ∈ [tm, tm+1]. Set t = tm for t ∈ [tm, tm+1) and tm+1 = tm ∪ [j ∉ tm :
Tj = tm+1}.

3. At the end of Step 2, tp−1 is {1, 2, . . . , p}. Next take
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and t = {1, 2, . . . , p} for t between tp−1 and tp = 0.

2.2. Cox-LASSO modification
Efron et al. (2004) showed that the whole LASSO regularized least squares regression
solution path can be obtained by a slight modification of the LAR. This is confirmed by Wu
(2011). Next we define our Cox-LASSO modification, and prove that the CoxLAR-ridge
with the Cox-LASSO modification produces the whole elastic net regularized solution path
for the Cox’s proportional hazards model by noting that adding another LASSO penalty into
L(β) leads to the elastic net penalized log partial likelihood function in (2.2).

Consider the LASSO regularized counterpart of (2.3),

(2.16)

which is exactly the same as (2.2), and is equivalent

(2.17)

where two regularization parameters λ ≥ 0 and s ≥ 0 are in some one-to-one
correspondence.

Let β̂ be a LASSO solution to (2.16). We can show that the sign of any nonzero component
β̂j must disagree with the sign of the current derivative bj(β̂), see Lemma 2 in Section 3.

Suppose t = t* at the end of a CoxLAR-ridge step and that we have a new active set . At
the next CoxLAR-ridge step with t ∈ [t*, T] for some T to be determined, our solution path
moves along the tentative solution path

(2.18)

for t ≥ t*. The end point T is given by T = minj∉  Tj, where

.

For some j ∈ , β̃j(t) may have changed sign at some point between t* and T, in which case
the sign restriction given in Lemma 2 must have been violated. We set Sj = min{t ∈ (t*,
∞) : β̃j(t) = 0} for j ∈ , where β̃j(t) is the jth component of β̃ (t) defined by (2.18). If S =
minj∈  Sj < T, β̃(T) defined by (2.18) cannot be a LASSO regularized solution to (2.16)
since the sign restriction in Lemma 2 has already been violated. The Cox-LASSO
modification can be applied to ensure that we can get the LASSO regularized solution to
(2.16).

Cox-LASSO modification: If S < T, stop the ongoing CoxLAR-ridge step at S and remove
j̃ from the active set  by setting S = t* \ {j̃}, where j ̃ is chosen such that Sj̃ = S. At the

new transition point S, the new path updating direction  is calculated using (2.8) based
on the new active predictor set  \ {j̃}.
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Theorem 1 guarantees that the Cox-LASSO modification leads to the LASSO regularized
solution path to (2.16), which is the LASSO regularized log partial likelihood (CoxLASSO)
when γ = 0, and the elastic net regularized log partial likelihood (CoxEN) when γ > 0. We
use CoxLARS to refer to CoxLAR, CoxLARridge, CoxLASSO, and CoxEN.

Note that at each transition point of our CoxLARS solution path, two kinds of event can
happen: either an inactive predictor joins the active predictor set or an active predictor is
removed from the active predictor set. As in Efron et al. (2004), we assume a “one at a time”
condition holds. With the “one at a time” condition, at each transition point t* only a single
event can happen, namely, either one inactive predictor variable becomes active or one
currently active predictor variable becomes inactive.

Theorem 1. Under the Cox-LASSO modification, and assuming the “one at a time”
condition, the CoxLAR-ridge algorithm yields the LASSO regularized solution path to
(2.16).

Remark 2. For simplicity we make the “one at a time” assumption. But, even when the “one
at a time” condition does not hold, a CoxLASSO/CoxEN solution path is still available. The
same discussion in Efron et al. (2004) applies. In applications, some slight jittering may be
applied, if necessary, to ensure the “one at a time” condition holds.

2.3. Updating via ODE
Our CoxLARS algorithm involves an essential piecewise updating step

(2.19)

beginning at a transition point t* with solution β(t*) and active predictor set t*.

Note that the piecewise solution path (2.19) can be easily obtained by setting β̃j(t) = 0 for j ∉
t* and t > t*, and solving the following ordinary differential equation (ODE) system

with initial value condition β̃ t* (t)|t=t* = β t* (t*). This is a standard initial-value ODE
system and there are many efficient methods to solve it, for example Euler method,
backward Euler method, midpoint method, and the family of Runge-Kutta methods, among
many others. The commonly used member of the Runge-Kutta method family is the fourth-
order Runge-Kutta method. See Atkinson, Han, and Stewart (2009) for a comprehensive
introduction to the methods for solving ordinary differential equations. Our numerical
examples employ the Matlab ODE solver “ODE45”, which exactly implements the fourth-
order Runge-Kutta method.

3. Properties of CoxLARS
In this section, we establish some properties of our CoxLARS path, and prove Theorem 1.

With the “one at a time” condition, at each transition point t* either one inactive predictor
becomes active or one active predictor becomes inactive. For the first type, the active set
changes from to  = ∪ {j*} for some j* ∉  We show in Lemma 1 that this new
active predictor joins in a “correct” manner. Lemma 1 applies to CoxLARS.
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Lemma 1. For any transition point t* during the CoxLARS solution path, if predictor j* is
the only addition to the active set at t* with β (t*) and active set changing from to  = 

{j*}, then the path updating direction  at t* has its j*th component disagreeing in
sign with the current derivative bj* (β(t*)).

Lemma 1 is a key property for showing that the Cox-LASSO modification leads to the
LASSO or elastic net regularized log partial likelihood solution path in that Lemma 1
ensures that, at any transition point, the new predictor variable enters in a “correct” manner.
This “correct” manner is required by the LASSO penalty as is seen in Lemma 2.

Next we extend Lemmas 7–10 of Efron et al. (2004) to the Cox’s proportional hazards
model. Our Lemmas 2–5 concern properties of the LASSO regularized solution path for
(2.16) or equivalently (2.17), and as a result they lead to the proof of Theorem 1. For any s ≥
0, we denote the unique solution of (2.17) by β̂ = β̂(s), which is continuous in s; uniqueness

is due to the convexity of  and the strict convexity of L(β). Throughout, we use the
hat notation to designate a solution of (2.16), equivalently (2.17). For any s ≥ 0, let s ≡ 
β̂(s)) ≜ {j : β̂j(s) ≠ 0} denote the index set of nonzero components of β̂(s). Our goal is to
show that the nonzero set s is also the active predictor set that determines the CoxLARS
path updating direction.

Let β̂ be a solution of (2.16). We show that any non-zero component β̂j must disagree in sign
with the current first-order derivative.

Lemma 2. A LASSO regularized solution β̂ to (2.16) satisfies sign(β̂j) = −sign (bj(β̂)) for
any j ∈ (β̂).

Let be an open interval of the s axis, with infimum s, within which the nonzero set s of
β̂(s) remains constant, s = for s ∈ and some 

Lemma 3. For s ∈ {s} ∪  the LASSO regularized estimate β̂(s) of (2.17) updates along the
CoxLARS path updating direction.

Lemma 4. For an open interval with a constant nonzero set during the LASSO
regularized path β̂(s) of (2.17), let s = inf( . Then for s ∈ ∪ {s}, the first-order derivatives
of L(β) at β̂(s) satisfy |bj(β̂(s))| = maxl=1,2,...,p |bl(β̂(s))| for j ∈ and |bj(β̂(s))| ≤ maxl=1,2,...,p|
bl(β̂(s))| for j ∉ 

Let s denote such a point, s = inf(  as in Lemma 4, with the LASSO regularized solution β̂
to (2.17), current derivatives bj(β̂) for j = 1, 2, . . . , p, and maximum absolute derivative D̂
(β̂) = maxj=1,2,...,p |bj(β̂)|. Let 1 = {j : β̂ j ≠ 0}, 0 = {j : β̂j = 0 and |bj(β̂)| = D̂(β̂)}, and

10 = 1 ∪ 0. Take β(θ) = β̂ + θd for some vector d ∈ ℝp, T(θ) = L(β(θ)), and

. Let .

Lemma 5. At s, we have

(3.1)

with equality only if dj = 0 for  and sign(dj) = −sign(bj(β̂)) for j ∈ 0. If so,
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(3.2)

Lemma 5 implies that, at any transition point, the active predictor set of the LASSO
regularized solution to (2.17) is a subset of 10. With the LASSO regularization, we are
minimizing L(β) subject to a constraint on the one norm of β. In a small neighborhood β̂+θd
around β̂, we are minimizing T(θ) subject to an upper bound on S(θ). The first part of
Lemma 5 implies that the instantaneous relative changing rate of T(θ) and S(θ) is ≥ − D̂ (β̂).
For β(θ), its one-norm S (θ) is increasing in θ as long as −

 and the best instantaneous relative changing
rate is achieved for moving along β̂ + θd as long as dj = 0 for  and sign(dj) =
−sign(bj(β̂)) for j ∈ 0. In particular, sign(dj) = −sign(bj(β̂) for j ∈ 0 requires that the
coefficient of any new active predictor variable should disagree in sign with the
corresponding current first-order partial derivative. This is ensured by Lemma 1 and the
“one at a time” condition.

The second part of Lemma 5 provides second-order information on the relative change of
T(θ) with respect to S(θ). As we only care about direction, assume

 = Δ for some Δ > 0. Note that

. Then we need to find the most efficient direction d to

decrease T(θ) among all possible direction d satisfying  = Δ
and sign(dj) = −sign(bj(β̂)) for j ∈ 0. In terms of the second-order information, we need to
solve

(3.3)

with a fixed Δ > 0 to select the optimal solution updating direction d. It turns out that the
optimal solution to (3.3) is exactly given by our CoxLARS path updating direction as proved
next.

Lemma 6. Our CoxLARS path updating direction (2.8) solves (3.3).

4. Numerical Examples
In this section, we use numerical examples to demonstrate how the extension CoxLARS
works. In our implementation we first calculate t0, then set δt = −t0/K, where K is some
large positive number. In our examples we use K = 2,000. In addition to the transition points
tks, we evaluate the solution over our solution path at a grid of size δt. More specifically, for
each piece of our solution path over [tk, tk+1], we calculate our solution β(t) at t = tk + mδt
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for m = 1, 2, . . . , ⌊(tk+1 − tk)/δt⌋, where ⌊a⌋ denotes the integer part of a, even though the
CoxLARS solution paths are defined for any t ∈ [t0, 0].

Example 1. We use a simulated dataset to demonstrate that the true LASSO regularized
solution path is not piecewise linear. We set p = 3 and n = 40. The predictor covariates were
generated as X ~ (0, Σ), where Σ is the variance-covariance matrix with (i, j)th element 1
if i = j, and 0.9 otherwise. Conditional on X = (x1, x2, x3)T, the lifetime was generated from
model (1.1) with a constant baseline hazard function h0(y) = 1 and true regression
coefficient vector β = (2, −2, 2.5)T. The censoring time was uniformly distributed over [0, 8]
and the corresponding censoring rate is 32.3%. We applied the CoxLASSO (with a ridge
term γ = 0).

The CoxLASSO solution path is shown by the solid lines in the top left panel of Figure 2.
The dashed straight lines are obtained by connecting the solutions at the transition points.
The true LASSO regularized solution path is clearly not piecewise linear. The first-order
partial derivatives along the CoxLASSO solution path are shown in the top right panel of
Figure 2. The absolute value of the first-order partial derivatives along the CoxLASSO
solution path are shown in the bottom two panels of Figure 2. with different horizontal axis
scales. The bottom left panel is plotted with respect to the one-norm of β(t) while the right
panel uses t. A straight diagonal line is observed in the bottom right panel since our
CoxLARS ensures that t = −maxj=1,...,p|bj(β(t))|.

Example 2. Here we demonstrate how the Cox-LASSO modification leads to the
CoxLASSO path when γ = 0 and the CoxEN path when γ > 0. We chose n = 200 and p =
12. The predictor covariates X were generated from N(0, Σ), with (i, j) element of Σ being 1
when i = j, 0.3 when 1 ≤ i, j ≤ 11 and |i–j| = 1, (−0.18)i+1 when j = 12 and 1 ≤ i ≤ 11, and
(−0.18)j+1 when i = 12 and 1 ≤ j ≤ 11. Conditional on covariates, the lifetime was generated
from model (1.1) with h0(y) = 1 and true coefficient vector given by (−0.8, 1.6, −0.8, 1, 0,
1.5, −1.2, 3, 0, 0, 0, 0.5)T. The censoring time was generated from Uniform[0, 10] leading to
a censoring rate of 30.5%. In general, the Cox-LASSO modification may not have any effect
and conseqently the CoxLAR and CoxLASSO paths are exactly the same. We designed
Example 2 to show the effect of the Cox-LASSO modification.

CoxLARS solution paths are shown in Figure 3. When γ = 0, solution paths of the CoxLAR
and CoxLASSO are given in the top left and bottom left panels, respectively. The CoxLAR
path shows that coefficient of variable X12 switches sign between the 9th and 10th transition
points. Thus a new transition point is added to the CoxLASSO solution path, in which the
coefficient corresponding to X12 is kept at zero between the 10th and 13th transition points.
When we add a small ridge term by setting γ = 0.2, the corresponding paths are shown in
the right panels of Figure 3. A similar phenomenon is observed.

Example 3. The primary biliary cirrhosis data were collected in the Mayo Clinic trial on
primary biliary cirrhosis of liver conducted between 1974 and 1984, see Therneau and
Grambsch (2001). This study included a total of 424 patients. Clinical, biochemical,
serological, and histological parameters were collected for each patient. Before the end of
the follow-up, 125 patients died. We study the dependency of the survival time on seventeen
covariates: continuous variables are age (in years), albumin (albumin in g/dl), alk (alkaline
phosphatase in units/litre), bili (serum bilirubin in mg/dl), chol (serum cholesterol in mg/dl),
copper (urine copper in g/day), platelets (platelets per cubic ml/1,000), prothrombin
(prothrombin time in seconds), sgot (liver enzyme in units/ml), and trig (triglycerides in mg/
dl); categorical variables are ascites (0 denotes absence of ascites and 1 denotes presence of
ascites), edema (0 denotes no oedema, 0.5 denotes untreated or successfully treated oedema,
and 1 denotes unsuccessfully treated oedema), hepatom (0 denotes absence of hepatomegaly
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and 1 denotes presence of hepatomegaly), sex (0 denotes male and 1 denotes female),
spiders (0 denotes absence of spiders and 1 denotes presence of spiders), stage (histological
stage of disease, graded 1, 2, 3, or 4), and treatment (1 for control and 2 for treatment). See
Dickson et al. (1989) for more detailed information.

After excluding patients with any missing value, there are 276 patients. Out of these 276
patients, 111 died before the end of the follow-up. We standardized each predictor variable
to have mean zero and variance one. CoxLARS was applied to the standardized data with all
seventeen variables included. With ridge parameter γ = 0, the CoxLAR and CoxLASSO
gave the same solution path, see Figure 4.

5. Discussion
In this work, we have proposed the extension CoxLAR(-ridge) of the LAR to handle Cox’s
proportional hazards model. Our CoxLAR(-ridge) solution paths are based on ODE systems.
Results show that a Cox-LASSO modification on CoxLAR(-ridge) leads to the exact
solution of the corresponding LASSO regularized solution path. As the solution path
propagates according to ODE systems, it allows us to develop a solution path package using
efficient ODE solvers.

LARS is very attractive due to its speed that is possible because the corresponding path is
piecewise linear. However when it comes to the Cox’s proportional hazards model, the
solution path is not piecewise linear due to the nature of the log partial likelihood, as
demonstrated by Example 1. This makes the implementation of the CoxLARS more
difficult. Currently we have implemented the primitive version of our algorithm using the
fourth-order Runge-Kutta method, which works fairly well. In addition, it is commonly
assumed that the regression coefficients are sparse in the high dimension variable selection
literature. Consequently there is not much need for us to compute the whole solution path. A
BIC criterion may be combined as we progress along the solution path to identify an optimal
solution and terminate our solution path algorithm thereafter, as done in Wu (2011).
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Appendix
Proof of Lemma 1. The new path updating direction defined using the new active predictor

set  is given by . Using the formula for

inverting a block matrix, the j*th component of our path updating direction  is
given by

(A.1)

where η = Mj*,j*(β(t*)) −Mj*, (β(t*))M (β(t*))−1 M j*(β(t*)) > 0 in that M(β) is
positive definite when n > p, and x(j), j = 1, 2, . . . , p are linearly independent. The first term
in (A.1) involves M (β(t*))−1sign(b (β(t*))), which is exactly the opposite of the path
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updating direction calculated at t* using the old active set by ignoring the addition of
predictor variable j*.

Consider ignoring the new active variable j* and updating path along the path updating
direction evaluated by the old active predictor set  This leads to another solution path
piece β̄(t) defined by

when t is inside a small neighborhood [t* − Δt, t* + Δt]. The neighborhood is chosen such
that both solution component β̄j(t) and the first-order partial derivative bj(β̄(t)) do not change
sign for t ∈ [t* − Δt, t* + Δt] and j ∈  Consequently when t ∈ [t* − Δt, t* + Δt],

for j ∈ due to (2.5) and (2.8). Note that, for t ∈ [t* − Δt, t* + Δt],

(A.2)

due to the definition of β̄(t) (because β̄j(t) = 0 for j ∉ and t ∈ [t* − Δt, t* + Δt]).

Recall that for t ∈ [t* − Δt, t*], β(t) = β̄(t), and our CoxLARS solution matches β̄(t) exactly.
Note that our CoxLARS definition implies that

(A.3)

for any j ∈ and t ∈ [t* − Δt,t*). This means that the predictor variable j* has a smaller
absolute value of the first-order partial derivative than active predictors in for t ∈ [t* − Δt,
t*) and that it catches up with active predictors in at t*, noting the definition of j*.

Lemma 1 can be proved by contradiction. If our claim is wrong, then

due to (A.1) and the fact that η > 0. This means that

. The fact that β̄(t) = β(t) for t ∈ [t* − Δt, t*] implies that there exists some 0 < ε < Δt such
that

(A.4)

due to continuity. By noting (A.2) and  for j ∈ and t ∈ (t* − ε,
t*), (A.4) contradicts the conclusion that the predictor variable j* has a smaller absolute
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value of the first-order partial derivative than active predictors in for t ∈ [t* − Δt, t*) and
that it catches up with active predictors in at t*. This completes our proof.

Proof of Lemma 2. For any j ∈ (β̂), taking differentiation of the objective function in
(2.16) with respect βj, we get

(A.5)

which has to be equal to zero at β̂ because β̂ is the corresponding optimal solution. This

completes the proof by noting that λ ≥ 0 and, when λ = 0,  for all j.

Proof of Lemma 3. Note that β̂(s) is the optimal solution to (2.17) and has a nonzero set s
that is constant for s ∈  say  Then β̄ (s) also minimizes

(A.6)

subject to

(A.7)

where sj = sign(bj(β̂(s)), j = 1, 2, . . . , p, denotes the sign of the current first-order partial
derivatives, s = (s1, s2, . . . , sp)T, and the second sign constraint is due to Lemma 2. Here
xi  is the sub-vector of xi with index in  Note that the inequality constraint in (2.17) can

be replaced by the constraint  as long as s is less than the one-norm of the full
solution argminβ L(β). This justifies (A.7). Note further that the optimal solution β̂ (s) is
strictly inside the simplex (A.7) since β̂j(s) ≠ 0 for j ∈ and s ∈  This, in combination
with the strict convexity of the object function L(β̂ ), implies that the condition sign(β̂j) =
−sj for j ∈ can be dropped. Consequently β̂  (s) solves

By introducing a Lagrange multiplier λ, we get

(A.8)

which is equal to 0 at β̂  = β̂ (s) because β̂ (s) is the corresponding optimal solution.

Now consider two different values s(1) and s(2) in with s < s(1) < s(2). The corresponding
Lagrange multiplier are denoted by λ(1) and λ(2), and they satisfy λ(1) > λ(2). Putting them
into (A.8) and differencing, we get

(A.9)

Note that β̂ c (s) = 0 for any s ∈  Thus (A.9) is the same as
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(A.10)

Dividing both sides of (A.10) by s(2) − s(1) and letting s(2) → s(1), we get

(A.11)

where . Noting that  for s ∈  (A.11)

becomes , which leads to

. Noting that λ′(s) < 0, this shows that for any s
∈  the solution of (2.17) progresses along the CoxLARS path updating direction. It also
holds for s due to continuity.

Proof of Lemma 4. Due to (A.5), |bj(β̂(s))| = |bj′(β̂(s))| for any j, j′ ∈  Thus it is enough
to prove that |bl(β̂(s))| ≤ |bj(β̂(s))| for any l ∉  j ∈  s ∈ ∪ {s}. We this first for s ∈ 
by contradiction. Suppose there is some j* ∉ and some s* ∈ such that

(A.12)

Let d = (d1, d2, . . . , dp)T with dj = −sign(β̂j(s*))(= sign(bj(β̂(s*))), due to Lemma 2) for j ∈
 dj* = −n sign(bj*(β̂(s*))), and dj′ = 0 for j ∈ ( ∪ {j*})c, where n  denote the size of

Consider L(β̂(s*) + ud) as a function of u. Its derivative is given by

(A.13)

When u = 0, the right side of (A.13) becomes

(A.14)

where j ∈  and negativity is due to (A.12). Note that minj∈  |β̂j(s*)| > 0 since s* ∈ 

When 0 < u < minj∈  , noting the above
definition of d. However, (A.14) contradicts the fact that β̂(s*) is an optimal solution to
(2.17). This proves our claim for s ∈  Our claim holds at s simply due to continuity.

Proof of Lemma 5. Note that  due to

Lemma 2 and . Thus, due to Lemma
4 and the above definition of 0, we have
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which is analogous to Equation (5.40) of Efron et al. (2004). It is enough to consider all d

satisfying − , which corresponds to Ṡ(0) >

0. Thus we need  in order to maximize R(d). In this case
we have

(A.15)

which is < D̂(β̂) unless dj = 0 for , since |bj(β̂) | < D̂ (β̂) for . This proves (3.1).
In this case a second order Taylor expansion leads to (3.2).

Proof of Lemma 6. The positive definiteness of M 10, 10 implies that (3.3) is equivalent
to

(A.16)

For (A.16), we combine the two constraints and solve the simpler version

(A.17)

Afterward, we show that the solution to (A.17) satisfies the sign constraint in (A.16). By
introducing a Lagrange multiplier for (A.17), we solve

(A.18)

Differentiating the objective function in (A.18) with respect to d 10 and solving for d 10,
we get the optimal solution (λ/2)(M 10, 10(β̂))−1sign(b 10(β̂)), which is exactly the
same as our CoxLARS path updating direction, noting that the Lagrange multiplier λ < 0.
Note that the “one at a time” condition implies that 0 is a singleton. Consequently, this
optimal solution satisfies the sign constraint in (A.16) due to Lemma 1.

Proof of Theorem 1. Theorem 1 can be proved by induction as in Efron et al. (2004), by
noting that Lemmas 2–5 are extensions of Lemmas 7–10 of Efron et al. (2004), which are
the key results for establishing that the LASSO modification leads to the LASSO solutions,
and parallel extensions of their Constraints 1–4 on page 437 are straightforward. We skip
these details.
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Figure 1.
LAR path of diabetes data: the top left panel plots the LAR path wj(t) against the relative
one-norm |w(t)|/|w(∞)| for each predictor j = 1, 2, . . . , 10; the top right panel and the bottom

panel plot the derivative  and its absolute value

, respectively, along the LAR path, for different predictors.

Wu Page 19

Stat Sin. Author manuscript; available in PMC 2012 December 06.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2.
CoxLASSO path of Example 1: the top left panel plots the CoxLASSO path β(t) with
respect to the one-norm |β(t)|; the top right panel plots the first-order derivatives bj(β(t))
with respect to |β(t)|; the bottom left and right panels plot |bj(β(t))| along the CoxLASSO
path with respect to |β(t)| and t, respectively.

Wu Page 20

Stat Sin. Author manuscript; available in PMC 2012 December 06.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 3.
CoxLARS paths of Example 2.
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Figure 4.
CoxLARS path of the PBC data with γ = 0.
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