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Abstract

Resting-state fMRI has become a powerful tool for studying network mechanisms of normal brain
functioning and its impairments by neurological and psychiatric disorders. Analytically,
independent component analysis and seed-based cross correlation are the main methods for
assessing the connectivity of resting-state fMRI time series. A feature common to both methods is
that they exploit the covariation structures of contemporaneously (zero-lag) measured data but
ignore temporal relations that extend beyond the zero-lag. To examine whether data covariations
across different lags can contribute to our understanding of functional brain networks, a measure
that can uncover the overall temporal relationship between two resting-state BOLD signals is
needed. In this paper we propose such a measure referred as total interdependence (TI).
Comparing T1 with zero-lag cross correlation (CC) we report three results. First, when combined
with a random permutation procedure, TI can reveal the amount of temporal relationship between
two resting-state BOLD time series that is not captured by CC. Second, comparing resting-state
data with task-state data recorded in the same scanning session, we demonstrate that the resting-
state functional networks constructed with T1 match more precisely the networks activated by the
task. Third, TI is shown to be more statistically sensitive than CC and provides better feature
vectors for network clustering analysis.
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Introduction

The brain is comprised of many anatomically and functionally distinct networks. These
networks are spontaneously active even in the absence of sensory input or motor output
(Biswal et al., 1995; Fox and Raichle 2007; Kenet et al. 2003; Raichle and Mintun 2006).
Progress over the past 15 years has firmly established that functional magnetic resonance
imaging (fMRI) data recorded during rest is an important tool to reveal the spatial
organization and temporal dynamics of these networks (Lowe et al. 2000; Yan et al. 2009;
van den Heuvel and Hulshoff Pol 2010). When two distinct brain regions are said to belong
to the same functional network the main criterion is that the intrinsic blood oxygen level
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dependence (BOLD) fluctuations from the two regions significantly co-vary with one
another (Dosenbach et al., 2007; Fox et al., 2006). Remarkably, functional networks
identified in such a statistical manner match the brain networks activated by various
cognitive tasks (Biswal et al., 1995; Fox, et al., 2006), correlate with behavior during
development and aging (Beason-Held et al., 2009; Church et al., 2009; Jolles et al. 2011,
Kelly et al., 2009), and predict brain pathology (He B.J. et al., 2007a; He Y. et al., 2007b;
Lynall et al., 2010; Supekar et al., 2008).

There are two classes of methods for mapping resting-state functional brain networks:
independent component analysis (ICA) (Beckmann et al., 2005; Damoiseaux et al., 2006)
and seed-based correlation analysis (Biswal et al., 1995; Fox et al., 2005). Whereas ICA has
the advantage of being model-free and entirely data-driven, seed-based correlation is more
convenient for examining the connectivity between a given region of interest and the rest of
the brain. Statistically, both methods exploit the contemporaneous covariation structures in
the data. Among time series models, such characterization is only sufficient for the white
noise process, which, by definition, may only exhibit contemporaneous correlations. It is
well-established that resting-state fMRI are not white noise; they are time series exhibiting
rich temporal patterns such as rhythmic activities in the low frequencies (Chang and Glover,
2010). Physiological factors that can contribute to temporal relations across scans include
intrinsic temporal structures in neuronal signals such as local field potentials, neuronal
transmission delays (Nishitani and Hari, 2002; Schmolesky et al., 1998; Van Essen et al.,
1992), and variable latency in the hemodynamic response function (Handwerker et al.,
2004). How much temporal dependence between BOLD signals was ignored by the
prevailing statistical approaches? To what extent the ignored temporal structure may have
contributed to our understanding of cognitive brain networks? These questions remain to be
answered. In addition, the ignored temporal dependence may help explain the discrepancy
between spatial structures identified by resting-state analysis and that by task activation.

In this paper we introduce a novel method called total interdependence (T1) to measure the
overall temporal relationship between two resting-state fMRI time series. Although this
measure has been considered in past neurophysiological (Rajagovindan and Ding 2008; de
Pasquale et al., 2010) and task-state fMRI studies (Roebroeck et al., 2005), it has not been
applied to resting-state fMRI data. The mathematical theory behind the method was first
developed by Gelfand and Yaglom in the context of assessing mutual information between
two Gaussian stochastic processes (Gelfand and Yaglom, 1959). Geweke (1982) further
showed that for two time series this quantity is the sum of three possible contributors
towards their overall temporal interdependence: the influence the first time series exerts
upon the second, the influence the second time series exerts upon the first, and co-varying
common input (Rajagovindan and Ding, 2008). This observation forms the basis of the term
total interdependence. In this work, analyzing resting-state fMRI data, we compared the
performance of Tl to that of the conventional cross correlation (CC) method. In addition,
task-state fMRI data recorded immediately following the resting-state period in the same
scanning session were used to further validate the T1 method, and to establish the functional
significance of the resting-state networks identified by TI.

Experimental design and data acquisition

Twelve healthy subjects gave informed consent and participated in the study. The
experimental protocol was approved by the Institutional Review Board of Beijing Normal
University. Both resting-state data and task-state data were recorded in the same scanning
session. During resting-state recording, the subject was instructed to relax with their eyes
closed for 10 minutes. After a 5 minute break, the subject performed a trial-by-trial cued
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visual spatial attention task (Wen et al., in press). There were 12 attention blocks (A blocks)
and 12 passive view blocks (B blocks). Each attention block lasted 1 minute. The passive
view block was of the same duration in which the same stimuli as the attention block were
presented but no attention was required. There were 15 trials in each attention block. Each
trial started with a cue directing the subject’s covert attention to either the left or the right
visual field. Imperative stimuli were presented following a delay period. The subjects were
instructed to respond to the target stimuli in the attended hemifield (Rajagovindan and Ding,
2011; Wen et al., in press) by pushing a button with their right hand. Fixation was
maintained toward the center of the presentation screen throughout the experiment.
Attention blocks and passive view blocks were divided into 6 runs with each run containing
4 blocks organized in an ABBA and a BAAB fashion across runs. Brain activations and
deactivations obtained by contrasting attention blocks against passive view blocks provide
regions of interest to be used to initiate and validate the resting-state analysis.

Functional MRI data were recorded on a 3-Tesla Siemens whole-body MRI system at the
Beijing Normal University MRI center using a T2*-weighed echoplanar imaging (EPI)
sequence (echo time (TE), 30ms; repetition time (TR), 2000ms). Each whole-brain volume
consisted of 33 axial slices (field of view, 200 mm; matrix, 64x64; slice thickness, 3.60mm,
flip Angle=90°, voxel size=3.13x%3.13x3.60mm). For high-resolution anatomic images a T1-
weighted 128-slice MPRAGE sequence was used (TR, 2530 ms; TE, 3.39 ms; flip angle, 7°;
inversion time, 1100 ms voxel size=1 x1.33 x1mm).

Definition of seed regions

Both cross correlation (CC) and total interdependence (T1) are seed-based methods. We
combined task-state data and resting-state data to define seed regions. For task-state data, the
first 5 time points (10 seconds) of each run were discarded to eliminate transient effects, and
the remaining data were preprocessed using SPM2 (http://www.fil.ion.ucl.ac.uk/spm/).
Preprocessing steps included slice timing, motion correction, coregistration to individual
anatomical image, normalization to the Montreal Neurological Institute (MNI) template
(Friston et al., 1995), and re-sampling of the functional images into a 3x3x3 mm3 per voxel
resolution. Normalized images were spatial-smoothed using an 8mm FWHM (Full Width at
Half Maximum) Gaussian core. Global scaling was then applied to remove the global signal
before GLM analysis. We note that although the removal of global signal is a debated issue
(Zarahn et al. 1997; Aguirre et a., 1998; Glover et al., 2000; Gavrilescu et al., 2002;
Junghéfer et al., 2005; Macey et al. 2004; Wise et al., 2004; Birn et al. 2006; Lund et al.,
2006; Fox et al., 2009), for our data, global scaling appeared to give more precisely defined
regions of task activation, which was crucial for providing a template to compare with
resting-state data. In the random-effects analysis, for each subject, from the fitted GLM
model, the attend condition and the passive view condition were compared to produce the
contrast image. These contrast images were fed into a GLM that implemented a one-sample
t-test to yield group-level activation regions (t>5.20, FDR corrected, p<0.002) and
deactivation regions (t<-5.20, FDR corrected, p<0.002). Among regions activated by the
attention task, we selected bilateral intraparietal sulcus (IPS) and bilateral frontal eyefield
(FEF) of the dorsal attention network (DAN) (Corbetta and Shulman 2002; Corbetta et al.,
2008), and dorsal anterior cingulate cortex (dACC) and bilateral anterior insular cortex (Al)
of the task control network (TCN) (Dosenbach et al., 2006), to aid and to validate the
resting-state analysis. Voxels with local maximum t-values in these regions were chosen as
the seed voxels. Their coordinates were given in Table 1.

The resting-state time series was preprocessed using similar steps and filtered between 0.01-
0.1Hz with a zero-phase bandpass FIR filter (Fox et al., 2006; Lowe et al. 2000). Because
the regions deactivated by the attention task are rather diffuse, to more precisely define the
default mode network, an ICA analysis was applied where the resting-state time series from
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all subjects were concatenated for each voxel. Twenty five aggregate independent
components (ICs) were identified using the GIFT toolbox (http://icath.sourceforge.net/)
where the number of components was determined by the Minimum Description Length
(MDL) criterion provided by the toolbox. All aggregate ICs were visually inspected, and the
IC representing the default mode network (DMN) was selected (Buckner et al., 2008).
Among the DMN regions, we selected the posterior cingulate cortex (PCC), the medial
prefrontal cortex (mPFC), and the bilateral inferior parietal lobe (IPL) for the resting-state
analysis. The seed voxel in each region was chosen to be the voxel that attained the local
maximum t-value in the group ICA map (t>4.75, FDR corrected, p<0.005). The coordinates
of these voxels were given in Table 2. Importantly, seed voxels identified in this manner
also fell in the task-deactivated regions, and the DMN network identified with ICA
exhibited substantial overlap with the task-deactivation map.

Cross correlation and total interdependence

We compared two connectivity methods: cross correlation (CC) (Fox et al., 2005) and total
interdependence (T1). For a pair of simultaneously acquired time series: (x1,)1), (X2,)5),
(X3.)3),-.-(%.)4), CC was computed according to

CCx,):(Z:;l xyi)/ \/ (Z:;l XiX;) \/ (Z:Z:]yi)’i)- @

From the definition, it is clear that CC only measures the contemporaneous (zero-lag) linear
relationship between x time series and y time series, and does not account for the possible
relations existing across different lags (e.g. between x; and J4+p). In contrast, Tl, as defined
by Gelfand and Yaglom (1959), was computed according to:

1 =
Tly=~ o[ In(1 - Co’()dL. @

where Cy(A) is the coherence between the two random processes, xand y, at frequency 7=
A/2m. For two Gaussian processes this formula was shown to measure the total amount of
mutual information between them. Geweke (1982) further demonstrated that TI captures the
total linear relationship between x and y time series. Numerically, for a given sampling
frequency 7, Eq. (2) can be recast into an implementable form:

N-1
2
mf—TvacﬁmmM;@
S =1

s
where Af=2 N _ 1) is the frequency resolution and Nis the number of desired frequency
points in the interval between 0 and the Nyquist frequency £/2.

In this study CC was calculated directly from data using standard procedures. Tl was
estimated by fitting bivariate autoregressive (AR) models to pairs of BOLD signals (Bressler
and Seth, 2011; Ding et al., 2000; 2006). Coherence was derived from the model
coefficients and integrated over frequency according to Eq. (3). Applying Akaike
information criterion (AIC) and Lagrange multiplier whiteness test (Litkepohl, 2005) the
optimal model order was determined to be 2.

Functional connectivity maps

For a given seed region X, the CC values with respect to the rest of the brain were
normalized by Fisher’s transformation for each subject before group analysis. The Tl values
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were z-transformed for each subject according to, &= (7/-mean({ 7/3))/std({ 7/})), where
T1;is the value of Tl between the seed voxel and the ith voxel, and { 7/} denotes the
collection of such values from all voxels. For both CC and TI, group level one-sample t-test
was applied to yield the X-seeded CC map and the X-seeded Tl map.

Comparison of methods

Several tests were performed to compare the performance of Tl and CC. First, for a pair of
time series: (x1.)4), (X2.)5), (X3,)4),-..(X0.h), we randomly but synchronously shuffled the
time indices to generate a pair of surrogate time series, (Xx1,Vx1), (Xk2,Yk2), (Xias Vi3)s - --
(Xkn.Vun), Where (K1, K2, K3..., kn) were a random permutation of (1,2,3,...). CC would
remain the same for the shuffled time series according to Eq. (1). TI, however, would be
reduced because the shuffling procedure destroyed the temporal relations across lags. By
computing the percentage reduction of T, we can demonstrate intuitively and quantitatively
the degree of total interdependence between the two time series that is not captured by CC.
For this test, time series from voxels in a spherical region of 5 mm in diameter surrounding
the seed voxel of a region of interest were extracted to represent that region of interest.
Between two regions of interest we considered all pairwise combinations of voxels within
two similarly constructed spheres. For each pair of time series, random shuffling was carried
out 50 times, and the 50 values of TI were averaged and compared with the TI from the
original time series to calculate percentage reduction.

Second, the spatial patterns of CC and Tl maps were compared. To assess the functional
significance of these patterns, we further compared them with well-established network
models. Two quantities were used for these comparisons: spatial correlation and spatial
overlap. For a given brain, we generated a binary version of the map by assigning to its
suprathreshold voxels the value of 1 and other voxels the value of 0, and treated the binary
map as a vector in a space whose dimension equals to the total number of voxels. Spatial
correlation between two maps is the normalized dot-product of the two corresponding
vectors (Fox et al., 2006). Spatial overlap was used to compare the similarity between CC
and T1 maps in a given brain region. Letting { V o} denote the collection of the
suprathreshold voxels (t>5.20) in the CC map and { V7;} the collection of suprathreshold
voxels (t>5.20) in the T1 map, and letting [{x}| denote the number of elements in the set {x},
the spatial overlap between the two maps for the region is [{ Vet N { V7 HI{ Vet U { V3
x100% (Fox et al., 2006).

Third, for visualization purposes, brain maps were projected onto a 3-dimensional brain
template from the MRIcroN software package (http://www.cabiatl.com/mricro), as well as
onto a flattened 3-dimensional brain surface template from the CARET software packages
(http://brainmap.wustl.edu/caret.html).

Fourth, receiver operator characteristic (ROC) curve was applied to compare the statistical
sensitivity of CC and TI in deciding the network membership of predefined voxels. The
ROC curve is a graphical plot of true positive rate (TPR) against false positive rate (FPR) of
making a binary decision when the discrimination threshold is varied (Lasko et al., 2005).
For the dACC-seeded map, suprathreshold voxels in Al, or {A/tprest, known from prior
work as part of TCN (Dosenbach et al., 2006; Seeley et al., 2007), were defined as true
positive detections, whereas suprathreshold voxels in FEF, {FEFs¢rest, known from prior
work as part of DAN (Corbetta and Shulman, 2002; Corbetta et a al., 2008), were defined as
false positive detections. TPR and FPR were computed according to 7PR = |{Alttmrest|
{Al}| and FPR = |{ FEFtstprest|[{ FEF}|. Here {Al} and { FEF} were predefined according to
the task activation map (t>5.20, FDR corrected, p<0.002). Similarly, for the rIPS-seeded
maps, { FEF et Were defined as true positive detections, and {A/sresr as false positive
detections. The ROC curve was constructed by plotting 7PR = |{ FEFstnrestI{ FEF} =

Neuroimage. Author manuscript; available in PMC 2013 April 02.


http://www.cabiatl.com/mricro
http://brainmap.wustl.edu/caret.html

1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Wen et al.

Results

Page 6

versus FPR = [{Alsiprest[{Af}| as threshold was varied. Between CC and TI, if the ROC
curve for one measure is more biased toward the TPR axis, this measure is said to perform
better in discriminating between the true and false populations. The diagonal line on the
TPR-FPR plane is equivalent to random guesses.

Fifth, a clustering analysis was applied to maps generated from 7 seed regions, including
dACC, bilateral Als, bilateral FEF, and bilateral IPS. The purpose was to examine whether
TCN and DAN, two functional networks known to be comprised of these regions, could be
correctly segregated by CC and TI. Each map, generated by either CC or TI, was treated as a
vector in a high dimensional feature space (Cohen et al., 2008). The Euclidean distance
between two feature vectors was calculated to determine the similarity of the two spatial
maps. If two regions belonged to the same functional network, the connectivity maps seeded
in these two regions should be more similar (shorter Euclidean distance) than the
connectivity maps generated by two seed regions belonging to different functional networks
(longer Euclidean distance). K-means algorithm (k=2) (MacQueen, 1967) was used to
segregate feature vectors. Similar approach has been applied in previous functional mapping
studies (Fox et al., 2006).

Random permutation and total interdependence

We start by assessing the degree of temporal relationship between two BOLD signals that is
not captured by cross correlation (CC). Resting-state recordings from a typical voxel in the
dorsal anterior cingulate cortex (dACC) and a typical voxel in the right anterior insula (rAl)
were displayed in Figure 1A. Surrogate data, created by randomly but synchronously
shuffling the time indices of both time series, were shown in Figure 1B. Despite the
qualitative difference in appearance between the original data and the shuffled data, CC was
not changed (see Eq. (1)), equaling to r=0.63 for both cases. However, total interdependence
(T1) was reduced from 0.64 (Figure 1A) to 0.51 (Figure 1B), a reduction of (0.51-0.64)/
0.64=—-20%. This percentage change reflected the amount of temporal relationship occurring
across non-zero lags that were unaccounted for by CC. In Figure 2, for the default mode
network (DMN), the percentage change in Tl averaged across subjects was —4% for PCC-
PCC (posterior cingulate cortex), —9% for PCC-mPFC (medial prefrontal cortex), —14% for
PCC-IIPL (left inferior parietal lobe), and —28% for PCC-rIPL (right inferior parietal lobe).
For the task control network (TCN), the percentage change averaged across subjects was
—-6% for dACC-dACC, -19% for dACC-rAl, and —22% for dACC-IAI (left anterior insula).

Default mode network

The connectivity between the seed voxel in PCC and all other voxels in the brain was
evaluated using CC and TI. Figure 3 showed the resultant maps after taking t>5.20 (FDR
corrected, p<0.002) as the threshold for both measures; voxels that were in anti-phase
relationship with the seed voxel were excluded. Both CC and T1 maps resembled the known
spatial structure of the DMN, and the spatial correlation between the two maps was 0.83,
indicating that they were similar. Closer examination of Figure 3 revealed that CC and Tl
maps overlapped differently in different DMN regions. For PCC, mPFC, and IIPL, where
the two maps were more similar, the spatial overlap between the two maps, which was the
ratio between the number of overlapping voxels and the number of voxels in the union of
CC and TI maps (see method), was 77% for PCC, 65% for mPFC, and 35% for IIPL. For
rIPL, where the two maps were least similar, the spatial overlap was 20%. These findings
were in agreement with Figure 2, which showed that for PCC-PCC, PCC-mPFC, and PCC-
IIPL, the temporal relationship that was not captured by CC was relatively small, at —4%,
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—-9%, and —14%, respectively, whereas for PCC-rIPL, the amount of temporal relationship
missed by CC was larger, at —28%.

Task control network

The connectivity between the seed voxel in dACC and all other voxels in the brain was
evaluated using CC and TI. The CC map in Figure 4 (t>5.20, FDR corrected, p<0.002)
included dACC and bilateral Als, the three established regions of TCN (Dosenbach et al.,
2006), as well as right frontal eyefield (rFEF) and right middle frontal gyrus (rMFG), two
areas of the frontal-parietal attention system (Corbetta and Shulman, 2002; Corbetta et al.,
2008). In contrast, using the same threshold, the T1 map included only dACC and bilateral
Als, suggesting that T1 was able to identify TCN more precisely, without having to contend
with the intrusion from areas belonging to other networks. The spatial correlation between
the CC map and the TI map was 0.48, suggesting that relative to DMN where the spatial
correlation between CC and TI maps was 0.83, the two maps for TCN were more discrepant.

The dACC-seeded CC and TI maps were examined further by comparing them with the
task-defined TCN (Figure 5A). By not selecting an a priori threshold, dACC-seeded maps in
the right hemisphere were represented as color-coded t-values (t>0) in Figures 5B and 5C.
For TI (Figure 5C), the three regions of the TCN network were clearly delineated with sharp
and clearly defined boundaries, whereas for CC (Figure 5B), dACC and Al clusters were
more diffuse and the map included other regions not belonging to TCN, including FEF,
MFG, intraparietal sulcus (IPS), and temporal parietal junction (TPJ). Similar effects were
found in the left hemisphere. In Figure 5D, the spatial correlation between the task-defined
TCN and the dACC-seeded T1 and CC maps revealed that over a broad range of threshold
values, the TI map has larger overlap with the task-defined TCN than the CC map. The
number of suprathreshold voxels in Tl and CC maps that did not belong to the task-defined
TCN, plotted as a function of threshold in Figure 5E, demonstrated that the T contained
fewer false-positive detections than CC.

ROC analysis of statistical sensitivity

The statistical sensitivity of Tl and CC was tested using the receiver operator characteristic
(ROC) curve method. Between two measures, the measure whose ROC curve is more biased
toward the true positive rate (TPR) axis is said to perform better in discriminating between a
true and a false population. For dACC-seeded maps, voxels in task-activated Al formed the
true population, and voxels in task-activated FEF formed the false population. In contrast,
for rIPS-seeded maps, true and false populations were reversed. The ROC curves obtained
from T1 for both cases indicated that it exhibited superior statistical sensitivity in correctly
deciding the network membership of predefined voxels.

Clustering analysis

Past work has used resting-state connectivity maps as feature vectors to divide brain regions
into distinct functional networks through clustering analysis (Church et al., 2009; Hlinka et
al., 2011). As shown in Figure 7A, for TI, the dACC-seeded spatial map and bilateral Al-
seeded spatial maps were clustered together to form one network, in agreement with prior
knowledge that these areas belong to TCN (Dosenbach et al., 2006; Seeley et al., 2007).
Bilateral FEF-seeded and bilateral IPS-seeded maps, on the other hand, were clustered
together to form another network, again in agreement with prior knowledge that these areas
belong to DAN (Corbetta and Shulman 2002; Seeley et al., 2007). In contrast, for CC
(Figure 7B), bilateral FEF-seeded, dACC-seeded and bilateral Al-seeded maps were
incorrectly clustered together to form one network, and the bilateral IPS-seeded maps were
clustered together to form another.
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Discussion

Prevailing methods for resting-state functional connectivity analysis do not take into account
the time series structure in resting-state fMRI data. We propose to address this problem by
introducing a method called total interdependence (TI). It was shown that, when combined
with a random permutation approach, TI can reveal the degree of temporal dependence
between BOLD signals that were not captured by the traditional zero-lag cross correlation
(CC) method. Functionally, T1 was able to more precisely identify the three constituent
regions of the task control network, which were further validated by the task-state data
recorded during the same experiment. Finally, we showed that TI performed better in a
clustering analysis of network segregation and exhibited superior statistical sensitivity.

Measures of temporal relationship

Seed-based connectivity analysis can reveal brain regions whose activities co-vary with that
of the seed region. Such covariations indicate shared functionality and are the basis for
defining functional networks (Biswal et al., 1995; Buckner et al., 2008; Fox et al., 2006;
Vincent et al., 2007). Which statistical measure is chosen to perform functional connectivity
mapping, however, could significantly influence the outcome. Zero-lag cross correlation
coefficient, by far the most widely practiced, is a linear method and does not take into
account the temporal dependence beyond the contemporaneously acquired data points. Past
work has pointed out its weaknesses (Garofalo et al., 2009). A recent study by Hlinka et al.
(2011) adopted mutual information to measure both linear and nonlinear portions of the
interaction between fMRI time series. They found that the nonlinear portion is negligible for
the reason that fMRI time series are well-approximated by Gaussian stationary processes.
Recognizing the presence of temporal relationship across different scans, Curtis et al. (2005)
introduced spectral coherence to measure functional connectivity between different brain
regions, disclosing modulated frontal-parietal interactions in a working memory task. To
what extent the temporal relationship across different scans may impact resting-state
connectivity analysis remains to be clarified. This is the main objective of the present study.

Our starting point is the introduction of total interdependence in Eq. (2). Although TI is
defined in terms of spectral coherence, the formula in Eq. (2) allows it to be interpreted as
the total amount of mutual information between two Gaussian stationary processes (Gelfand
and Yaglom 1959). Geweke (1982) further demonstrated that the quantity in Eq. (2) can be
decomposed into 3 components, hamely,

TIx,y:F.v—>y+Fy—>x+nys ?3)

where £y, is the causal influence from x toy, 7,y is the causal influence from y to x,
and £y is the instantaneous causality between x and y, reflecting possible common input
(Brovelli et al., 2004; Ding et al., 2006; Goebel et al., 2003; Granger, 1967; Jiao et al., 2011,
Rajagovindan and Ding, 2011; Roebrock et al., 2005). In light of the fact that these three
components represent the all possible ways two time series can interact with one another, we
thus term the quantity in Eq. (2) total interdependence.

Temporal structures in resting-state fMRI data

A bivariate white noise process, whose power spectra are flat, exhibits only
contemporaneous correlation. CC captures the entire temporal dependence for such
processes. However, neurobiological time series, including BOLD signals, are usually not
white noise processes. Being able to assess the amount of temporal relationship missed by
CC is thus a key step towards understanding its limitations. We proposed to accomplish this
by randomly but synchronously shuffling the time indices of two fMRI time series and
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comparing TI before and after this randomization. The result showed that CC stayed
unchanged while T1 was reduced after temporal order randomization. Because for white
noise there should be no reduction in TI, the percentage of the reduction following the
temporal randomization procedure can thus be viewed as the amount of temporal
relationship not captured by CC.

For the voxel pairs in the default mode network (DMN), the amount of uncaptured temporal
relationship varied from quite substantial (PCC-rIPL at 28%) to less substantial (PCC-PCC
at 4%, PCC-IIPL at 9%, and PCC-mPFC at 14%); see Figure 2. In agreement with this, the
PCC-seeded CC map and TI map were more overlapped in PCC, mPFC, and IIPL, but less
overlapped around rIPL; see Figure 3. Past work has shown that DMN is functionally more
lateralized to the left hemisphere (Buckner et al., 2008, 2009). This means that PCC-rIPL
may not be as strongly coupled as PCC-IIPL. The CC approach, measuring only part of the
total interdependence, may work even less effectively in this case when connectivity is
relatively weak to begin with. For the voxel pairs in the task control network (TCN), similar
patterns of T reduction were observed, as seen in Figure 2.

Physiologically, besides temporal correlations inherent in various rhythmic neural activities,
neural transmission and processing delays (Nishitani and Hari, 2002; Schmolesky et al.
1998; Van Essen et al., 1992) between different nodes of a large-scale network, and
variations in the hemodynamic response functions (Aguirre et al., 1998; Handwerker et al.,
2004; Kruggel and von Cramon, 1999) are other contributing factors to the presence of
temporal dependence beyond the zero-lag. Our observation that uncaptured temporal
dependence by CC is more substantial for voxel pairs between far-separated regions than for
voxel pairs within a region can be seen as a manifestation of these factors. On the other
hand, while Tl is reduced for dACC-dACC and PCC-PCC following random shuffling, the
reduction is much less severe relative to that of interregional T1, indicating that the temporal
relationship between functionally similar voxels in the same brain region is dominated by
contemporaneous dependence.

Functional significance of Tl

As shown in Figure 2, the degree of temporal relationship not captured by CC can vary from
ROI pair to ROI pair, and from network to network, causing differences in spatial maps
established by CC and TI. How to evaluate the functional significance of these differences?
We addressed this by combining task-state data with resting-state data and by focusing on
the three core regions in the task control network. Temporal randomization test revealed that
for dACC-rAl and dACC-IALI, about 20% of the temporal relationship was not captured by
CC. The dACC-seeded CC map included FEF, an area of the dorsal attention network, in
addition to more diffusely defined dACC and bilateral Als, members of the task control
network. In contrast, the dACC-seeded TI map was free from the confounding influences
from other networks and contained sharply-defined dACC and bilateral Als, which were
further shown to be highly consistent with the three core regions defined by our attention
task; see Figures 4 and 5.

Functional imaging studies have firmly established the role of dACC and bilateral Al in
exerting control over behavioral performance at the task level in a variety of experimental
contexts (Botvinick et al., 2004; Dosenbach et al., 2006; Kerns et al., 2004; Nelson et al.,
2010; Sridharan et al., 2008). Resting-state connectivity analysis based on cross correlation,
however, has to date often not been able to unequivocally establish dACC and bilateral Al
as forming a distinct resting-state functional network (Seeley et al., 2007). The consistent
inclusion of areas such as FEF and lateral prefrontal regions in CC maps has led to the
debate of whether these additional areas should be considered part of the task control
network (Church et al., 2009; Dosenbach et al., 2006; Fox et al., 2005; 2006; Mennes et al.,
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2010; MacDonald et al., 2000). Whereas independent component analysis (ICA) can
sometimes identify the three core regions of TCN, it is often the case that the ICA
components containing this network often contain additional regions such as dorsal lateral
prefrontal cortex, anterior frontal lobe, supplementary motor areas, or temporal lobe
(Beckmann et al., 2005; De Luca et al. 2006). There were even reports where dACC is
missing from the ICA component (Damoiseaux et al. 2006; 2008). In light of the foregoing,
TI, with its ability to clearly establish dACC and bilateral Al as forming a distinct functional
network at rest, provides results more in line with task-based imaging studies, and thus
represents an improvement over previous methods.

Analogous to the task control network, the FEF-seeded map constructed with CC (not
shown) always includes dACC and Al regions (Fox et al., 2006), in addition to the other
dorsal attention network areas. This is again inconsistent with the task-based imaging studies
where the different functional roles played by the two networks have been carefully
delineated. The application of connectivity measures such as TI, which takes into
consideration of the overall temporal interdependence between BOLD signals, can help
resolve these inconsistencies. Although by applying a more stringent threshold CC can
generate maps that better resemble the TCN activation map the match remains not as precise
as the TI map. Figures 5D and 5E address this point. Over a broad range of threshold values
the spatial correlation between the CC map and the task-defined TCN is lower than that
between the TI map and the task-defined TCN. As the threshold increases, the regions
included in the CC map begin to shrink rapidly, whereas the regions included in the TI map
stay relatively constant. The ROC curve analysis and the clustering analysis (Figures 6 and
7) further demonstrate TI as exhibiting better statistical characteristics than CC.

Estimation of Tl

Tl is defined in terms of spectral coherence (Eq. (2)). There are two ways to compute
spectral coherence from time series data: nonparametric Fourier-based methods and
parametric AR-based methods. For long and relatively noise-free time series, Fourier based
spectral analysis and AR-based spectral analysis produce similar results (Dhamala et al.,
2008). Functional fMRI data, whether recorded during resting-state or during task-state, are
often short and noisy. Nonparametric spectral analysis is not optimal for this type of data.
Parametric spectral analysis based on AR model fitting is known to be more robust and can
provide smooth and accurate spectral estimates (Ding et al., 2000; Jiao et al., 2011; Wen et
al., in press). This is the reason behind our adoption of the parametric AR method to assess
the performance of TI. It should be note that filtering can impact the value of TI. In this
study resting-state fMRI data were band-pass filtered between 0.01-0.1 Hz (Lowe et al.,
2000; Fox et al., 2005, 2006). This commonly applied filter allowed us to compare our
results with the results of other resting-state studies.
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Figure 1.

Original and randomly shuffled BOLD signals. A: Resting-state fMRI data from dorsal
anterior cingulate cortex (dAACC) and right anterior insula cortex (rAl). Bandpass filtering
between 0.01 and 0.1 Hz was applied. B: Surrogate data where the time indices for the two
BOLD signals in Figure 1A were randomly but synchronously shuffled. Cross correlation
(CC) remained the same for both Figure 1A and 1B. The reduction in total interdependence
(TI) was indicative of the amount of temporal relationship between the two signals in Figure
1A not captured by CC.
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Figure2.

Reduction in total interdependence (TI) after temporal randomization. dACC and posterior
cingulate cortex (PCC) were chosen as seed regions for the task control network (TCN) and
the default mode network (DMN), respectively. mPFC: medial prefrontal cortex; IIPL: left
inferior parietal lobe; rIPL: right inferior parietal lobe; rAl: right anterior insular; 1Al left
anterior insular.
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PCC seeded

Figure 3.

PCC-seeded connectivity maps. Both the CC map (red) and the TI (green) map contained
the major nodes in the default note network (DMN) (t=5.20, p<0.002, FDR corrected for
both CC and TI). The overlap (yellow) between the two maps was higher in mPFC, 1IPL,
and PCC than in rIPL. rIPL and lIPL regions were magnified to facilitate visual comparison.
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Figure4.

dACC-seeded connectivity maps. Although both the CC map (red) and the TI map (green)
contained dACC, rAl, and IAl, the three nodes in TCN (t=5.20, p<0.002, FDR corrected for
both CC and TI), the CC map also contained regions beyond TCN, including frontal eyefield
(FEF), middle frontal gyrus (MFG), and middle cingulate gyrus (MCG).
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Comparison between task-state and resting-state data. A: Regions activated by the attention
task were marked by circles. TCN was highlighted. B: dACC-seeded CC map from resting-
state data. C: dACC-seeded TI map from resting-state data. Group level t-values were color-
coded and projected on a flattened brain surface template of the right hemisphere. The CC
map (B) was more diffuse and contained many regions not belonging to TCN. In contrast,
the TI map (C) was more localized and matched more precisely the TCN activated by the
attention task. D: Spatial correlation between the task-activated TCN and suprathreshold
resting-state CC and T1 maps. E: Number of voxels in suprathreshold T1 and CC maps that
do not belong to the task-activated TCN. IPS: intraparietal sulcus; TPJ: temporoparietal
junction.
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Figure6.

ROC analysis of statistical sensitivity. A: True positive rate (TPR) versus false positive rate
(FPR) as function of discrimination threshold when deciding whether a predefined voxel
belonged to TCN in the dACC-seeded resting-state maps. Task-activated voxels in rAl and
rFEF were defined as the true and false populations respectively. B: TPR versus FPR when
deciding whether a predefined voxel belonged to DAN in the rIPS-seeded resting-state
maps. Task-activated voxels in rFEF and rAl were defined as the true and false populations
respectively. In both cases Tl achieved superior statistical sensitivity over CC.
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Figure7.

K-means clustering analysis. A: Tl maps, treated as feature vectors, allowed the correct
grouping of brain regions into the two known function networks: TCN (orange) and DAN
(blue). B: CC maps, treated as feature vectors, made the incorrect assignment of rFEF and
IFEF to TCN.
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