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ABSTRACT

Motivation: For the analysis of rare variants in sequence data, numer-

ous approaches have been suggested. Fixed and flexible threshold

approaches collapse the rare variant information of a genomic region

into a test statistic with reduced dimensionality. Alternatively, the rare

variant information can be combined in statistical frameworks that are

based on suitable regression models, machine learning, etc. Although

the existing approaches provide powerful tests that can incorporate

information on allele frequencies and prior biological knowledge, dif-

ferences in the spatial clustering of rare variants between cases and

controls cannot be incorporated. Based on the assumption that dele-

terious variants and protective variants cluster or occur in different

parts of the genomic region of interest, we propose a testing strategy

for rare variants that builds on spatial cluster methodology and that

guides the identification of the biological relevant segments of the

region. Our approach does not require any assumption about the dir-

ections of the genetic effects.

Results: In simulation studies, we assess the power of the clustering

approach and compare it with existing methodology. Our simulation

results suggest that the clustering approach for rare variants is well

powered, even in situations that are ideal for standard methods. The

efficiency of our spatial clustering approach is not affected by the

presence of rare variants that have opposite effect size directions.

An application to a sequencing study for non-syndromic cleft lip

with or without cleft palate (NSCL/P) demonstrates its practical rele-

vance. The proposed testing strategy is applied to a genomic region

on chromosome 15q13.3 that was implicated in NSCL/P etiology in a

previous genome-wide association study, and its results are com-

pared with standard approaches.

Availability: Source code and documentation for the implementation

in R will be provided online. Currently, the R-implementation only sup-

ports genotype data. We currently are working on an extension for

VCF files.
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1 INTRODUCTION

In the search for disease susceptibility loci (DSLs), genome-wide

association studies (GWAS) have been a successful instrument

for the identification of replicable genetic associations (Manolio

et al., 2008; Hardy and Singleton, 2009). They can interrogate

almost the entire human genome for genetic associations. In

GWAS, a large set of common variants, i.e. SNPs with high

minor allele frequencies, is genotyped and tested for genetic as-

sociation with the phenotype of interest. The SNPs that are gen-

otyped on the panel of the GWAS SNP chips are typically

selected so that they are strongly correlated with the SNPs that

are not genotyped, enabling the indirect association testing of the

untyped SNPs. However, for most complex diseases, the GWAS

association signals are only able to explain a small fraction of the

overall heritability that is predicted by classical heritability ana-

lysis (Visscher et al., 2008). One possible explanation for this

phenomenon is that many of the genetic associations that are

detected by GWAS are caused by multiple rare DSLs, i.e.

minor allele frequency of51%, that are in proximity to one of

the GWAS-SNPs (Goldstein, 2009; Manolio et al., 2009).

Because common variants are poor proxies for rare loci in asso-

ciation analysis or are not in linkage disequilibrium at all with

rare disease-causing variants, it is difficult to identify and char-

acterize rare DSLs in GWAS data. By recording all genetic loci

of the region, high-throughput sequencing data contain the

required information to address the rare variant hypothesis.

Genomic regions that harbor disease-causing variants can be

pinpointed and characterized.
Consequently, the arrival of high-throughput sequencing data

for genetic studies of complex diseases poses a unique research

opportunity for the localization of DSLs. At the same time, it

constitutes a statistical challenge. Because the majority of the loci

that are recorded by high-throughput sequencing are rare, clas-

sical single locus tests for genetic association, e.g. Amitrage-trend

test (Lange and Laird, 2002), do not provide sufficient power for

the underlying analysis questions. Collapsing methods have been

suggested to address this problem. Using either a flexible or fixed

thresholds for the minor allele frequencies of the loci that will be*To whom correspondence should be addressed.
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included in the analysis, such methods aggregate the genotypes
of the rare variants in the genomic region for cases and controls,
and construct a genetic association test between affection status

and the genomic region. For example, one intuitive approach is
the cohort allelic sums test (CAST) that counts the number of
affected and unaffected individuals that are carriers of any rare

variant in a given sample and predefined genetic region. Then,
the fraction of carriers of a rare variant is compared with the
fraction of non-carriers between cases and controls

(Morgenthaler and Thilly, 2007). Li and Leal (2008) developed
a Combined Multivariate and Collapsing (CMC) method that
collapses rare variants into a single term and jointly assesses the

effect of the collapsed rare variant term with the terms of
common variants on a given trait using multivariate analysis.
Other approaches have been suggested to account for potentially

different effect sizes of the rare variants. Madsen and Browning
(2009) proposed a weighted sum statistic in which loci are
weighted according to their allele frequencies in the group of
unaffected individuals. The weighted sum statistic approach

has been subsequently extended by Price et al. (2010), who
have generated the weights of the variants on the basis of exter-
nal information. Ioanita-Laza et al. (2011) have proposed a

method that compares the sharing patterns of rare alleles be-
tween cases and controls. Recently, general statistical frame-
works have been developed (Ioanita-Laza et al., 2011a; Neale

et al., 2011; Wu et al., 2011) that, instead of collapsing the rare
variant information, combine the information using suitable re-
gression models, statistical learning methodology, etc. However,

despite statistical challenges, the availability of rare variant/
sequencing data offers the unique opportunity to identify DSLs.
So far, although highly biologically relevant, the existing meth-

odology has ignored the information about the physical location
of the rare variants. There are several reasons why physical prox-
imity of rare variants in the genomic DNA sequence could be

important. First, proteins can be composed of functional do-
mains based on the amino acid sequence, and variants within
the same protein functional domain, which may also be located

in close proximity in the DNA sequence, could have similar
impact on disease risk (Krebs et al., 2011, Chapter 4, p. 90).
Second, variants in the same gene regulatory element (e.g. en-

hancers, insulators, silencers and non-coding RNAs) would be
physically clustered in the DNA sequence (Raab and Kamakaka,
2010). Finally, gene regulatory elements tend to cluster in certain

genomic locations, such as the promoter region. More recently,
Mathieson and McVean (2012) showed that the spatial distribu-
tion of rare variants can be used to depict population substruc-

tures. Based on the assumptions that deleterious rare variants
and protective rare variants cluster together in different genomic
regions, spatial clustering approaches can be used to construct

powerful and robust association tests for rare variants. We de-
velop such an approach that focuses on the physical position of
the variants. The approach thereby does not require prior know-

ledge about biologically relevant segments in the genomic region
of interest and about the effect size directions of the different
alleles. The methodology is computationally fast, allowing appli-

cations to whole genome sequencing studies. We assess the power
of our approach based on simulation studies and compare it with
existing methodology. In the presence of DSL clusters, the pro-

posed approaches achieve substantially higher power levels than

standard methods. This is especially true for scenarios in which

deleterious and protective variants are present. Nevertheless, in

the absence of DSL clusters, they perform as well as standard

methods. The capabilities of the approach are illustrated by an

application to a sequencing study of the genomic region that was

identified by a GWAS for non-syndromic cleft lip with or with-

out palate. Our derived distance measure yields a highly signifi-

cant association between affection status and the genomic region,

whereas standard collapsing and weighting approaches do not

provide significant results.

2 METHODS

For the analysis of rare variants, a biologically plausible hypothesis is

that alleles of rare variants that have the same type of effect on disease

risk, e.g. either deleterious or protective, occur in the same part of the

genomic region of interest. Because the parts of the genomic region that

are relevant for changes in disease risk are typically not known before the

analysis, our goal is to construct an association test for rare variant ana-

lysis that identifies clusters of rare alleles and examines their effects on

disease risk. In the analysis of spatial data (Kowalski et al., 2002; Bonetti

and Pagano, 2005), the distribution of the physical distances between

events is used to detect the spatial clustering of events. We will apply

the same idea here to the analysis of rare variants and their genotypes.

In a first step, we identify the cumulative frequencies of all detected

variants in cases and controls, and apply inverse frequency weights to

each detected rare variant. We then combine the information on the lo-

cations of the rare variants in the cases and in the controls, and derive the

distribution functions of genomic distances between the rare alleles in

both groups. Next, we construct a test statistic that is suitable to capture

differences between the distance distribution functions for the two

groups. Because the test statistic will be driven by the different clustering

of the variant locations in the case and control groups, the power of the

test statistic is not negatively influenced by the presence of different effect

directions in the region, i.e. deleterious alleles and protective alleles.

Because the hypothesis is that DSLs with the same effect direction

cluster in the same genomic region, the differences between the distribu-

tion functions are particularly of interest for the small genomic distances.

We therefore introduce a test that captures the information of both, the

degree of skewness of the two allelic distributions towards small distances

and the systematic differences of the actual physical positions of the rare

variants between cases and controls. The statistical significance of the

discussed test statistic is obtained by permutations that randomly

assign case/control status to the study population while maintaining the

total number of cases and controls.

We assume that a defined genomic region has been sequenced in N

subjects in the context of a case–control study, recording the physical

position on a total of K rare variants and their genotypes. We denote

each detected rare variant as ki with i ¼ 1, :::,K.
Every variant ki shows a minor allele frequency that is smaller than a

pre-specified threshold value. Because, for rare variant analysis, there is

usually not sufficient power to detect genetic associations with a single

locus, we combine the information about the frequencies and locations of

the rare variants over the disease status in our sample.

Each detected variant ki is also associated with a physical position ji,

and j ¼ ðj1, :::, jKÞ represents the vector that contains all physical positions

of the K variants in the sample in ascending order.

The allele frequency of each rare variant can be estimated separately in

cases and controls. We define nai to be the number of rare alleles in cases

at variant ki, and nui to be the respective observed number of rare alleles

in controls.

We receive a total of na ¼
PK

i¼1 n
a
i rare alleles in the cases and a total

of nu ¼
PK

i¼1 n
u
i rare alleles in the controls.
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To emphasize the importance of spatial proximity between variants

and to control for an uneven distribution of the allelic frequencies, we

define weights that are both cluster and frequency dependent. The phys-

ical positions of the variants are incorporated into the weights by deter-

mining the distance to the nearest neighbor variant for each variant ki in

the sorted positional vector j that contains the physical positions of all

detected variants:

ji,min ¼ minð ji � ji�1
�� ��, ji � jiþ1

�� ��Þ
Madsen and Browning (2009) and Ionita-Laza et al. (2011b) have

shown that depending on whether a variant has a disease-causing or

protective effect, efficient weighting schemes can be constructed based

on the allele frequency of the rare variants in only either controls or

cases. For cases and controls, we define separately inverse frequency

weights that weigh variants based on their minor allele frequency and

combine these frequency weights with the information about the physical

position of the variants. Our weighting scheme for each detected variant

ki based on the distribution of variants in cases, is given by:

wa
i ¼ 1þ

naþ1
nai þ1

� �
logðji,min þ 1Þ

The weighting scheme for each variant ki based on the distribution of

the variants in controls is defined as:

wu
i ¼ 1þ

nuþ1
nu
i
þ1

� �
logðji,min þ 1Þ

Thus, for a variant ki, the rounded to integer allele counts in cases and

controls weighted by the distribution of variants in cases are given by:

ma
i,wa

i
¼ ½nai w

a
i � and mu

i,wa
i
¼ ½nui w

a
i �

And accordingly for a given variant ki, the rounded to integer allele

counts for cases and controls weighted by the distribution of variants in

controls are given by:

ma
i,wu

i
¼ ½nai w

u
i � and mu

i,wu
i
¼ ½nui w

u
i �

In the next step, we create sequences where the physical positions ji of

variants ki are replicated according to the detected weighted allele counts.

The variant position sequences for cases and controls weighted accord-

ing to the distribution of variants in cases are given by:

Sa
wa ¼ sj

� �Pma
i,wa

i

j¼1 and Su
wa ¼ sj

� �Pmu
i,wa

i

j¼1

And synonymously we derive the position sequences for cases and

controls weighted on the distribution of variants in controls as:

Sa
wu ¼ sj

� �Pma
i,wu

i

j¼1 and Su
wu ¼ sj

� �Pmu
i,wu

i

j¼1

Our goal is to construct a test statistic that assesses the spatial prox-

imity between variants of each group. For variants that increase disease

risk, we assume that their locations tend to be spatially clustered in a

certain part of the genomic region. Variants that are protective or have no

effect on disease risk are assumed to either cluster in a different part of the

genomic region or have a weaker or no tendency to cluster.

For each weighting scheme, we derive the distributions of the rare

allele distances in cases and controls. We obtain the distances between

two adjacent alleles by subtracting the variant location of one allele from

the variant location with the next larger position order. It is important to

note that, if a rare allele at one locus is observed multiple times in cases or

controls, then the corresponding distances between them are zero.

For the weighting scheme based on the frequencies of variants in cases,

we receive the following distance vectors for cases and controls:

Da
wa ¼ ðd

a
1,wa , :::, dakAk�1,wa Þ,D

u
wa ¼ ðd

u
1,wa , :::, dukAk�1,wa Þ

with the elements da1,wa , :::, dakAk�1,wa and du1,wa , :::, dukAk�1,wa representing

the derived distances between the weighted variant positions.

And accordingly, for the weighting scheme that incorporates the vari-

ant allele frequencies of controls, we can display the distance vectors of

cases and controls as:

Da
wu ¼ ðd

a
1,wu , :::, dakAk�1,wu Þ,D

u
wu ¼ ðd

u
1,wu , :::, dukAk�1,wu Þ

It is important to note that the applied weighting schemes thereby

solely influence the skewness of the derived distance distribution func-

tions, but have no impact on the values of the observed non-zero

distances.

Based on the allelic distance distributions in cases and controls, we

now construct our location-based association test for rare variant data,

and apply it separately for each weighting scheme. In the test statistic, we

want to incorporate the information about both, the allele frequencies of

the rare variants and the physical distances between the rare variants; the

statistic has to take into account both the skewness of the distance dis-

tribution functions and the variance of the derived distances for cases and

controls. In most settings, the derived distance distribution functions will

be highly right skewed and have the same median so that rank-based tests

that rely on the median (e.g. Wilcoxon rank sum test) will not provide

efficient power. Similarly, non-parametric tests that directly rely on the

shape of the distance distribution functions (e.g. Kolmogorov–Smirnov

test) will concentrate on the difference in the skewness of the distance

distribution functions. However, they ignore information about the

actual physical distances between the rare variants.

One alternative approach to directly compare the two weighted dis-

tance distribution functions is the application of a non-parametric

two-sample test on the variability of the distance distribution functions.

Ansari and Bradley (1960) have developed such a test that directly exam-

ines the dispersion of two independent distribution functions—

Z ¼ fx1, . . . ,xm, y1, . . . , yng—and sorts the values in an increasing

order so that Z ¼ z1, :::, zNf g. The function Vi displays the distribution

of ranked positions from both samples with Vi ¼
1 for zi from X
0 for zi from Y

n
The Ansari–Bradley test statistic can then be expressed as

AN ¼
XN
i¼1

Nþ 1

2
� i�

Nþ 1

2

����
����

� �
Vi

The Ansari–Bradley test assumes the same location parameter for the

tested two independent distribution functions and tests for differences in

the ratio of scales. The scale of a distribution function describes its

spread, i.e. the scale of a normal distribution is defined by its variance.

Because we apply two different weighting schemes on each sample, we

obtain two test statistics for the Ansari–Bradley test: one test statistic for

the distance distribution functions weighted on the distribution of vari-

ants in cases and another one for the distance distribution functions

weighted on the distribution of variants in controls.

We define sa to be the ratio of scales weighted by the distribution of

variants in cases and su to be the ratio of scales of the two derived dis-

tance distribution functions weighted on the distribution of variants in

controls.

For both weighting schemes, we independently test whether the ratio

of scales (s) of the weighted distance distribution functions for cases and

controls is equal to one.

(1) H0 : sa ¼ 1 versus H1 : sa 6¼ 1

(2) H0 : su ¼ 1 versus H1 : su 6¼ 1

We select the maximum of both test statistics based on our hypotheses

(1) and (2) as our final test statistic.

A rejection of the null hypothesis implies an association of the tested

rare variants in the region with affection status. Because of the likely

presence of tied observations in the distance distribution functions, we

use an implementation of the standard Streitberg/Roehmel shift
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algorithm to retrieve exact distribution functions for our test statistics

(Streitberg and Roehmel, 1986).

The significance of the test statistic is obtained based on permutations.

In each replicate, case–control status is randomly assigned to each pro-

band in such a way that the total number of cases and controls of the

original study is maintained. The genotypes of the probands are kept

fixed, maintaining the LD structure of the region in the permutation

sample. The P-value is estimated as the proportion of permutation test

statistics, which are more ‘‘extreme’’ than the actually observed test stat-

istic for the real data.

For the application of our approach to dosage data, i.e. those datasets

that contain genotype probabilities instead of allele counts, we recom-

mend calculating the expected allele count for each subject and variant ki
on the basis of the genotype probabilities and applying our method with-

out modifications.

Using simulation studies, we evaluate the performance and power of

the Ansari–Bradley test based on the weighted distance distribution func-

tions. We also apply our analysis approach to a sequencing dataset for

non-syndromic cleft lip with or without palate to demonstrate its practical

relevance.

3 RESULTS

3.1 Simulation study

3.1.1 Generation of the data For the generation of the genetic
data in the simulation study, we implemented the model as

described in the simulation study by Ionita-Laza et al. (2011b).

We defined the mutation rate to be 1.5� 10�8 and simulated

5000 haplotypes with 500 000 base pairs. Subsequently, we se-

lected 30 SNPs with a predefined upper MAF cutoff. Based on

two randomly chosen haplotypes, we used an additive disease

model with a disease prevalence of 0.15 to derive our genotypes.

We assigned an invariant risk ratio of 3.0 to each SNP that has a

causal influence on the affection status. We repeated the last step

for each specification until we received a sample of 500/500 cases

and controls or 750/750 cases and controls.

3.1.2 Specifications of simulation runs We applied different

simulation scenarios to examine the type 1 error and power of

our proposed methods.
In the following, we refer to the proposed rare variant test

statistics based on the allelic distances as distance-based measure

(DBM).
Moreover, we compare the proposed test statistic with some of

the existing statistical methods that relate rare variants to a di-

chotomous phenotype: the CMC approach (Li and Leal, 2008)

that assigns equal weights to each rare variant, two methods that

use weighting schemes based on allele frequencies or prior bio-

logical knowledge (Madsen and Browning, 2009; Price et al.,

2010), the replication-based strategy of Ionita-Laza et al.

(2011b) that suggests a weighting scheme based on those alleles

that are present more often in cases compared with controls and

two flexible regression-based methods that test the variance of

effects for a given set of rare variants (Neale et al., 2011; Wu

et al., 2011).

We denote the test statistic of Li and Leal (2008) as CMC, the

test statistic of Madsen and Browning (2009) as MB, the test

statistic of Price et al. (2010) as Price, the test statistic of

Ionita-Laza et al. (2011b) as RB, the test statistic of Wu et al.

(2011) as SKAT and the test statistic of Neale et al. (2011) as

C-Alpha.

For the simulations, we first differentiated between two differ-

ent settings that relate to the physical distribution of the rare

variants in the derived samples. In the clustered scenario

(Clustered¼Yes), all variants that have a disease-causing effect

are sampled as a sequence with close physical close position to

each other, whereas the remaining non-causative/protective vari-

ants and their physical positions are randomly sampled outside

this sequence. In the non-clustered scenario (Clustered¼No), the

physical position of all selected variants is randomly assigned.

The degree of clustering of the simulated variants, i.e. the dis-

tances between the associated loci, was thereby chosen according

to the observed degree of clustering for the real dataset that we

used for the application of our method (Section 3.2).
Next, we varied the sample size between 500/500 cases and

controls or 750/750 cases and controls. In all derived different

scenarios, we examined two different upper MAF thresholds,

namely 1% and 0.5%, to evaluate the sensitivity of the presented

measures to different MAF cutoffs. We used 1000 replicates to

evaluate the type 1 error and 500 replicates to estimate the power

of each approach. All showed estimates result from two-sided

testing. The P-values used for the type 1 error evaluation and for

the power estimates are based on 1000 permutations.

3.1.3 Evaluation of type 1 error Table 1 shows the simulation
results for the type 1 error for the outlined scenarios. We chose

two different significance levels—�¼ 0.05 and �¼ 0.01—to

evaluate the type 1 error. The simulation study results suggest

that our approach maintains the type 1 error.

3.1.4 Power estimates For the power estimates of the meth-
ods, we included one additional specification in the outlined

scenarios. In a first setting, we assumed that, for all 10 DSLs,

the rare allele increases the disease risk. In a second setting, we

assumed the simultaneous presence of deleterious and protective

effects, i.e the rare alleles of seven DSLs are disease causing,

whereas the rare alleles of three DSLs have a protective effect.
Based on 500 replicates, Table 2 shows the power estimates

between the affection status and the sequenced rare variants in a

non-clustered scenario for the following methods: CMC, Price,

MB, RB, SKAT, C-Alpha and DBM.
The power estimates for the non-clustered scenario show that

our constructed DBM had a better performance than the collap-

sing approach (CMC), the two methods based on weighting

schemes (Price, MB) and the SKAT and C-Alpha test, when

the effect direction of the causative rare variants is the same.
In the case of mixed-effect directions of the causative variants,

the SKAT and C-Alpha test showed more power in one of the

four outlined scenarios compared with the DBM method.
The replication-based measure (RB), however, outperformed

all other compared methods (CMC, Price, MB,SKAT and

C-Alpha) in all specified simulation runs in the non-clustered

scenario. For a rather small MAF cutoff (MAF50.005), the

power advantage of the RB method compared with our DBM

for the non-clustered scenario became similar though. In general,

the simulation studies suggest that our approach achieves power

levels that are comparable with the power levels of current
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methodology, even in scenarios where there is no clustering of

variants.
Table 3 provides the power estimates of the outlined specifi-

cations (10 DSLs that increase the disease risk, and accordingly 7

risk DSLs and 3 protective DSLs) and specified methods (CMC,

Price, MB, RB, SKAT, C-Alpha and DBM) for a clustered scen-

ario. For the clustered scenario, the power estimates are also

based on 500 replicates.

Because all compared methods except the DBM method are

not sensitive to location clustering of the variants, the power es-

timates of CMC, Price, MB, RB, SKAT and C-Alpha did not

differ considerably in the clustered and non-clustered scenario.

Our constructed distance-based measure (DBM), however, is

sensitive to physical closeness of variants, and thus showed far

more power in a clustered scenario than in a non-clustered scen-

ario. This power gain had the consequence that in the clustered

scenario our distance-based measure (DBM) showed the highest

power estimates in all simulation runs compared with the other

methods (CMC, Price, MB, RB, SKAT and C-Alpha).
The power advantages of the DBM method compared with

the replication-based measure (RB) ranged from 1 to �35%

when only risk variants are present in the simulated genomic

region. The power advantage of the DBM measure was thereby

greater for the smaller MAF-cut off. When both risk and

protective variants are defined in the simulation runs, our

newly introduced measure showed even more power compared

with the other methods. In one simulated setting, the DBM

measure had a power advantage of 460% compared with the

next best performing method (RB). It is important to note, how-

ever, that the power estimates of all outlined methods were

reduced in simulation runs where variants with opposed effect

directions were included.

In addition, we also re-ran some of our simulations with a

constant genetic attributable risk to confirm our qualitative con-

clusion about the performance of the different methods (data not

shown).

3.2 Application of the discussed approach to a sequencing

dataset on non-syndromic cleft lip with or without

cleft palate

We applied the discussed approach to a sequencing study on

non-syndromic cleft lip with or without cleft palate (NSCL/P).

The dataset was generated by a follow-up sequencing of 96 cases

and 96 controls in gremlin-1 (GREM1), a candidate gene located

in a genomic region at 15q13.3 that was identified as a suggestive

NSCL/P locus in a GWAS by Mangold et al. (2010). GREM1 is

coding for a known antagonist of the bone morphogenic protein

4 (BMP4). BMP4 has been shown to regulate mammalian pala-

togenesis (Zhang et al., 2002) and has been reported to be asso-

ciated with orofacial clefting in humans (Suzuki et al., 2009). The

follow-up sequencing of both 5’ and 3’ UTR, as well as coding

regions GREM1, resulted in a discovery of 27 variants with an

MAF between 0.003 and 0.573.
Figure 1 depicts the spatial distribution of the 14 detected rare

variants (MAF� 0.05), with an MAF range of 0.003–0.029 for

cases and controls. Although the discovered rare variants in con-

trols are rather equally distributed on the chromosome, it can be

seen for the groups of cases that four rare variants tend to

cluster.
For our proposed distance-based approach (DBM), we select

two different MAF cutoffs (1 and 5%) and compared them with

the other methods (CMC, RB, Price and MB). Table 4 shows the

P-values of our derived distance-based test statistic (DBM) com-

pared with the other outlined collapsing and weighting methods.

Table 1. Evaluation of type 1 error (500/500 cases/controls and 750/750

cases/controls, 30 rare variants)

MAF � Number of

cases/controls

DBM

0.01 0.05 500/500 0.051

0.01 0.01 500/500 0.008

0.005 0.05 500/500 0.050

0.005 0.01 500/500 0.015

0.01 0.05 750/750 0.047

0.01 0.01 750/750 0.008

0.005 0.05 750/750 0.050

0.005 0.01 750/750 0.011

Tested at �¼ 0.05 or �¼ 0.01, 1000 replicates.

Table 2. Power estimates of outlined approaches in a non-clustered scenario

MAF 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005

Number of cases/controls 500/500 500/500 750/750 750/750 500/500 500/500 750/750 750/750

Number of variants 30 30 30 30 30 30 30 30

Number of risk variants/number of protective variants 10/0 10/0 10/0 10/0 7/3 7/3 7/3 7/3

CMC 0.222 0.148 0.280 0.176 0.094 0.054 0.108 0.070

Price 0.232 0.152 0.274 0.160 0.132 0.102 0.160 0.140

MB 0.248 0.176 0.330 0.194 0.104 0.066 0.128 0.100

RB 0.372 0.250 0.446 0.288 0.166 0.114 0.226 0.168

SKAT 0.254 0.176 0.346 0.176 0.128 0.074 0.162 0.114

C-Alpha 0.172 0.112 0.244 0.134 0.130 0.104 0.210 0.126

DBM 0.332 0.218 0.342 0.238 0.132 0.122 0.152 0.162

Tested at �¼ 0.05, 500 replicates.
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For all compared methods, the P-values are based on 1000
permutations.

It can be seen that our newly introduced measure (DBM) finds
a highly significant association of the sequenced 15q13.3 region
at both defined upper MAF cutoffs, whereas the other methods

(CMC, Price, MB, RB, SKAT and C-Alpha) fail to detect a
significant association at a 5% significance level. Before the ap-

plication of our method to real data, one should perform simu-
lation studies to determine a suitable window size as for the other
mentioned rare variant association tests, given the sample size

and the assumption of the disease parameters, i.e. prevalence,
effect size, etc. For the application of our variant position-based

test, the window size should be chosen according to the spatial
distribution of the variants on the chromosome, so that variant
clusters are not separated.

4 CONCLUSION

So far, existing statistical methodology for association analysis

has ignored the physical locations of the variants. In this

communication, we have proposed a class of methods to test

the association of rare variants to a dichotomous trait that in-

corporates the underlying spatial distribution structure of the

rare variants. Our method is based on statistical clustering meth-

odology. Instead of collapsing or combing the genotypes of rare

variants in the genomic region of interest, our test statistic takes

advantages of physical distances/locations of the alleles at the

rare variant loci and detects rare variant patterns that are differ-

ent between cases and controls. As a result, we obtain a new class

of association tests for rare variant analysis that can aid the

localization of the biological relevant segments in the analyzed

genomic region. As for any rare variant approach,

subpopulation-specific patterns in the variant distribution can

bias the analysis results of our test statistic. Although the find-

ings of Mathieson and McVean (2012) suggest that reasonable

amounts of subpopulation-specific variant distributions do not

severely affect the existing rare variant analysis approaches, care-

ful QC of the data, i.e. detection of population substructure and

outlier-removal accordingly, is mandatory before the application

of our approach. One approach here could be to apply our test-

ing strategy to known null regions, i.e. regions without any gen-

etic effects, and compare the performance of the test statistic in

these regions with the genomic region of interest. The detection

of population substructure is especially important, if samples

from other studies or sources, such as the 1000 Genome

Project, are included in the analysis to increase the statistical

power.
It is important to note, however, that our method is best suited

for high coverage sequencing data to detect and test the spatial

structure of variants. SNP data that were obtained from GWAS

SNP chips, because of the pre-defined SNP locations on such

chips, offer only limited information on the spatial distribution

of variants in a genomic region. Moreover, the presented method

also has limitations in testing aggregated, but positional uncon-

nected, genome regions, like non-coding regions.

For now, we focus on a very intuitive test statistic that com-

pares the two distance distributions between cases and controls,

using a Ansari–Bradley test statistic. Currently, we are working

on an extension of the approach that allows the integration of

covariates in the test statistic and to generalizations to quantita-

tive traits.

Fig. 1. Spatial distribution of rare variants in the sample. Two rare vari-

ants (one rare variant in cases and another in controls) with outlying

positions are not shown in the figure

Table 3. Power estimates of outlined approaches in a clustered scenario

MAF 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005

Numberof cases/controls 500/500 500/500 750/750 750/750 500/500 500/500 750/750 750/750

Number of variants 30 30 30 30 30 30 30 30

Number of risk variants/number of protective variants 10/0 10/0 10/0 10/0 7/3 7/3 7/3 7/3

CMC 0.210 0.122 0.308 0.170 0.094 0.082 0.128 0.070

Price 0.242 0.166 0.290 0.196 0.162 0.090 0.162 0.128

MB 0.234 0.142 0.342 0.182 0.112 0.096 0.148 0.084

RB 0.326 0.214 0.488 0.292 0.186 0.142 0.236 0.170

SKAT 0.230 0.148 0.332 0.194 0.130 0.102 0.162 0.112

C-Alpha 0.190 0.096 0.218 0.136 0.156 0.084 0.206 0.114

DBM 0.392 0.294 0.494 0.352 0.310 0.208 0.324 0.224

Tested at �¼ 0.05, 500 replicates.

Table 4. P-values of the compared methods for testing the association of

15q13.3 with NSCL/P

MAF CMC Price MB RB SKAT C-Alpha DBM

0.01 0.783 0.279 0.562 0.256 0.062 0.071 0.006

0.05 0.695 0.281 0.556 0.331 0.152 0.914 0.011

P-values are based on 1000 permutations.
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