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Abstract
Background: In the face of growing resistance in malaria parasites to drugs, pharmacological combination therapies are important. 
There is accumulating evidence that methylene blue (MB) is an effective drug against malaria. Here we explore the biological effects of 
both MB alone and in combination therapy using modeling and experimental data.
Results: We built a model of the central metabolic pathways in P. falciparum. Metabolic flux modes and their changes under MB were 
calculated by integrating experimental data (RT-PCR data on mRNAs for redox enzymes) as constraints and results from the YANA 
software package for metabolic pathway calculations. Several different lines of MB attack on Plasmodium redox defense were identified 
by analysis of the network effects. Next, chloroquine resistance based on pfmdr/ and pfcrt transporters, as well as pyrimethamine/
sulfadoxine resistance (by mutations in DHF/DHPS), were modeled in silico. Further modeling shows that MB has a favorable syner-
gism on antimalarial network effects with these commonly used antimalarial drugs.
Conclusions: Theoretical and experimental results support that methylene blue should, because of its resistance-breaking potential, be 
further tested as a key component in drug combination therapy efforts in holoendemic areas.
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Background
Malaria treatment has had to cope with ever more 
resistant strains of Plasmodium falciparum and 
increasingly with straings of Plasmodium vivax as 
well. The spread of resistance to classical treatments 
triggered by widespread use of antibiotic such as 
chloroquine has led to a bleak situation and a rising 
disease burden since the 1980s, especially in Africa. 
Today malaria is responsible for around 5 billion clin-
ical episodes resembling malaria, some 600 million 
clinical malaria cases, and about 1  million deaths 
due to malaria every year. The great majority of the 
malaria burden affects the poor, rural communities in 
sub-Saharan Africa (SSA), and most deaths occur in 
young children.1–3 Economic instability and subop-
timal medical treatment have led to a delicate situa-
tion and new strategies to fight malaria are urgently 
needed.4–6 For decades chloroquine was the most 
important, safe, effective, and affordable antimalarial 
drug worldwide. The spread of chloroquine resistance 
was considered a public health disaster, and many 
countries adopted sulfadoxine-pyrimethamine (SP) 
as the first-line antimalarial treatment of choice.2,4 
In response to quickly spreading resistance to both 
chloroquine and SP, the World Health Organization 
(WHO) then recommended the use of combination 
treatments that include artemisinin derivatives as 
first-line therapy.5

Artemisinin-based combination therapies are 
the current first-line treatments of choice against 
malaria, though treatment costs are high and initial 
resistances have been reported in Southeast Asia.7–12 
Therapy costs of more than $5 per case are often 
unaffordable for the rural population most affected 
by malaria.4,6,13–15 In this context, effective and cheap 
combination therapies are needed. Here we examine 
complementary aspects in order to introduce methyl-
ene blue (MB) combination therapies.

Methylene blue (MB), the first synthetic drug 
ever used against malaria16 disappeared after other 
antimalarial drugs such as (eg, chloroquine) were 
introduced to the market in the 1960s. It was redis-
covered some years ago19,20 and it is currently being 
tested in phase IIb trials in Burkina Faso.21 Previous 
studies could show that under treatment with MB, 
no serious adverse advents occurred; the most fre-
quent side effects of MB were blue urine, vomiting 
and dysuria.22 MB treatment is well received in the 

local population. However, in order to understand the 
antimalarial effects and appreciate the full potential 
of MB, a more detailed analysis of its biochemical 
effects is important.

MB is a subversive substrate and specific inhibi-
tor of P. falciparum glutathione reductase. It inhib-
its heme polymerization within the parasite’s food 
vacuole, and prevents methemoglobinemia in clinical 
malaria.17,18 MB serves as a “bonaria” (“bon”, 
beneficial, “a” affordable, “r” registered for meth-
emoglobinemia, “ia” internationally affordable, as 
opposed to “malaria”) drug19 with good combina-
tion potential for the treatment.20,22–27 Here we con-
sider some key aspects of such an MB-based strategy: 
resistance potential against standard drugs, model 
predictions and measurements of specific additive 
pathways, and anti-resistance effects of MB. In the 
context of increasing resistance and expensive anti-
malarial drugs such as artemisinin,10–12 MB has several 
advantages—it is cheap, stable, and available.20 MB 
inhibits the maturation of the parasite to the schizont 
stage by attacking multiple targets in P. falciparum, 
of which two, methemoglobin and β-hematin, are 
metabolites that are not controllable by the genome of 
the parasite, making resistance development against 
MB unlikely.28 MB inhibits P. falciparum heme detox-
ification, and we show that it has a gametocytocidal 
effect on old and young gametocytes.27 It is a subver-
sive substrate and specific inhibitor of P. falciparum 
disulfide reductases such as the redox protein gluta-
thione reductase (GR).29 GR plays a key role in anti-
oxidative defense systems and has been the subject of 
numerous investigations and reviews.18,30,31

We use here a combination of bioinformatics mod-
eling and direct experimental tests to investigate the 
use of methylene blue in situations of resistance. First 
we give detailed data on the pleiotropic effect of meth-
ylene blue on redox pathways and redox protection. It 
has such an effect on Plasmodium spp., in particular 
on redox pathways, as shown here by pathway cal-
culations (extreme pathway analysis) of experimental 
RT-PCR data on mRNAs for redox enzymes.

We used the YANA software package32 to establish 
central metabolic pathways and calculate a metabolic 
flux model for P. falciparum capable of simulating the 
basic functions of the malaria parasite. The extreme 
pathway analysis is used to calculate the possible meta-
bolic pathways in a given organism; the real-time PCR 
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data are used as constraints to identify the strength of 
the pathway fluxes under influence of MB. Next, we 
show that typical resistance mechanisms of malaria 
parasites against chloroquine or sulfadoxine affect 
pathways differently from those upon which MB is 
acting. We compare in silico the different modes of 
resistance in malaria, analyzing both chloroquine 
resistance based on pfmdr and pfcrt transporters and 
pyrimethamine/sulfadoxine resistance due to muta-
tions in DHF and DHPS. Additionally, the effects of 
methylene blue on resistant and non-resistant Plas-
modium strains are modeled.

Taken together, our data support the concept that 
MB could become a key component in new antima-
larial combination therapies.

Materials and Methods
Preparation of parasite cDNA  
for transcriptome studies
In order to assess mRNA levels of parasites after MB 
treatment, P. falciparum trophozoites of the strain 
3D7 were exposed to 15 nM of MB, which corre-
sponds to approximately 5 × IC50. After periods of 
9, 12, and 18 hours, the parasites of the treated and 
untreated control plates were harvested by suspend-
ing the red cells for 10 minutes at 37 °C in a 20-fold 
volume of saponin containing red blood cell lysis 
buffer composed of 7 mM K2HPO4, 1 mM NaH2PO4, 
11 mM NaHCO3, 58 mM KCl, 56 mM NaCl, 1 mM 
MgCl2, 14 mM glucose, and 0.02% saponin, pH 7.4. 
The suspension was centrifuged (1,500  g, 5  min, 
room temperature, for all steps), and the supernatant 
was discarded. Parasites were washed again in the 
above saponin buffer and finally in PBS. The par-
asite pellet was frozen in liquid nitrogen and kept 
at −80 °C. Disruption of parasites was achieved by 
freezing and thawing in liquid nitrogen three times. 
For extracting total RNA, the NucleoSpin RNA/
Protein Kit (Macherey-Nagel, Düren, Germany) was 
used. RNA extracts were treated with concentrated 
DNase I (RNase-free; MBI Fermentas, St. Leon-Rot, 
Germany) according to the manufacturer’s instruc-
tions for removing genomic parasite DNA con-
taminants confirmed by PCR. Aliquots of 450  ng 
RNA of each sample were reverse transcribed to 
cDNA using anchored oligo-dT primers (Reverse-iT 
MAX 1st Strand Synthesis Kit, Abgene, Hamburg, 
Germany).

Quantitative real-time PCR
The SYBR Green JumpStart Taq ReadyMix (Sigma-
Aldrich) was used in the real-time PCR approach on 
a Rotor-Gene 3000 real-time PCR cycler (Corbett 
Research, Sydney, Australia). The required primers 
(Supplementary Table  1S) were designed in our 
laboratory. All primers used were tested previously in 
a normal PCR to ensure their target gene specificity. 
The Rotor-Gene 6.0 software was used to analyze the 
PCR results and to determine cycle threshold values. 
Data displayed are based on the threshold cycle and 
reaction efficiency of target and reference genes in 
both treated cells and untreated control cells. Relative 
quantification was carried out by applying the 
efficiency-corrected ∆Ct method.33 18S rRNA was 
used as an internal reference gene. The specificity of 
PCR results was confirmed by melting curve analysis 
in which a negative control without a template was 
always included. In our experiments, each real-time 
PCR run was carried out in quadruplet. Standard 
errors are low and typically only 0.4% (one standard 
deviation); the actual ranges are given in Table 2 for 
each measured value.

Metabolic modeling
Calculation of all possible metabolic pathways
Extreme pathway (EP) calculation was used to eval-
uate the strain-specific redox network and central 
metabolism around folate synthesis, hemoglobin 
degradation, as well as porphyrin and carbon-pool 
networks in all contained pathways. A stoichiometric 
matrix (S: n*m) was prepared; the columns and rows 
correspond to the biochemical enzymes in the network 
(n) and the involved internal (produced or consumed 
within the network) metabolites (m), respectively. 
All of these internal metabolites have to be balanced. 
This is achieved by combining different enzymes so 
that in the end no internal metabolite accumulates or 
is depleted over time.

	 S v = 0� (1)

Calculation of pathway activities
Relying on a convex basis computation, a null-space 
matrix (v) capable of fulfilling the equation was 
calculated. The quality of the match to the actual mea-
sured gene expression values was calculated with the 
observed gene expression assumed to be proportional 
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to enzyme expression and taken as a direct estimate 
of the observed enzyme activity Eobs. This is of course 
an oversimplification since there are many additional 
factors and mechanisms regulating enzyme activities. 
Furthermore, this assumes that without gene expression 
data all core pathways are used equally (flux value = 1). 
The changes, particularly stronger or higher expression, 
were assumed to be proportional to the change in gene 
expression. However, these combined errors are greatly 
reduced by considering the complete network and 
the many available constraints according to the PCR-
measured, significantly higher or lower gene expres-
sion data, and by including the available time-resolved 
data from transcriptome databases (eg, PlasmoDB).

Nevertheless, this metabolic modeling is not a 
detailed or meticulous modeling, considering all the 
individual kinetic constants and allosteric effects of 
different enzymes or, for instance, individual diffusion 
rates. However, it is sufficient enough (see results) 
to capture the network effects of different drugs and 
compare them. We ensured that convergence and low 
residual error for each metabolic model was obtained. 
This error was typically 0.6% of the enzyme activ-
ity calculated, the low value results as the complete 
network combines a number of constraints from the 
data; detailed results and convergence behavior for the 
calculations are given in Additional File 3. Standard 
errors are given in all figures.

First, each enzyme activity Epred was calculated 
summing over the predicted activity A of each 
extreme pathway Ai containing this specific enzyme 
in its extreme pathway:

	 Epred = Σ Ai� (2)

Next, for the complete system of enzymes with sig-
nificant gene expression changes, the squared devia-
tion between predicted enzyme activity and observed 
enzyme activity, as estimated according to the gene 
expression data, was minimized:

	 Min (Σ (Epred - Eobs)
2)� (3)

This least-squares error minimization task can be 
achieved via different strategies. For best results in 
this minimization, we first used the genetic algorithm 
in YANAsquare and then a steepest descent routine 
written in R (see supplementary materials).

Results
The bioinformatics analysis on the redox network 
effects of methylene blue (MB) or other antimalarial 
drugs, alone or in combination and compared in wild 
type and resistant mutations, was obtained step by 
step, refining the analysis results by including more 
experimental data (our own or public) in each step. 
The workflow is given in Figure 1. After a first itera-
tion to model all pathways, the results obtained were 
refined and analyzed further in detail as given in the 
following.

Modeling of all pathways
Pathways of the central and redox metabolic 
networks
In order to set up the central metabolism of P. falciparum 
with a focus on redox metabolism for building a net-
work model, we used the database KEGG (http://www.
genome.ad.jp/kegg)34 and complemented the enzyme 
data produced by using sequence analysis, expert 
knowledge, and literature.35 The software package 
YANAsquare32 provides a database import tool, the 
KEGG Browser. This tool was used to import path-
ways of the central metabolism of P. falciparum from 
the KEGG database.34 In order to achieve maximum 
model accuracy, proteins escaping previous annota-
tion by KEGG were added to the preliminary pathway 
setup via sequence analysis and by incorporating data 
from PlasmoDB.36 The stoichiometric validity of the 
enzymatic reactions considered was checked accord-
ing to literature,35 and the stoichiometric matrix of 
all enzyme reactions in the network was established 
(Additional File 1, Table S1). The set of all possible 
pathways that cannot be dissected any further was then 
calculated. These are the so-called elementary modes 
(see Materials and Methods). These show all metabolic 
pathways accessible for the system. Figure 2 summa-
rizes the obtained network.

Fluxes
In order to model all pathways of the system, the 
convex basis vectors37,38 of the flux distribution were 
calculated applying YANA.32 After calculating the 
set of all potential pathways, it was important to 
determine actual fluxes for different pathways in 
the model. For this we used expression data from 
PlasmoDB36 and the malaria transcriptome data-
base (http://malaria.ucsf.edu/)39 regarding the MB 
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free situation. The latter database contains a rela-
tive mRNA abundance for every hour of the intra-
erythrocytic cycle of parasite development based on 
a 70-mer oligonucleotide microarray. Next, enzyme 
expression values and relative changes in the MB 
treatment situation were estimated according to RT-
PCR results (Table 2). These enzyme activities were 
first-order (ie, ignoring allosteric regulation) approx-
imated by applying YANA and R40 according to the 
best fit for the distribution of the flux modes for the 
given expression data (Fig. 3). Enzymes catalyzing 
more than one reaction were considered with each 
reaction modeled independently in order to obtain 
a more accurate calculation for enzyme activity and 
convex base mode calculations (eg, glutaredoxin 
reactions 1 through 6).

Modeling resistance mutations  
with and without MB
In order to calculate the effects of resistance against 
antimalarial drugs, we investigated different 
scenarios. For enzymes that were considered drug 
targets (in sensitive strains; see Figs. 4–6), we used 
PFCRT and PFMDR for chloroquine resistance, 
and DHF and DHPS for pyrimethamine/sulfadoxine 
resistance. The activity of the drug-targeted 
enzymes in a sensitive strain under drug influence 

was defined to be zero but stayed normal for the 
resistant strains. All remaining enzyme activities 
were estimated according to the measured PCR-
data as well as the malaria transcriptome database. 
Calculated fluxes were then fitted according to all 
these enzyme activity values. In this manner we cre-
ated two clusters of 4 scenarios each (see Table 1, 
details for the calculated convex base pathway activ-
ities for all scenarios are given in Additional File 1, 
Tables 2S to 9S). For more detail on the workflow 
of these calculations, please refer to the subsection 
titled YANAsquare short manual in Additional File 
2 (YANA_manual.doc). This gives an overview of 
the calculations and all results. Models are given in 
Additional File 3 (results.rar).

Inclusion of the PCR data: methylene 
blue acts in a pleiotropic manner  
on different redox enzymes
Methylene blue as a prooxidative agent increases 
oxidative stress on the parasite and has parasiticidal 
properties. We thus studied the actual pathway strengths 
under the influence of MB on such key enzymes of 
redox metabolism in Plasmodium spp. To obtain direct 
experimental data we conducted for this gene expres-
sion studies in cell culture (Table 2). Using RT-PCR, 
the gene expression changes after exposure to MB 

Genome annotation by means of
iterative sequence search based

on available DNA sequences

Comparison with data from
clinical trials

Predictions on drug combination
effects by enzyme activity

calculations
(see Fig. 4-6)

Resistance modelling: modelling
of strain specific

sensitivities/resistances

In silico extreme mode analysis
pathway modelling

(see Fig. 2)

Collection of gene expression
data from wildtype and resistant

strains

Fitting of models by measured
gene expression values

(See Fig. 3)

Complete network information on
pathway flux changes according

to gene expression data

Figure 1. Workflow.
Notes: The following figures are indicated in the work flow scheme; supplementary data give detailed information on each step. Key experimental data 
are indicated in brown: (i) Genome annotation uses sequence analysis of the available data on the DNA sequence to identify all strain-specific enzymes 
and compare them to standard enzyme and pathway data from KEGG database. New predicted reading frames are verified by PCR. (ii) Central metabolic 
network with redox enzymes is set up accordingly, and all available pathways are calculated (solving the stochiometric matrix by elementary mode 
calculation). (iii) Model refinement by fitting the gene expression data to the measured enzyme activities to (iv) describe how pathways and metabolic flow 
change under different conditions (infected/uninfected and over time). (v) For resistance modeling, the enzyme activities for resistant/sensitive strains 
are altered according to antibiotic sensitivity using further gene expression data as constraints. (vi) Predictions on drug combination effects by means of 
enzyme activity comparisons between sensitive and resistant strains are compared with available public clinical data.
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were studied in correlation to a standard transcript. 
As the standard, we employed 18SRNA, which was 
found to be very stable over the incubation period. 
For all redox-associated proteins studied, transcript 
levels were downregulated after 9  hours. However 
GR expression strongly increased after 12 hours and 
marginally decreased again 18 hours later. GR as well 
as 1-Cys-peroxiredoxin and lactate dehydrogenase 
expression levels were enhanced after 18 hours.

Refined view on redox pathways  
affected by MB
Taking the PCR data into account, the MB-induced 
enzyme changes were modeled and further analyzed. 
mRNA activities for key redox enzymes were 
measured. A bioinformatics flux model calculated all 
fluxes as well as their changes in the whole network. 
Figure  3  summarizes the result obtained; thicker 
arrows represent strong pathway fluxes (Additional 

Figure 2. Pathways of plasmodial redox metabolism.
Notes: All accessible pathways of the redox network from Plasmodium spp were calculated applying elementary mode analysis (software: YANA). 
Enzyme names are written in brown boxes. A metabolite (names in black) is either a substrate or a product of a metabolic reaction. External metabolites 
(red triangles): metabolite is either taken up from the environment (substrate) or constitutes the end product of an enzymatic reaction. These are the 
sources or drains of the metabolic fluxes modeled and hence need not be balanced. Internal metabolite (green balls): metabolite concentration has to 
satisfy the steady state condition of the model as it is produced to cover the need of reactions using it in turn again as a substrate. Each of these internal 
metabolites has to be balanced by the enzymatic reactions of the metabolic network. All pathways are shown as equally active (blue arrows indicate fluxes) 
as this calculation indicates only which pathways could be used at all. To avoid cluttering of the picture, some connections to external metabolites are not 
shown. For full detail on all enzymes, substrates and fluxes calculated see Additional files. No transcription data or experimental mRNA expression data 
were incorporated at this stage.
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file 1, Table 1S lists all involved enzymes; Additional 
file 2 results give all details on the flux mode 
calculations). YANAsquare estimated an overall flux 
distribution according to overall expression data from 
PlasmoDB36 and the malaria transcriptome database. 
Changes were calculated using the gene expression 
changes of the key enzymes measured under differ-
ent conditions as constraints. Though an individual 
gene expression change is only a rough and indirect 
estimate of the actual enzyme activity—factors such 
as translation, protein turnover and enzyme activation 

are not captured—usage of all measured values as 
constraints helps to reduce the overall fitting error 
(remaining error: only few percent, see Liang et al32 
and Cecil et al41).

Without MB, 25  hours after invasion into the 
human erythrocyte, when the developmental stage of 
Plasmodium falciparum is the rapidly growing tro-
phozoite, we found comparatively strong pathway 
fluxes (defined as relative changes . 0.15) in the fol-
lowing modes: protein protection (mode 2, 3, 6, 7, 11, 
and 35), generation of keto sugars (mode 18 and 23), 

Figure 3. Changes in the Plasmodium falciparum redox flux network after MB drug action.
Notes: Results incorporating the transcription data and experimental mRNA expression data nine hours after incubation with methylene blue are shown. 
External metabolites are shown as red triangles, internal metabolites as green balls (see above). Enzyme names are written in brown boxes. Thicker 
arrows represent a stronger pathway flux. With methylene blue there is a shift in redox protection including glutathione reductase. Fluxes change according 
to utilization of the different pathways in the actual experiment and as a result of MB drug action (thinner and thicker arrows). To avoid cluttering of the 
picture, some connections to external metabolites are not shown. For full detail on all enzymes, substrates and fluxes calculated see Additional files.
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and lactate production (mode 26). We conclude that 
the parasite spends its main activity on these metabolic 
processes and that these pathways play an important 
role for Plasmodium survival and growth in the host.

In the experiments conducted, the administration 
of MB slowed down all enzymes participating in these 
processes. Glutathione reductase showed that after an 
initial down regulation at 9 hours, an up regulation to 
149% occured after 12 hours, which declined slightly 
after 18 hours (Table 2). Additionally, after 18 hours 

under the chosen non-parasiticidal MB concentrations 
(15 nM), 1-Cys-peroxiredoxin and LDH showed, after 
initial down-regulation, an up-regulation of mRNA 
expression over the initial value.

The real-time PCR results were furthermore com-
pared to the mRNA expression data of the DeRisi 
Database 25  hours after parasite invasion into the 
erythrocyte. In order to analyze the effects of methylene 
blue on the redox metabolism, we performed extreme 
pathway analyses and flux calculations with R.

Table 1. The different drug treatment scenarios.

Scenario Enzyme activities according to drug resistance phenotype
#1 #2 #3 #4

1: without  
MB

Wild type strain,  
no resistance.

Chloroquine-resistant  
strain: Administration  
of sulfadoxine.

Sulfadoxine-resistant strain:  
Administration of chloroquine.

Strain resistant to chloroquine 
and sulfadoxine: Administration of 
chloroquine and sulfadoxine.

2: with MB  
added

Wild type strain,  
no resistance,  
MB administered.

Chloroquine-resistant  
strain: Administration  
of sulfadoxine and MB.

Sulfadoxine-resistant strain:  
Administration of chloroquine  
and MB.

Strain resistant to chloroquine 
and sulfadoxine: Administration of 
chloroquine, sulfadoxine, and MB.
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Figure 6. Changes in key redox enzymes—multi-resistant strain.
Notes: Shown here are the effects of the combination of the drugs chloroquine and sulfadoxine on key redox enzymes in a multi-resistant plasmodium 
strain tolerating via its resistance to both chloroquine and the administration of the drug sulfadoxine (yellow bar). The y-axis denotes estimated changes 
in enzyme activity in percent, the x-axis compares key redox enzymes. For comparison, we show the effects of a triple combination of chloroquine, 
sulfadoxine, and methylene blue (blue bars) as well as the effects of MB on a non-resistant strain (grayish blue bar). As a baseline, the enzyme activities 
of a non-resistant strain without any added compounds were taken. Standard deviations (see Fig. 4 legend) after calculating the pathway activities were 
as follows: wild type: 0.53, wild type and added MB: 0.54, sulfadoxine-pyrimethamine added: 1.75, sulfadoxine-pyrimethamine and MB added: 1.76.
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Under the influence of methylene blue (15  nM) 
after 12 hours, the protein protection modes 3, 6, 7, 
11, and 22 were reduced by more than 4%. The stron-
gest reductions (more than 10%) were calculated for 
protein protection modes 3, 6, 7, and 11, using thi-
oredoxin and/or glutaredoxin. Ribose phosphate pro-
duction for nucleotide metabolism was reduced by 
more than 17% in the most effected mode. The flux 
calculated for lactate generation was also reduced by 
4%, whereas the generation of keto sugars remained 
nearly stable with minor fluctuations in the different 
modes (Table 12S). These results show that the para-
site is subjected to more oxidative stress as the pro-
tein protection modes are more affected. Furthermore 
ribose phosphate production is reduced under these 
stress conditions. Consequently these effects are par-
asiticidal if lethal concentrations are used.

According to the calculated fluxes, the gene 
expression data for MB action on the parasite led to 
reduced protection against oxidative stress at multiple 
places in the network. Regarding the enzyme activity 
calculated under the influence of MB, we can show 
that enzymes participating in redox protection are 
less active and that the parasite is exposed to oxida-
tive stress. For optimal activity (parasiticidal effect), 
a higher concentration (.20 nM) and/or longer incu-
bation times (.18 hours) are required.

Modeling plasmodium resistance 
mutations and drug combinations
For detailed analysis of the resistance effects and drug 
combinations, we first simulated chloroquine-resistant 
Plasmodium parasites (PfCRT). We considered in 

particular the enzyme heme synthase as not suscep-
tible to chloroquine (see Materials and Methods). In 
the chloroquine-resistant strain, hemozoin is formed 
by the oxidation of Fe2+ to Fe3+ and Fe3+ to proto-
porphyrin IX incorporated even in the presence of 
chloroquine.

Furthermore, the inhibition of dihydrofolate 
reductase (DHFR) and dihydropteroate synthase 
(DHPS) in a wild type strain was compared to plas-
modial parasites resistant to such inhibition. In order 
to model the effects of these drugs on a sensitive 
strain in silico, we set the activities of drug-targeted 
enzymes to zero in order to simulate a best case 
scenario of complete sensitivity to the drug. For all 
enzymes that were not drug targets, we approximated 
their expression strengths, if available, by using 
the gene expression data.39 Applying YANAsquare, 
we fitted the complete network fluxes for three resis-
tance scenarios (see below) according to the data 
from the gene expression database or PlasmoDB.36,39 
Missing data were then calculated according to the 
total network fluxes, taking into account full or 
no activity for sensitive or resistant drug targets. 
Furthermore, for the scenarios with MB, the relative 
enzyme changes noted in the results section before 
were taken into account as a first-order estimate for 
MB action. Results were obtained for the following 
scenarios of drug combinations and different sensitiv-
ity or resistance of Plasmodium.

Scenario I
When chloroquine is acting alone on a sulfadoxine-
resistant strain in comparison to a sensitive strain 

Table 2. Gene expression differences under influence of methylene blue.

Protein RT/18S
Relative mRNA  
expression after 9 h

Relative mRNA  
expression after 12 h

Relative mRNA  
expression after 18 h

Thioredoxin reductase 0.55 (±0.002) 0.74 (±0.003) 0.61 (±0.002)
Glutathione reductase 0.73 (±0.003) 1.49 (±0.006) 1.2 (±0.005)
Glyoxalase I Not determined 0.51 (±0.002) 0.48 (±0.002)
Glyoxalase II 0.9 (±0.004) 0.36 (±0.002) 0.38 (±0.002)
Lactate dehydrogenase 0.7 (±0.003) 0.93 (±0.004) 1.93 (±0.008)
1-Cys-peroxiredoxin 0.59 (±0.002) 0.79 (±0.003) 1.27 (±0.005)
Glutaredoxin 0.88 (±0.004) 0.63 (±0.003) 0.7 (±0.003)
Glutamate-cysteine-ligase 0.61 (±0.002) 0.55 (±0.002) 0.54 (±0.002)
Thioredoxin-dependent peroxidase 1 0.45 (±0.002) 0.49 (±0.002) 0.39 (±0.002)
Glutaredoxin-like protein 1 0.51 (±0.002) 0.76 (±0.003) 0.66 (±0.003)
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(Fig.  4), the enzyme activity of glutaredoxin (main 
reaction: reaction 6), glutathione peroxidase-like 
thiol peroxidase (Tpx), thioredoxin, and thioredoxin 
reductase was lowered by at least 10%. Glutathione 
reductase increased its activity by 15%. In the case of 
thioredoxin there was a reduction of more than 30% 
and for thioredoxin reductase a reduction of more than 
70% in enzyme activity. For the latter two enzymes, 
the effect was quite similar to that caused by adminis-
tering MB alone. However, when additional MB was 
added to the chloroquine treatment, we could note 
several strong effects in some key redox enzymes; 
for example, thioredoxin reductase was completely 
inhibited by the MB/CQ combination. Thioredoxin 
was also influenced and the direction of the reaction 
changed while increasing two fold. This was also cal-
culated for glutaredoxin (main reaction: reaction 6), 
although in that case activity decreased. The gluta-
thione-dependent, peroxidase-like thiol peroxidase 
reduced its activity by more than 50%, whereas 
chloroquine alone reduced activity by only 13%. 
Thioredoxin 2 had a 73% loss in activity under MB/
CQ combination.

When inhibited, no hemozoin could be formed, 
and Fe2+ accumulated in the cell. The in silico effects 
were modeled to be the same as in vitro and in vivo. 
This resulted in an accumulation of Fe2+ after the 
administration of chloroquine and the inhibition of 
ferrochelatase (EC 4.99.1.1). The modeling showed 
that redox pathways, especially the enzymes involved 
in protein protection against oxidative stress, are 
very active. Under the influence of chloroquine, 
thioredoxin reductase activity was inhibited, and 
mode 22 for protein protection was consequently 
less active (see Table 10S). Glutaredoxin, glutathione 
peroxidase-like Tpx, and thioredoxins 1 and 2 also 
had a loss in activity when chloroquine is added. The 
ferrochelatase only actively detoxified Fe2+ when no 
compound was added. Glutathione reductase became 
more active when chloroquine is added.

Scenario II
When sulfadoxine was added to a chloroquine-
resistant strain (Fig. 5), we observed an increase in 
activity in glutaredoxin reactions 2, 3, 4, and 5, in 
thioredoxin-dependent peroxidase by 15%–18%, and 
7% for glutaredoxin reaction 6 and for glutathione-
peroxidase-like Tpx. Thioredoxin reductase showed 

an increase of 56%. A decrease in enzyme activity 
was calculated for thioredoxin reaction 2, glutathione 
reductase, ferochelatase, and thioredoxin 1 by up to 
10%. When MB was added, we calculated a strong 
enhancement of these effects for glutaredoxin reac-
tions 2, 3, 4, and 5, thioredoxin-dependent peroxi-
dase, glutathione reductase, and thioredoxin 1 and 2. 
The activity of glutaredoxin reactions 2, 3, 4, and 5 
and thioredoxin-dependent peroxidase was increased 
by nearly 45% (note that glutaredoxin reaction 4 
changed its direction). Glutathione reductase showed 
a decrease in activity of 18%, as did thioredoxin 2. 
The activity of thioredoxin 1 decreased by 77% (with 
sulfadoxine alone only 10%). In this calculation, thi-
oredoxin reductase showed an 8% decrease in activ-
ity, whereas it was more active under the influence 
of sulfadoxine alone (56%). Glutathione-peroxidase-
like Tpx showed similar effects—with sulfadoxine 
there was a 7% increase in activity and with sulfa-
doxine/MB there was a 47% decrease.

In our model, resistance by MDR was also tested 
under the influence of chloroquine and sulfadoxine. 
For this condition, our model showed impaired 
activity for the glutaredoxins glutathione peroxidase-
like thiol peroxidase, thioredoxin 1, and thioredoxin 
reductase. In contrast, the glutathione reductase shows 
higher activity.

Scenario III
When sulfadoxine and chloroquine were added to a 
multi-resistant strain (Fig. 6) resistant to both sulfa-
doxine and chloroquine so that key target enzyme 
activities for these two drugs do not change in spite 
of their administration (see Materials and Methods), 
an increase in activity of of 11% for glutaredoxin 
reactions 2, 3, and 5 and 14% for glutathione reductase 
was calculated. A decrease in activity by 17% was 
shown for glutaredoxin reaction 6, glutathione perox-
idase-like thiol peroxidase, and ferrochelatase. There 
was a decrease of 9% for thioredoxin reaction 2, 
whereas thioredoxin reaction 1 was decreased by 61% 
and thioredoxin reductase by 80%. Methylene blue 
added to the sulfadoxine/chloroquine combina-
tion caused severe changes in nearly all key redox 
enzymes. Thioredoxin reductase was severely 
reduced. Thioredoxin-dependent peroxidase and glu-
taredoxin reaction 4 increased their activity by 18%, 
whereas the ferrochelatase was reduced by 13%. 
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In the case of glutaredoxin reactions 2, 3, 5, and 6, 
glutathione peroxidase-like thiol peroxidase, and thi-
oredoxin reactions 1 and 2, the activity was reduced 
and the direction of reaction changed. This indicates 
a more severe effect on the parasite than the combina-
tion treatment alone.

As shown by metabolic flux modeling, the 
sulfadoxine-resistant strain showed an increased 
activity in glutaredoxin reactions 2, 3, 4, 5, and 6, glu-
tathione peroxidase-like Tpx, thioredoxin-dependent 
peroxidase, and thioredoxin reductase, the latter espe-
cially so.

Discussion
As one of the oldest synthetic drugs used against 
malaria, MB was already successfully applied over 
100 years ago for the treatment of this disease, 
even in children.16,20,42,43 It was no longer used after 
other drugs (eg, chloroquine) were introduced to the 
market.

MB has been shown to selectively inhibit the 
Plasmodium falciparum glutathione reductase non-
competitively. MB has the potential to reverse CQ 
resistance and it prevents the polymerization of heme 
into hemozoin, similar to the effect of 4-amino-
quinoline antimalarials.42,44 Previous studies investi-
gated its synergy with CQ.22,44 This combination was 
effective against malaria in most cases; however, chlo-
roquine resistance has dramatically increased.22,23,45 
MB seems to be a slow-acting drug (t1/2: ca. 5 hours), 
so a good partner drug should be a fast-acting one.23 
In a recent study MB (10 mg/kg) had a very strong 
gametocytocidal effect on Plasmodium falciparum.25 
This supports MB being used as a helpful drug for 
efforts in malaria eradication.

Despite repeated malaria infections, the parasite 
still escapes the immune system. Adults may acquire 
semi-immunity with mild disease symptoms. In 
young children the disease is life-threatening and 
malaria is the major reason for a childhood mortal-
ity rate of 35 per 1,000 per year.45,46,48,49 No vaccine 
is currently available.24 The best way to eliminate 
the holoendemicity is to break the life cycle of 
the parasite by impairing the vector, the blood stage 
parasites, or the gametocytes through a concerted, 
local effort for local eradication.47 Specifically, the 
modeling and PCR data show that there is a multi-
hit strategy evidenced by the MB effect; we see 

down-regulation of glutathione reductase protection 
and only some recovery. The same is true for the path-
ways of various protein protection modes, detoxifi-
cation of 2-oxoaldehydes, generation and conversion 
of keto sugars, the lower part of glycolysis, and glu-
tathione synthesis. The limits of estimates based on 
gene expression have been discussed previously.26,41 
In our model, multiple constraints lower the residual 
fitting error (to PCR data) for most fluxes to only 
a small percentage. Furthermore, the compensatory 
up-regulation of GR observed is likely to be coun-
terproductive for the parasite, since MB is a subver-
sive substrate turning the anti-oxidative glutathione 
reductase into a pro-oxidative enzyme. The broad 
and promising direct inhibitory effects of MB on 
parasite metabolism are consistent with clinical find-
ings, where up to 95% of children suffering from 
malaria showed adequate clinical and parasitological 
response after MB treatment.25

We used a sub-lethal concentration in our experi-
ments (15  nM for 18  hours corresponding to 5 × 
IC50 determined after 72 hours) on purpose in order 
to monitor subsequent changes in gene expression 
that include parasite recovery. Direct drug effects on 
enzymes further improve the efficacy of methylene 
blue; the modes are additionally suppressed (eg, sub-
versive substrate action on GR augments MB effect).

Furthermore, we use our estimates here only 
to underline the capabilities of MB, thus a semi-
quantitative statement is appropriate. We can clearly 
show the trophozoiticidal effects of these via multiple 
direct hits on different enzymes by MB, including 
further redox pathway changes and impairment. We 
show here detailed results only for high but sub-lethal 
concentrations, but we also performed experiments 
with higher MB concentrations showing trophozoi-
dal activity; the same trend of increasing inhibition 
for redox enzymes was witnessed including, at higher 
MB concentrations, more and more inhibition of 
glutathione reductase. The gametocytocidal effects 
of MB reported elsewhere25 involve very similar 
pathways and can again be modeled with the same 
approach (future work). Resulting effects rely again 
on the multiple pathway hit strategy built into MB. 
Metabolic modeling of different drug resistance mech-
anisms done here point out that MB, due to its broad 
redox network pathway effects, can be well combined 
with different standard drugs used in malaria therapy. 
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This applies also to combination therapies such as 
BlueArte and BlueCQ, therapy with methylene blue 
and artemisinin or chloroquine, respectively. The dif-
ferent simulations detailed here show not only that 
because of resistant enzymes they differ to the wild 
type already in some fluxes but, more importantly, 
that different resistant strains become sensitive again 
when tackled by a combination therapy with MB.

Our data show that MB is a good drug for a com-
bined attack on several pathways, in particular those 
involved in redox protection. It is thus an additional 
good candidate for drug combinations, as already sug-
gested by previous work on the combination of MB 
with chloroquine or amodiaquine23,25 or (see above) in 
combination with artemisinin. Furthermore, the com-
bined attack on redox pathways by MB suggests it is 
a second-line drug to be given in addition to a first-
line therapy when resistance is expected and breaking 
resistance is desired (see data above). The compara-
tively short half life of MB as a drug combines well 
and synergistically with other drugs with long half 
life (eg, choloroquine, amodiaquine) if given in suit-
able intervals.23,25 This is critical for achieving an effi-
cient combination of drug action, for instance when 
treating chloroquine-resistant malaria strains with a 
MB-chloroquine combination.

MB action is not impaired by the other drug 
resistance mechanisms investigated in our different 
scenarios. Even the MDR situation is not enough 
to successfully inhibit the action of MB on several 
different redox and metabolic pathways. Moreover, 
additional gene copies in these redox pathways are 
rare, and they can only partially affect the pleiotro-
pic action of MB. Furthermore, unbalanced dupli-
cations would even lead to additional redox stress, 
for instance trisomia 21, where an additional chro-
mosomal copy of peroxidase on chromosome 21 is 
not balanced by catalase, as this is found on another 
chromosome. Some genes’ mRNA levels change rel-
atively fast once chemical environments change. This 
is only to a certain extent true for the measured redox 
enzymes, as the comparison of our 9 hour data with 
the untreated control indicates. However, although 
we accurately measured here the 9  hour time point 
as the earliest time step after the untreated situation, 
a number of early and fast effects of MB are known 
regarding metabolic pathway effects. In particular, 
additional redox stress and disequilibrium builds up 

over time, starting from the initial blocking of redox 
enzymes such as glutathione reductase, which hap-
pens within minutes after administering MB.20

The models shown here are not only capable of 
performing those calculations for the different strains 
of P. falciparum 3D7. As shown in Figure 1, the pro-
cess of preparing metabolic network models is highly 
modular; the enzymes comprising the metabolic 
pathways of P. falciparum 3D7 differ only slightly in 
other strains of Plasmodium. The pipeline (see Fig. 1) 
described in this work is easily and quickly transfer-
able to other malaria strains for which the genome 
sequence is known. In particular, regarding P. vivax, 
the results are directly transferable in first approxi-
mation, as most enzymes modeled for P. falciparum 
by us also occur here. This is important since this 
Plasmodium strain is increasingly spread in tropical 
regions, and here the effect of the typical antimalar-
ial drugs is not so well known including behavior in 
resistant strains.

MB is available on site in Burkina Faso as a 
bonaria drug (available, accessible, and registered) 
and has been studied here alone and in combination 
therapies. As a strong multi-target drug, it attacks the 
blood-stage parasite redox networks and other pro-
teins, and it includes a very strong gametocytocidal 
effect as well. We suggest more investigations of MB 
and its effects on malaria eradication and recommend 
a combination therapy, since now there is no longer 
any single, 100% effective drug against the disease.48

In conclusion, administering a broad drug affecting 
multiple targets may become a general strategy to cope 
with resistance development in infections, includ-
ing drug combination therapies. In the concrete case 
detailed here, these are various combinations of MB 
with first and second line antimalarial drugs to bet-
ter treat malaria. The calculations of the detailed drug 
effects on redox networks strongly support the benefi-
cial effects of MB combination therapies. They under-
score that further clinical studies are promising as well 
as required in order to translate these bioinformatical 
insights into better antimalarial therapy in loco.
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Supplementary Data
The following additional data are available with the 
online version of this paper.

•	 Additional data file 1 contains 12 large tables 
on all metabolic flux modes modeled and their 
changes due to drug action.

•	 Additional file 2 is the technical description and a 
guided tour through all calculations made including 
a description of the use of all R and PERL scripts.

•	 Additional file 3 is a zip file and contains further 
details and data including all scripts, more detail 
on the models used as well as detailed results.
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