Skip to main content
. Author manuscript; available in PMC: 2012 Dec 6.
Published in final edited form as: Biometrics. 2012 Feb 7;68(2):521–531. doi: 10.1111/j.1541-0420.2011.01708.x

Table 1.

Simulation results of estimating the cdf under stable disease incidence (θ = 0). EMP represents the empirical distribution estimate, PH represents the proposed semiparametric estimator based on proportional hazards model, AFT represents the proposed estimator based on accelerated failure time model. Bias represents the empirical bias, SSE represents the sampling standard error, and CI.L and CI.U represent the averaged lower and upper limits of 95% confidence intervals, respectively.

Estimator\z 0.2 0.4 0.6 0.8
(a) n = 200

EMP Bias −0.036 −0.054 −0.055 −0.036
PH Bias 0.002 0.000 0.000 −0.002
SSE 0.076 0.078 0.065 0.043
CI.L 0.103 0.271 0.477 0.708
CI.U 0.358 0.565 0.732 0.878
AFT Bias 0.003 0.006 0.005 0.005
SSE 0.033 0.037 0.037 0.028
CI.L 0.141 0.329 0.530 0.747
CI.U 0.268 0.482 0.677 0.857
(b) n = 400

EMP Bias −0.035 −0.054 −0.054 −0.036
PH Bias 0.001 0.001 0.001 0.001
SSE 0.044 0.051 0.046 0.032
CI.L 0.130 0.308 0.508 0.729
CI.U 0.299 0.509 0.692 0.859
AFT Bias 0.001 0.002 0.002 0.002
SSE 0.022 0.027 0.026 0.020
CI.L 0.159 0.349 0.549 0.760
CI.U 0.245 0.455 0.653 0.841