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Abstract
Gastrin is the main hormone responsible for the stimu-
lation of gastric acid secretion; in addition, gastrin 
and its derivatives exert proliferative and antiapop-
totic effects on several cell types. Gastrin synthesis 
and secretion are increased in certain situations, for 
example, when proton pump inhibitors are used. The 
impact of sustained hypergastrinemia is currently be-
ing investigated. In vitro  experiments and animal 
models have shown that prolonged hypergastrinemia 
may be related with higher cancer rates; although, 
this relationship is less clear in human beings. Higher 
gastrin levels have been shown to cause hyperplasia of 
several cell types; yet, the risk for developing cancer 
seems to be the same in normo- and hypergastrinemic 
patients. Some tumors also produce their own gastrin, 
which can act in an autocrine manner promoting tumor 

growth. Certain cancers are extremely dependent on 
gastrin to proliferate. Initial research focused only on 
the effects of amidated gastrins, but there has been an 
interest in intermediates of gastrin in the last few de-
cades. These intermediates aren’t biologically inactive; 
in fact, they may exert greater effects on proliferation 
and apoptosis than the completely processed forms. 
In certain gastrin overproduction states, they are the 
most abundant gastrin peptides secreted. The purpose 
of this review is to examine the gastrin biosynthesis 
process and to summarize the results from different 
studies evaluating the production, levels, and effects of 
the main forms of gastrin in different overexpression 
states and their possible relationship with Barrett’s and 
colorectal carcinogenesis. 
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INTRODUCTION
The polypeptide hormone gastrin was discovered in 
1905 and described as a major stimulant of  acid secre-
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tion from the stomach antral mucosa. In the last few de-
cades, several studies have reported on the role of  gas-
trin in stimulating cell division and inhibiting apoptosis, 
suggesting that gastrin and its derivatives might promote 
carcinogenesis[1-5]. Gastrin and cholecystokinin (CCK) are 
members of  a family of  neuroendocrine peptides and 
are both physiological ligands of  the CCK-B receptor 
(CCKBR).

Gastrin is secreted by antral G cells and interacts with 
the CCKBR on enterochromaffin-like (ECL) and parietal 
cells to induce gastric acid secretion.

Gastrin release from G cells is stimulated by the pres-
ence of  food - mainly peptides[6] in the stomach, vagal 
release of  gastrin releasing peptide, and an increase in 
stomach pH, as seen in achlorhydria[7]. Helicobacter pylori 
(H. pylori) infection is also known to cause hypergastrin-
emia, increasing mainly plasma levels of  its amidated 
form gastrin-17. After eradication of  the bacteria, plas-
ma gastrin levels decrease to normal[8-10]. Gastrin release 
is inhibited by secretion of  gastric acid, and this serves 
as a negative feedback control that prevents excess acid 
secretion. Low pH values in the stomach inhibit gastrin 
release by G cells, stimulating the secretion of  soma-
tostatin by antral D cells[11].   

Gastrin is expressed in a variety of  tissues under both 
normal and pathological conditions. Its main site of  pro-
duction are G cells from the antral mucosa, but it is also 
synthesized at lower levels in duodenal mucosa, fetal and 
neonatal pancreases, in pituitary corticotrophs, melano-
trophs, and neurons, in spermatogenic cells, and in a vari-
ety of  cancers.  

The main products of  the gastrin gene in the antrum 
are its amidated forms gastrin 17 and gastrin 34 (G17-
NH2 and G34-NH2). 

GASTRIN BIOSYNTHESIS
As with other peptide hormones, gastrin is synthesized 
initially as a large precursor molecule, which undergoes 
extensive post-translational modification prior to secre-
tion. The gastrin gene spans 4.1 kb and is located on 
chromosome 17 (17q21). It produces a single mRNA 
(0.7 kb), which encodes the 101 amino acid precursor, 
preprogastrin[12]. Preprogastrin is translated at the endo-
plasmic reticulum, where the signal peptide is removed 
by signal peptidase, giving rise to progastrin (80 amino 
acids)[13]. Progastrin (PG) then progresses through the 
Golgi complex. 

If  the cell has a regulated secretory pathway, as with 
differentiated endocrine cells such as G-cells in the an-
trum, progastrin is fully processed and transported by se-
cretory granules. It is then released by exocytosis, which 
is induced by secretagogues after G-cell stimulation. This 
is the secretory pathway of  most of  the amidated prod-
ucts, because the enzymes and conditions necessary for 
the processing of  the immature gastrin forms are found 
inside secretory granules from the Golgi stack.

Progastrin is cleaved at paired amino acids by endo-

proteases belonging to the prohormone convertases (PC) 
family. PC1/3 cleavages at the dibasic sites arginine36-
arginine37 and arginine73-arginine74 lead to the forma-
tion of  an intermediate, which undergoes processing by 
carboxypeptidase E and yields glycine-extended gastrins 
(G-Gly) and the C-terminal flanking peptide (CTFP). 
The peptidylglycine α-amidating monooxygenase con-
verts G34-gly to its amidated form and PC2 cleaves at 
lysine53-lysine54, producing bioactive gastrins of  vary-
ing sizes (e.g., gastrin-34 and gastrin-17)[13,14] (Figure 1) .

Preprogastrin derivates can also exit the cell via an-
other pathway, known as the constitutive pathway. Mol-
ecules exiting cells via this pathway are transported in 
secretory vesicles that take their contents from the Golgi 
apparatus and continuously fuse with the plasma mem-
brane. Intermediate products of  gastrin processing are 
secreted mainly by this pathway since peptides exiting 
this pathway do not undergo extensive posttranslational 
processing. 

Processing and final secretion of  progastrin products 
differ markedly depending on the expression location. In 
healthy adults, the main gastrin production site is antro-
duodenal G-cells, so the proportion of  circulating gas-
trins depends largely on the products exiting these cells. 
In G-cells, the regulated secretory pathway predomi-
nates; thus, these cells mostly secrete a mixture of  ami-
dated products (95%), including G17-NH2 (85%-90%), 
G34-NH2 (5%-10%), and a mix of  gastrin-14, gastrin-52, 
gastrin-71, and short amidated C-terminal fragments[15]. 
The remaining 5% of  the secreted products correspond 
to non-amidated processing intermediates (mainly pro-
gastrin and G-Gly).

Although the majority of  gastrins secreted by G-cells 
correspond to the amidated G17 form, peripheral blood 
contains almost equal amounts of  G17-NH2 and G34-
NH2 because the metabolic clearance of  large gastrins is 
slower than for smaller forms of  the peptide[16-18].

On the other hand, the proportions of  the gastrin 
intermediates may vary in certain gastrin overexpression 
states, such as when proton pump inhibitors (PPIs) are 
used or in the presence of  gastrin-producing tumors. Most 
of  these tumors are not able to completely process gastrin, 
resulting in less conversion to the mature peptide[19-22].

The causes of  incomplete gastrin processing during 
hormone overexpression are still unclear; although, it 
has been proposed that it might be caused by saturation 
of  the enzymes that catalyze progastrin modifications, 
leading to an inability to process increasing amounts of  
the gene product. 

Another possible reason is the lack of  a well-devel-
oped regulated pathway of  secretion, as in some tumor 
cells. In that case, progastrin exits the cell via the consti-
tutive pathway directly from the Golgi terminal. 

GASTRIN RECEPTORS
The actions of  amidated gastrins and CCK peptides are 
mediated by two different receptors: CCKA and CCKB 

6561 December 7, 2012|Volume 18|Issue 45|WJG|www.wjgnet.com



receptors, which differ pharmacologically by their af-
finity for gastrin (low for CCKA receptors and high for 
CCKB receptors)[23,24]. 

Gastrin and CCK peptides share a common C-termi-
nal sequence, which has been well preserved during evo-
lution. This conserved C-terminal active site is related to 
most of  the known effects of  these peptides, especially 
the tetrapeptide Trp-Met-Asp-Phe-NH2. The specificity 
of  the receptor binding and biological potency depends 
on N-terminal extensions of  this common tetrapeptide.

Sulfation of  the tyrosyl residue (in position six in gas-
trin peptides, counted from the C-terminal position, and 
in position seven in CCK peptides) determines the speci-
ficity for CCKA or CCKB receptors. The residue is totally 
sulphated in CCK peptides, so they are able to bind either 
CCKA or CCKB receptors with high affinity. It is partially 
sulphated in gastrin peptides, so they can only bind CCKB 
receptors. 

Gastrin and CCK display similar affinities for the CCKB 
receptor; however, the gastrin concentration in plasma is 
10- to 20-fold higher than CCK; therefore, CCKB recep-
tors in the periphery are, in physiological terms, mainly 
receptors for gastrin.

The CCKB receptor has seven transmembrane domains 
and belongs to the superfamily of  G-protein coupled re-
ceptors. CCKBR is abundantly expressed on enterochro-
maffin-like cells in the stomach, in the central nervous 
system and in some tumors, principally in the gastrointes-
tinal tract. 

Gastrin, at physiological levels, is the main mediator 
of  meal-stimulated acid secretion. Once secreted by the 
antral G cells, gastrin is transported to the oxyntic mu-
cosa of  the stomach, where it interacts with the CCKBR 
on ECL cells, stimulating the release of  histamine. Both 
gastrin and histamine then interact with the parietal cells, 
through the gastrin CCKB and histamine H2 receptors 
to induce gastric acid secretion[25].

Only amidated gastrins exert their effects through CCK-

BR activation, while intermediate precursors such as progas-
trin or G-Gly interact with other receptors[3,26-28].

Most PG effects are mediated via the monomeric 36 
kDa form of  the annexin Ⅱ receptor (ANXⅡ)[29,30]. ANX
Ⅱ is a multi-functional protein that binds acid phospho-
lipids and actin with similar affinity. It’s expressed abun-
dantly in rejuvenating cells, but not in quiescent cells; in 
addition, its expression is increased in many human cancer 
cells, including colon and pancreatic, and it’s expressed 
in normal intestinal epithelial cells[27,28]. ANXⅡ is absent 
in the brain and liver, which supports that it is only ex-
pressed in proliferating cells. 

The majority of  effects of  G-Gly and CTFP appear 
to be mediated by a cellular receptor distinct from CCK-
BR[1,24,31-33]; yet, to date, the receptor or receptors remain 
unknown. Gly-G appears to be able to bind ANXⅡ, but 
it is still unclear whether its action is mediated via this 
interaction[1].  

PPIS AND GASTRIN
PPIs are the most potent and widely used medications 
to reduce gastric acid secretion. These drugs are consid-
ered safe; although, some long-term side-effects have 
been identified, for example, all PPIs induce an increase 
in plasma gastrin levels. The reason for this increase re-
mains unclear, but it may be due to the reduced activity 
in antral D-cells (shown by a three-fold decrease in antral 
somatostatin mRNA) in response to PPI-induced achlor-
hydria[7]. There is also an increase in plasma gastrin levels 
with other antacids such as H2 receptor antagonists, but 
only after long-term use[34]. 

PPIs may induce a 2- to 4-fold increase in plasma gas-
trin[35,36] (mainly G17-NH2 and G34-NH2) with short-term 
treatment, whereas, in long-term therapy, some patients 
will develop marked hypergastrinemia (often exceeding 
400 pmol/L). The antral mucosa levels of  amidated gas-
trins and G-Gly are not affected by PPI treatment, but 
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Figure 1  Main steps in preprogastrin 
processing in antral G cells. Arg: Argi-
nine; Lys: Lysine; CTFP: C-terminal flank-
ing peptide; PC: Prohormone convertases; 
PAM: Peptidyl-glycine α-amidating mono-
oxygenase.
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a 6-fold increase in the antral progastrin concentration 
was observed after PPI therapy[37-39]. However, the gastrin 
levels in patients on PPIs are extremely variable, and not 
every subject will have a markedly increased plasma gas-
trin level after acid suppressive therapy. 

PPIs rapidly stimulate antral gastrin secretion, but the 
overexpression of  the gastrin gene, which is observed 
as increased gastrin mRNA concentrations in G-cells, is 
only seen after 24 h of  achlorhydria[7]. 

To date, circulating levels of  gastrin precursors have 
not been evaluated in response to PPI intake. 

GASTRIN AND CARCINOGENESIS
As mentioned above, gastrin is a major stimulant of  acid 
secretion in the stomach mucosa, but it also has effects 
in different tissues promoting cell division and inhibiting 
apoptosis. There is now growing evidence suggesting that 
elevated gastrin levels could favor the development of  cer-
tain neoplasias, especially in the gastrointestinal tract[2,40-43]. 
To date, most of  those studies have been focused on the 
possible relationship between elevated gastrin levels and 
colorectal and gastric cancers, but there is evidence that 
suggests a possible relationship with different tumors, 
even outside the gastrointestinal (GI) tract[19,20,22,44,45]. 

CCKBR has been observed in several tumor types, 
but expression of  the receptor in human gastrointestinal 
cancers is controversial. Although some groups found 
CCKBR expression in many GI neoplasias[3,46], others 
found expression of  the receptor in GI tumors only oc-
casionally[23,29] (Table 1).

It is well established that some tumors produce their 
own gastrin and that gastrin can promote tumor growth 
in an autocrine manner[22,44,46-48], but there were conflict-
ing findings from studies evaluating gastrin expression 

in tumors. This may be because initial attempts focused 
only on the amidated forms of  gastrin. We now know 
that certain tumors, such as colorectal carcinoma (CRC), 
produce high levels of  gastrin intermediates while the 
amidated forms are not affected[20,22]. Gastrin has been 
found in CRC extracts and also in adenomatous pol-
yps[49], but not in healthy colonic mucosa. A similar pat-
tern was found with esophageal adenocarcinoma and 
Barrett’s esophagus (BE) (a premalignant condition that 
is a major risk factor for esophageal adenocarcinoma), 
where gastrin and its receptor were expressed at higher 
levels than in normal epithelium[4,50]. 

These observations suggest that activation of  gas-
trin expression may be an early event in the adenoma-
carcinoma or the metaplasia-carcinoma progression; thus, 
gastrin could favor neoplastic transformation. 

Studies in animal models have demonstrated that a 
prolonged hypergastrinemic situation, such as in deep 
acid inhibition, is related to higher CRC rates and with 
gastric atrophy, metaplasia, gastric adenocarcinoma and 
carcinoid tumors[34,41,43,51] (Table 2). In vitro studies dem-
onstrated that gastrin and its derivates increase the rate 
of  cell proliferation and migration and reduce apoptosis, 
which are major steps in tumor development[1,3,28,44,52]. Al-
though both in vitro and in vivo animal model studies seem 
to demonstrate an association between a rise in gastrin 
levels and a higher risk of  cancer development this is still 
unclear in human beings. While some epidemiologic stud-
ies showed an association between, elevated gastrin levels 
after use of  PPIs and stomach ECL and argyrophil cell 
hyperplasia, but couldn´t demonstrate that hypergastrin-
emia itself  increases gastric adenocarcinoma rates[35,53-55], 
others found higher cancer rates (gastric and gastrointes-
tinal overall) in hypergastrinemic patients[56,57] (Table 3).

Pernicious anemia could represent a human model 
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  Ref. Specimen CCKBR expression G17 expression G17 effects

  Haigh et al[4] Esophageal biopsies from healthy, 
esophagitis, BE and EAC patients;
Ex vivo culture of BE cells;
OE33(E)GR cells

CCKBR is expressed in 3/9 of 
healthy, 5/7 esophagitis, 10/10 
BE and 7/12 EAC samples

Not assessed G17 stimulates cell prolif-
eration through CCKBR

  Konturek et al[46] Tumor and plasma samples from CRC 
patients;
Plasma and normal colonic mucosa 
biopsies from healthy subjects

All the tumor samples showed 
CCKBR expression

CRC patients showed normal G17 
plasma levels, and higher progas-
trin levels than healthy subjects;
Celecoxib diminished plasma 
gastrin and progastrin levels

Not assessed

  Smith et al[49] Healthy colonic mucosa and colonic 
polyps biopsies

Normal colonic mucosa didn’t 
show CCKBR expression;
Most of the polyps analyzed 
showed CCKBR expression

Most of the polyps showed higher 
expression of the gastrin precursors 
than amidated forms

Not assessed

  Harris et al[70] Healthy esophagus and BE biopsies;
OE19 and OE33 cell culture;
OE21 cell culture

All three esophageal cancer cell 
lines express CCKBR;
BE biopsies show higher 
CCKBR expression levels than 
normal esophageal biopsies

BE samples express higher gastrin 
levels than healthy esophageal 
biopsies

G17 increases activa-
tion of the antiapoptotic 
factor PKB/Akt, through 
CCKBR

Table 1  Studies assessing expression levels and/or biological effects of gastrin through its interaction with cholecystokinin-B receptor

BE: Barrett’s esophagus; EAC: Esophageal adenocarcinoma; CCKBR: Cholecystokinin-B receptor; G17: Amidated gastrin-17; CRC: Colorectal carcinoma; 
OE19 and OE33 cells: Esophageal adenocarcinoma cell lines; OE21 cells: Esophageal squamous carcinoma cell line; OE33(E)GR cells: Esophageal adenocar-
cinoma cells permanently transfected with the human CCKB receptor.

Chueca E et al . Gastrins in Barrett's and colorectal carcinogenesis



to assess effects of  long-term hypergastrinemia, since it 
causes a long-term hypergastrinemia as a consequence 
of  sustained achlorhydria[57]. Another human model of  
hypergastrinemia is Zollinger-Ellison syndrome. In this 
case, patients show higher rates of  colonic prolifera-
tion[58], but not a higher risk for developing CRC[59]. 

Another study found a higher CRC incidence rate with 
higher serum gastrin levels[60]; while, one study found no 
association between PPI use and the risk of  CRC[61].  

It has been suggested that the discrepancy between re-
sults observed in human studies could be explained by the 
variability of  hypergastrinemia after use of  PPIs among 
patients[42], by differences in the duration of  the follow-up 
period -since higher cancer rates have only been observed 
in long-time hypergastrinemic patients-, and by differ-
ences in the forms of  gastrin being studied, given that 
most of  the studies to date have been focused only on the 
amidated forms[22,62]. 

GASTRIN, BE AND ESOPHAGEAL 
ADENOCARCINOMA
Gastroesophageal reflux disease (GERD) is a chronic 
state in which part of  the acidic stomach contents backs 
up into the esophagus and may cause inflammation of  its 
epithelium. In most patients, this damaged epithelium is 

replaced by new squamous epithelium; however, in some 
subjects, this epithelium is substituted, through a meta-
plastic process, by an intestinal-type columnar epithelium. 
This condition is called BE, a premalignant state respon-
sible for most esophageal adenocarcinoma cases (EAC). 
Patients with BE have a 30- to 40-fold higher risk for de-
veloping EAC than the general population[63]. 

In the last few decades, the incidence rates for this 
tumor have increased significantly[64], more than for any 
other type of  cancer[65] in developed countries.  

BE may represent a good model to study the involve-
ment of  hypergastrinemia in carcinogenesis, because 
frequently high levels of  gastrin can be observed in BE 
patients. PPIs are the main pharmacological treatment 
for BE and the sequence of  neoplastic transformation is 
well known. 

In the pathological state caused by the damaging ef-
fects of  acid contents from the stomach in the esopha-
gus, it seems that an increase in gastric reflux pH would 
have a potential benefit for the patient. However, the 
benefits of  these drugs in the management of  GERD 
and BE are not clear. Normalization of  intraesophageal 
pH clearly relieves gastroesophageal reflux symptoms[37], 
favoring differentiation and decreasing cell prolifera-
tion[66]; yet, there has been an increasing incidence of  
EAC in BE patients in the last few decades, despite gen-
eralized use of  PPIs[67-69]. Studies addressing the potential 
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  Ref. Animal model Alteration on gastrin peptides levels Hypergastrinemia effects

  Cobb et al[2] Fabp-wt mice;
Fabp-mt mice

Fabp-wt mice express human PG in intestinal 
mucosa and Fabp-mt mice express a mutated form 
of human PG;
Both mice show PG expression at similar levels as 
seen in hypergastrinemia

Mice overexpressing human PG (either the wild-
type and the mutated form) are more likely to 
develop colonic tumors in response to AOM

  Wang et al[5] INS-GAS mice;
hGAS mice

INS-GAS mice overexpress human amidated gas-
trin in the pancreatic islands;
hGAS mice overexpress human PG in the liver

Both forms of gastrin showed similar proliferative 
effects on normal colonic mucosa

  Havu et al[34] Sprague-Dawley rats treated 
with ranitidine (2g/kg per day)

Rats showed a 3-fold increase in plasma gastrin 
levels

19/100 rats developed ECL carcinoids while no 
carcinoma was found in control animals

  Watson et al[43] APCMin+/- mice (model of 
multiple intestinal neoplasia) 
treated with omeprazole (75 
mg/kg in a single oral dose)

Omeprazole increased only amidated gastrin 
plasma levels

PPI-induced hypergastrinemia reduced mice sur-
vival;
Hypergastrinemia increased colonic adenomas 
proliferation;
Hypergastrinemia did not increase the incidence of 
intestinal tumors

  Ferrand et al[90] MTI/G-Gly mice;
hGAS mice

MTI/G-Gly mice overexpress human G-Gly 
throughout the gastrointestinal tract;
hGAS mice overexpress human PG in the liver

Both G-Gly and PG strongly up-regulate Src, JAK2 
and STAT3 activation;
PG produced significantly great ERK and Akt path-
ways activation and TGF-α overexpression

  Koh et al[95] MTI/G-Gly mice MTI/G-Gly mice overexpress human G-Gly 
throughout the gastrointestinal tract

Goblet cells hyperplasia and colonic hyperprolif-
eration;
Hypergastrinemia did not increase the incidence of 
GI tumors, but 3/10 mice developed bronchoalveo-
lar carcinoma

  Ottewell et al[98] G-/-hg+/+ mice;
G-/-hg-/- mice

G-/-hg+/+ mice express human PG and no murine 
gastrin;
G-/-hg-/- mice do not express any forms of gastrin

PG increased colonic proliferation;
PG exerts mitotic effects on colonic epithelia but 
does not seem to affect the small intestine epithelia

Table 2  Experimental studies in animal models exploring the impact of increased levels of gastrin peptides

PG: Progastrin; AOM: Azoxymethane; ECL: Enterochromaffin-like cells; PPI: Proton pump inhibitors; G-Gly: Glycine-extended gastrins; JAK2: Janus-acti-
vated kinase 2; STAT3: Signal transducer and activator of transcription 3; ERK: Extracellular-signal regulated kinase; Akt: Protein kinase B; TGF-α: Trans-
forming growth factor-alpha; GI: Gastrointestinal.

Chueca E et al . Gastrins in Barrett's and colorectal carcinogenesis
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role of  different molecular forms of  gastrin in Barrett’s 
carcinogenesis are discussed below. 

AMIDATED GASTRINS
Amidated gastrins are, in healthy subjects, the final and 
most abundant product in the gastrin biosynthesis path-
way. Through the interaction with their receptor, CCK-
BR, amidated gastrins might be involved in the neoplastic 
progression of  BE.

Amidated gastrins and CCKB receptor expression in BE
Barrett’s mucosa expresses its own gastrin. Patients with 
BE show higher levels of  amidated gastrins than healthy 
subjects[44], which might be a consequence of  both PPI 
intake and autocrine gastrin production by Barrett’s mu-
cosa[36,50]. This autocrine gastrin production diminishes 
with the progression to dysplasia and EAC[44], and there 
is not a significant difference between serum gastrin 
levels in GERD and BE patients[42]. The expression of  
its receptor increases in response to inflammation. In 
almost all BE biopsy samples studied, CCKBR mRNA 
and protein are detected; while, they are only occasion-
ally present in healthy tissue and their presence in EAC 
is unclear[4,36,50,70]. In addition, expression of  the receptor 
increases cell proliferation[26,31,44]; therefore, CCKBR may 

have an important role in GERD ulcer healing[36,44]. 

Biological effects of amidated gastrins
In vitro studies determined that amidated gastrins may 
promote cell proliferation and migration of  BE and EAC 
cells, and those effects are mediated through the interac-
tion with CCKBR[4,26,36,44]. 

The effects of  amidated gastrins are mediated, at least 
partially, by the induction of  cyclooxygenases (COX)-2 
expression and prostaglandins production[3]. COX are 
membrane proteins that catalyze the limiting step in the 
prostaglandin synthesis pathway. Prostaglandins are mol-
ecules that may promote carcinogenesis through stimula-
tion of  cell division, induction of  angiogenesis, and inhi-
bition of  apoptosis[71,72]. As a consequence of  the interac-
tion between amidated gastrins and CCKBR, COX-2 is 
overexpressed in Barrett’s mucosa, leading to an increase 
in prostaglandins synthesis and cell proliferation[44,73]. 

COX-2 overexpression is related to the development 
of  other GI cancers, and the use of  COX-2 inhibitors, 
such as non-steroidal anti-inflammatory drugs is associ-
ated with a reduction in the frequency and mortality of  
those tumors[74-78]. In vitro and in vivo studies have shown 
that COX-2 inhibitors decrease cell proliferation in BE[79] 
and reduce the risk of  developing EAC[74], suggesting that 
COX-2 might be a key factor in Barrett’s carcinogenesis. 

  Ref. Population studied Treatment, dose and 
duration Effects on gastrin levels Physiopathological effects

  Brunner et al[35] 143 patients with 
duodenal or 
stomach ulcer and 
GERD

Omeprazole 40 mg/d 
1-5 yr

Plasma gastrin levels increased 4-fold after 
4 mo of therapy

Hyperplasia of argyrophil cells from 
oxyntic mucosa;
No increase in dysplasia or neoplasia 
rates was observed

  Klinkenberg-Knol et al[37] 91 GERD patients Omeprazole 20-40 
mg/d 5 yr

Median serum gastrin levels increased 
from 60 to 162 ng/L and reached a plateau 
during maintenance treatment

Esophagitis symptoms ameliorated;
Gastric hyperplasia rates increased 
from 2.5% at the beginning of the study 
to 20% at last biopsy

  Nemeth et al[39] 10 patients with 
oesophagitis

Omeprazole 20 mg/d 
6-8 wk

Plasma levels of amidated gastrins in-
creased from 18 to 48 pmol/L;
Antral levels of progastrin increased 6-fold 
while amidated gastrins and G-Gly remain 
unaltered

Not assessed

  Wang et al[42] 82 BE patients;
13 GERD patients

All patients were on 
PPI therapy, once or 
twice daily during a 
median time of 74 mo

The median serum gastrin levels (40 
pmol/L) was not related to the degree of 
dysplasia in BE

Higher serum gastrin levels were as-
sociated with high grade dysplasia and 
adenocarcinoma

  Creutzfeldt et al[53] 74 patients with 
esophagitis or 
peptic ulcer

Omeprazole 40 mg/d 
1-5 yr

Plasma gastrin levels increased 4-fold in 
23% of patients

Patients with higher serum gastrin lev-
els developed hyperplasia of the gastric 
argyrophil cells;
This hyperplasia may not necessary be 
related to high gastrin levels

  Kuipers et al[54] 177 GERD patients 105 patients treated 
with omeprazole 20-40 
mg/d 5 yr;
72 patients treated with 
fundoplication

Not assessed Patients treated with omeprazole and 
infected with H.pylori infection are at 
increased risk of atrophic gastritis

  Lamberts et al[55] 74 peptic ulcer 
patients

Omeprazole 48 mo Median gastrin levels moderately in-
creased after 3 mo of therapy and reached 
a plateau during maintenance treatment

Significant argyrophil cell hyperplasia

Table 3  Clinico-epidemiologic studies exploring the effects of proton pump inhibitors use in human beings

GERD: Gastroesophageal reflux disease; G-Gly: Glycine-extended gastrins; BE: Barrett’s esophagus; PPI: Proton pump inhibitors.
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COX-2 overexpression seems to be an early event in the 
neoplastic transformation of  BE. Despite the great vari-
ability observed between subjects, COX-2 levels in biopsy 
samples are always higher in BE mucosa than in normal 
esophageal epithelium[44,50,73,80]. 

Thus, amidated gastrins might have a role in the neo-
plastic progression of  BE rather than in its initial devel-
opment since BE cells express higher levels of  gastrin, 
CCKB receptor and also COX-2 than EAC[44] and nor-
mal esophageal cells.

GASTRIN SYNTHESIS INTERMEDIATES: 
PROGASTRIN, G-GLY AND CTFP
The biological activity of  gastrin synthesis intermediates 
was unknown until 1994[81]. Experiments carried out to 
determine their ability to stimulate gastric acid secretion 
showed negligible or less potency than fully processed 
amidated forms[82,83]; therefore, those investigations con-
cluded the intermediates were inactive peptides and fo-
cused mainly on the known bioactive forms. However, in 
the last few decades, numerous studies have demonstrat-
ed that these molecules are far from inactive precursors. 
Gastrin intermediates are secreted in higher proportions 
than their amidated forms in certain gastrin overexpres-
sion states[39,84]; thus, knowledge of  their recently known 
biological effects has led to several studies on these 
intermediates in the last few decades. To date, most of  
these studies have been focused on CRC; although the 
relative abundance of  these precursors in other tissues 
supports that it is necessary to extend research to other 
organs as well.

PROGASTRIN
PG is the first gastrin synthesis intermediate after signal 
peptide cleavage. A study demonstrated that PG levels in 
antral biopsies from patients undergoing PPI treatment 
were up to 6-fold higher than in untreated patients[39]; 
although, there are currently no studies showing PG 
plasma levels in response to PPI administration

Progastrin expression
Studies carried out on healthy colonic and CRC tissue 
have shown a higher proportion of  products from the 
early stages of  gastrin synthesis (PG above all) than 
those from later stages (G-Gly and amidated forms) in 
cancer samples[20,85]. Plasma PG levels, but not amidated 
gastrin, are elevated in CRC patients compared with 
healthy subjects and those with colonic polyps, suggest-
ing a possible tumor origin for this PG and an incom-
plete processing of  the peptide in tumor cells[22]. Other 
tumors, such as pancreatic, ovarian, and lung cancer, also 
overexpress PG[45,47,48].

Biological effects of PG
Progastrin may exert greater proliferative effects than ami-
dated gastrins on normal and tumor cells (CRC, pancreat-

ic) in culture[28,86] and also has an antiapoptotic effect[87]. In 
vivo studies using mice overexpressing both G17-NH2 and 
PG showed increased colonic proliferation compared to 
wild-type control mice. At plasma concentrations similar 
to those observed in certain disease states, PG can act as a 
co-carcinogen and significantly increases the risk for colon 
carcinogenesis in response to azoxymethane[2,5].  

PG has negligible affinity for the receptor for ami-
dated gastrins (CCKBR) and its effects are mediated by a 
different receptor: ANXⅡ[27-30]. This receptor is not ex-
pressed on quiescent cells and it is necessary to mediate 
at least 50% of  exogenous PG effects on intestinal cells 
and more than 80% of  the effects of  autocrine gastrins 
on CRC cells[29]. ANXⅡ is overexpressed in human CRC 
and may be related to a poor prognosis[88]. It is also over-
expressed in a wide variety of  tumors[88,89]. The mitogenic 
and antiapoptotic effects of  PG seem to be mediated 
through activation of  several signaling pathways including 
nuclear factor-κB (NF-κB), Src, Janus-activated kinase 2 
(JAK2)/signal transducer and activator of  transcription 
3 (STAT3), extracellular signal-regulated kinase (ERK), 
mitogen-activated protein kinase (MAPK) and phospha-
tidylinositol 3-kinase (PI3K)/Akt kinases[86,90].

G-GLY
G-Gly are some of  the last gastrin processing interme-
diates. They result from the cleavage of  the C-terminal 
arginyl residues of  progastrin by carboxypeptidase E, 
before the amidation step.

G-Gly expression
As with other gastrin intermediates, there are few studies 
focused on assessing possible changes in plasma or tissue 
levels of  G-Gly in different situations. It seems that PPIs 
don’t significantly affect its levels because antral mucosa 
levels of  G-Gly remain unaltered after treatment with 
PPIs[39]. In addition, CRC doesn’t alter plasma G-Gly con-
centrations[22]; while, tumor biopsies and cell lines derived 
from CRC show higher levels than healthy tissue[20,22]. 
G-Gly levels are also increased in the gastric mucosa from 
patients with gastrinoma[91]. Outside the GI tract, only a 
small proportion of  lung cancer cases analyzed showed 
G-Gly overexpression, which was inversely related to sur-
vival rates[45].  

Biological effects of G-Gly
Even small variations in the levels of  G-Gly may affect 
proliferation and apoptosis. G-Gly effects can be ob-
served at concentrations at least one order of  magnitude 
less than for amidated forms[33,92]. G-Gly can act as a 
growth factor for many cultured cells, including gastric, 
pancreatic, colonic cancer cells, and non-transformed 
cells[33,52,81,93,94]. It also decreases apoptosis in CRC and 
EAC[1,92] cells and increases migration in CRC cells[40]. In 
vivo experiments using transgenic mice overexpressing 
this intermediate demonstrated that higher G-Gly levels 
are related to colonic hyperproliferation, but were not 
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tumor growth. However, it is currently not clear if  high 
gastrin levels have the same effects in human beings. Most 
studies have been focused on amidated gastrins. Although, 
intermediates of  gastrin synthesis can exert even greater 
carcinogenic effects than the amidated forms and in cer-
tain situations they become the most abundant forms of  
gastrin. Therefore, more studies evaluating these mole-
cules are needed to elucidate the potential role of  gastrins 
in human carcinogenesis.
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