Skip to main content
. 2012 Dec 1;2(12):1595–1605. doi: 10.1534/g3.112.003665

Table 2. Average correlation (SE in parentheses) between observed and predicted values for grain yield (GY) and days to heading (DTH) in 12 environments for seven models.

Trait Environment BL BRR Bayes A Bayes B RKHS RBFNN BRNN
1 0.59 (0.11) 0.59 (0.11) 0.59 (0.11) 0.56 (0.11) 0.66 (0.09) 0.66 (0.10) 0.64 (0.11)
2 0.58 (0.14) 0.57 (0.14) 0.61 (0.12) 0.57 (0.13) 0.63 (0.13) 0.61 (0.13) 0.62 (0.13)
3 0.60 (0.13) 0.60 (0.12) 0.62 (0.11) 0.60 (0.12) 0.68 (0.10) 0.69 (0.10) 0.67 (0.11)
4 0.02 (0.18) 0.07 (0.17) 0.06 (0.17) 0.06 (0.17) 0.12 (0.18) 0.16 (0.18) 0.02 (0.19)
DTH 5 0.65 (0.09) 0.64 (0.10) 0.66 (0.09) 0.66 (0.09) 0.69 (0.08) 0.68 (0.08) 0.68 (0.08)
8 0.36 (0.15) 0.37 (0.15) 0.36 (0.15) 0.35 (0.14) 0.46 (0.13) 0.46 (0.14) 0.39 (0.15)
9 0.59 (0.12) 0.59 (0.11) 0.53 (0.12) 0.52 (0.11) 0.62 (0.11) 0.63 (0.11) 0.61 (0.12)
10 0.54 (0.14) 0.52 (0.14) 0.56 (0.13) 0.54 (0.14) 0.61 (0.13) 0.62 (0.12) 0.57 (0.13)
11 0.52 (0.15) 0.52 (0.16) 0.53 (0.13) 0.51 (0.13) 0.58 (0.14) 0.59 (0.13) 0.55 (0.14)
12 0.45 (0.19) 0.42 (0.18) 0.45 (0.18) 0.45 (0.18) 0.47 (0.18) 0.39 (0.19) 0.35 (0.19)
Average 0.59 (0.12) 0.58 (0.12) 0.60 (0.12) 0.57 (0.12) 0.65 (0.10) 0.48 (0.14) 0.48 (0.14)
1 0.48 (0.13) 0.43 (0.14) 0.48 (0.13) 0.46 (0.13) 0.51 (0.12) 0.51 (0.12) 0.50 (0.13)
2 0.48 (0.14) 0.41 (0.17) 0.48 (0.14) 0.48 (0.14) 0.50 (0.14) 0.43 (0.16) 0.43 (0.16)
3 0.20 (0.21) 0.29 (0.22) 0.20 (0.22) 0.18 (0.22) 0.37 (0.20) 0.42 (0.21) 0.32 (0.24)
GY 4 0.45 (0.15) 0.46 (0.13) 0.43 (0.15) 0.42 (0.15) 0.53 (0.12) 0.55 (0.11) 0.49 (0.14)
5 0.59 (0.14) 0.56 (0.16) 0.75 (0.11) 0.74 (0.12) 0.64 (0.13) 0.66 (0.13) 0.63 (0.13)
6 0.70 (0.10) 0.67 (0.11) 0.73 (0.08) 0.71 (0.08) 0.73 (0.08) 0.71 (0.08) 0.69 (0.10)
7 0.46 (0.14) 0.50 (0.14) 0.42 (0.14) 0.40 (0.15) 0.53 (0.13) 0.54 (0.14) 0.50 (0.14)
Average 0.62 (0.10) 0.57 (0.14) 0.69 (0.10) 0.70 (0.09) 0.67 (0.09) 0.56 (0.12) 0.65 (0.10)

Fitted models were Bayesian LASSO (BL), RR-BLUP (BRR), Bayes A, Bayes B, reproducing kernel Hilbert spaces regression (RKHS), radial basis function neural networks (RBFNN) and Bayesian regularized neural networks (BRNN) across 50 random partitions of the data with 90% in the training set and 10% in the validation set. The models with highest correlations are underlined.