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Abstract

Light serves as a key environmental signal for synchronizing the circadian clock with the day night cycle. The zebrafish
represents an attractive model for exploring how light influences the vertebrate clock mechanism. Direct illumination of
most fish tissues and cell lines induces expression of a broad range of genes including DNA repair, stress response and key
clock genes. We have previously identified D- and E-box elements within the promoter of the zebrafish per2 gene that
together direct light-induced gene expression. However, is the combined regulation by E- and D-boxes a general feature for
all light-induced gene expression? We have tackled this question by examining the regulation of additional light-inducible
genes. Our results demonstrate that with the exception of per2, all other genes tested are not induced by light upon
blocking of de novo protein synthesis. We reveal that a single D-box serves as the principal light responsive element within
the cry1a promoter. Furthermore, upon inhibition of protein synthesis D-box mediated gene expression is abolished while
the E-box confers light driven activation as observed in the per2 gene. Given the existence of different photoreceptors in
fish cells, our results implicate the D-box enhancer as a general convergence point for light driven signaling.
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Introduction

The circadian clock is a highly conserved, physiological timing

mechanism that allows organisms to anticipate and adapt to daily

environmental changes [1]. At the core of the vertebrate circadian

clock mechanism are interlocking transcription translation feed-

back loops that are composed of activator and repressor clock

proteins [2]. The main loop consists of the positive elements

CLOCK and BMAL, which form heterodimers that activate the

transcription of the negative elements, period (per) and cryptochrome

(cry). As the levels of PER and CRY rise, they enter the nucleus as

heterodimers and repress their own transcription by inhibiting the

action of the CLOCK:BMAL complex, thus closing the feedback

loop [3]. This mechanism also involves additional stabilizing loops

[4,5] as well as complex posttranslational regulation. This

additional regulation confers robustness and ensures that the

mechanism requires circa 24 hours to complete one cycle [6].

Given that this is not a precise 24 hours clock, it is vital that its

phase is reset regularly by signals that reliably indicate the time of

day, to ensure its synchronization with the natural day-night cycle.

The most commonly employed environmental signal or so-called

‘‘zeitgeber’’ is light although others include temperature and food

availability [7,8]. Given the importance of light as an environ-

mental timing cue, most organisms have evolved dedicated

photoreceptors and associated signalling pathways that relay this

lighting information to the core clock machinery.

The zebrafish has been established as an attractive vertebrate

model for studying key aspects of the light signalling pathway and

its impact on the circadian clock [9,10]. As in other vertebrates,

most zebrafish tissues contain independent circadian clocks (so-

called peripheral clocks) [11,12]. While in mammals, light

entrainment of peripheral clocks occurs indirectly via the retina

and the central clock of the suprachiasmatic nucleus [13], in

zebrafish the peripheral clocks are directly entrained by exposure

to light [14,15]. In zebrafish organs, tissues and cultured cells,

exposure to light directly activates the transcription of two clock

genes per2 and cry1a that is predicted to lead to the entrainment of

the circadian clock [16,17,18]. More recent transcriptome pro-

filing studies in zebrafish have demonstrated that numerous other

genes with different cellular functions including transcriptional

control, stress response and DNA repair are also directly regulated

by light [19,20]. Thus, a key question is how does light exposure

trigger changes in transcription?

We have previously shown that functional E- and D-box

enhancer elements are both necessary and sufficient for light-

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e51278



regulated per2 gene expression [21]. Moreover, we have revealed

an enrichment of these enhancers in the promoters of light-

induced genes [19]. However, little is known about the relative

contribution of these two promoter elements to light regulated

gene expression. Furthermore, do all light regulated genes share

a common regulatory mechanism based on D- and E-boxes?

Here we have examined the regulation of gene expression in

additional light inducible genes. We demonstrate that with the

exception of per2, all other genes tested are not induced by light

upon blocking of de novo protein synthesis. In the case of per2,

inhibition of translation causes only a delay in induction following

light exposure. In order to identify light responsive promoter

elements in genes that rely upon protein synthesis, we performed

a systematic functional analysis of the cry1a promoter in transfected

zebrafish PAC-2 cells. We demonstrate that a single D-box directs

light-induced expression of this clock gene. Furthermore, we show

that light driven gene expression mediated by the D-box enhancer

relies upon de novo protein synthesis. Interestingly, expression

directed by E-box enhancer elements such as that in the per2

promoter is increased in a light dependent fashion upon inhibition

of protein synthesis. Thus our results support the notion that the

D-box serves as the primary light responsive promoter element in

zebrafish cells although other enhancers such as the E-box may

modulate its function in a promoter specific fashion. Furthermore,

given the presence of multiple photoreceptors in fish [18,22,23],

the D-box promoter element would seem to serve as a general

convergence point for light driven signaling.

Results

Differential Effect of Cycloheximide on Light-induced
Gene Expression
In addition to the clock genes per2 and cry1a, many other

genes are acutely induced upon light exposure in zebrafish

[19,20,24]. Do all these genes share a common light responsive

regulatory mechanism? In support of the involvement of

multiple pathways, previous studies have indicated differences

between light induced per2 and cry1a expression in terms of their

requirement for de novo protein synthesis [25]. In order to

explore this property in more detail, we chose to test the effect

of cycloheximide treatment on light induced expression of

a broader set of genes. We thus incubated zebrafish PAC-2 cells

with cycloheximide (CHX) during light exposure and then

sampled RNA at different time points for subsequent qRT-PCR

analysis (Figure 1, Figure S1 and Table S1). As expected,

without CHX-treatment, all genes were significantly up-regulat-

ed by light compared with constant dark controls (Figure 1,

black traces and Table S2 A). Interestingly, the light-induced

expression of cry1a, 6,4-photolyase/cry5, tef-1, e4bp4-6 and lonrf1 (2

of 2) was strongly inhibited upon treatment with CHX

(Figure 1B–F, left panels, red traces and Table S2 A and B).

However, light-induced per2 expression still persisted after CHX

treatment (Figure 1A, left panel, red trace and Table S2 A and

B), although, with a significant delay compared to control non-

CHX treated cells (p,0.0001, two-way ANOVA). Comparable

results were obtained using two alternative protein synthesis

inhibitors (puromycin and anisomycin, Figure S2). Thus, the

majority of genes tested require de novo protein synthesis for light

induced expression with per2 being an exception.

Role of AP-1 Enhancer Elements in Light-induced
Expression of cry1a
To date, the only systematic, functional promoter analysis of

a light regulated zebrafish gene has revealed that functional E-

Figure 1. Differential effect of cycloheximide on light-induced
gene expression. (A–F) Quantitative RT-PCR analysis (qRT-PCR) of
light inducible genes in PAC-2 cells in the presence (red traces) or
absence (black traces) of cycloheximide (CHX) during 8 hours of light
exposure (left panels) or constant darkness conditions (right panels).

Central Role of D-Boxes in Light-Driven Expression
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and D-boxes are both necessary and sufficient for the light

regulated expression of the per2 gene [21]. Does a distinct

mechanism operate in other light induced genes that rely on

protein synthesis, such as cry1a? Interestingly, previous studies

[25] have implicated two AP-1 sites as important transcriptional

regulatory elements in the zebrafish cry1a gene in response to

light. Besides the two AP-1 sites described by Hirayama et al.

(AP-1 #1 at position 21168 bp and AP-1 #2 at position

2702 bp, relative to the ATG), we have also identified a third

potential AP-1 site located at position 2416 bp (59-TGAGTTA-

39) which we have termed AP-1 #3 (Figure 2A). To directly test

the functionality of these elements, we initially cloned a genomic

DNA fragment of 1.3 kb lying upstream of the cry1a gene

(including 1.25 kb of 59 flanking genomic DNA and 53 bp of

exon 1) in a luciferase reporter vector (Figure 2A, cry1a-Luc).

Consistent with this fragment representing the cry1a promoter, it

encompasses the principal start site of transcription of the cry1a

gene (at position 2688 bp) as defined by 59 RACE PCR [25].

Furthermore, a real-time bioluminescence assay of zebrafish

PAC-2 cells stably transfected with the cry1a-Luc construct

revealed robust rhythms of luciferase activity under light-dark

(LD) cycle conditions (Figure 2 B, Table S3). An increase in

expression was observed during the beginning of the light phase

and a decrease just preceding the onset of the dark phase.

To test the relevance of the three AP-1 sites for the cry1a

light-responsiveness we mutated all three sites present in cry1a-

Luc generating cry1a AP1 mut-Luc and then performed a real-

time bioluminescence assay in PAC-2 cells (Figure 2C and

Table S4). The cells were exposed to LD cycles and then

transferred to constant darkness (DD) conditions. Surprisingly,

our data revealed no difference in the light inducible expression

pattern of cry1a AP1 mut-Luc compared with the control wild-

type construct cry1a-Luc (Table S3). Thus, our results do not

support a significant role for the AP-1 enhancer in the light-

driven regulation of the cry1a promoter. To confirm the lack of

light responsiveness of the AP-1 enhancer element, we

generated a heterologous AP-1 reporter construct. The canon-

ical AP-1 enhancer sequence (59-TGACTCA-39), located within

the cry1a promoter at position 21168 bp (AP-1 site #1), was

multimerized and inserted into a minimal promoter - driven

luciferase reporter generating the AP1-Luc construct. In a real-

time bioluminescence assay, the AP1-Luc construct showed no

light-driven changes in expression (Figure 2D, Table S3). In

contrast, the same construct was strongly activated upon

phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) treat-

ment as a control for AP-1 function [26] (Figure 2E). Together,

these data clearly demonstrate that the three AP-1 enhancer

elements investigated do not mediate light regulated gene

expression in zebrafish PAC-2 cells.

Identification of a Light-responsive Region within the
cry1a Promoter
In order to identify which enhancer elements are crucial for the

cry1a light induction, we prepared a series of seventeen partially

overlapping deletions based on the cry1a-Luc wild-type construct

(Figure 3A and Table S5). These deletion constructs were then

transiently transfected in PAC-2 cells and tested for light-regulated

expression (Figure 3B–C and Figure S3). In both deletions 12 and

13, the characteristic acute increase in expression observed

immediately following ‘‘lights on’’ in the cry1a-Luc construct was

absent. However, under LD cycles, both constructs do retain

rhythmic expression (Figure 3B–C and Table S3), with an increase

in luciferase activity anticipating the onset of the light phase,

a feature characteristic of a circadian clock regulated promoter.

This results in a shift in the phase of rhythmic expression relative

to the full cry1a-Luc promoter (p,0.0001, t-test) and reveals

a switch from light driven to clock regulated rhythmicity in these

two deletion constructs. The remaining deletions did not exhibit

any significant differences in terms of either light-induced

expression or the phase of rhythmic expression with respect to

the wild-type cry1a-Luc reporter (Figure S3 and Table S3).

Interestingly, deletion of the transcription start site (TSS) failed

to influence the basal levels of expression (see deletion 8 in Figure

S3). This potentially points to the existence of additional

alternative transcription start sites. Together, these results point

to a region of 186 bp (2401 bp to 2215 bp) containing the

elements that are necessary for light-responsiveness of the

zebrafish cry1a gene which we have termed the cry1a ‘‘light

responsive region’’ (cry1a LRR). Furthermore, given the persis-

tence of rhythmic expression even upon deletion of the LRR

region, we predict the existence of a functional clock-regulated

enhancer element lying outside of this region.

In order to test if the cry1a LRR is sufficient to drive light

dependent rhythmic expression similar to the cry1a-Luc promoter

construct, the LRR sequence was cloned into a luciferase reporter

vector (cry1a LRR-Luc). This construct showed a comparable light

driven expression pattern to the cry1a-Luc promoter construct

(Figure 3D and Table S3). Thus, the LRR is sufficient to direct

light-driven rhythmic gene expression.

A Single D-box is Necessary and Sufficient for the Light
Response of the cry1a Gene
Interestingly, similar to the situation in the per2 promoter [21],

the cry1a LRR contains putative D-box and E-box enhancer

sequences (Figure 4A). In order to determine whether these

enhancer elements are responsible for the cry1a LRR light-

induction we generated and tested a new series of thirteen partially

overlapping sub-deletions within the cry1a LRR-Luc construct

(Figure 4A and Table S5). Two sub-deletions, sub-deletion 5 and

sub-deletion 6, showed a complete disruption of the characteristic

light inducible expression pattern of the cry1a LRR-Luc construct

(Figure 4B–C, Table S3) while the remaining deletions did not

affect either light-induced expression or the phase of rhythmic

expression (Figure S4 and Table S3) driven by the cry1a LRR.

Located in the region of sub-deletions 5 and 6 (see red dotted lines

and arrowheads in Figure 4A) is a single D-box element (59-

GTTGTATAAC-39) with a distinct sequence from that of the

functional D-box identified in the per2 promoter (59-CTTATG-

TAAA-39) [21]. Mutation of this D-box within the cry1a LRR

results in the complete disruption of the characteristic light

inducible expression pattern of the cry1a LRR-Luc construct

(Figure 4D, Tables S3 and 4), similar to the results obtained with

sub-deletions 5 and 6 (see Figure 4B–C).

Cells were maintained for 3 days in DD prior to the experiment. 1 h
before sampling, cells were treated with CHX (10 mg/ml). Each gene is
indicated above its respective panels. Yellow and black bars above each
panel indicate the light and dark periods, respectively. Relative mRNA
levels are plotted on the y-axes and were set arbitrarily as 1 at time-
point 0 hrs for each gene. Endogenous b-actin mRNA levels were not
influenced by light or cycloheximide treatment and so these were used
to normalize the expression of each gene (see Figure S1 B). Time (hrs) is
plotted on the x-axes. In each panel, points are plotted as the means of
three independent experiments +/2 SD. All statistical analyses (t-test
and two-way ANOVA) are presented in Table S2. The blocking of protein
synthesis by cycloheximide treatment of PAC-2 cells was confirmed in
Figure S1 A.
doi:10.1371/journal.pone.0051278.g001
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Is this cry1a D-box element sufficient to confer a light-

regulated pattern of expression? To address this question, we

analyzed the expression of a heterologous construct containing

multimerized repeats of this D-box cloned upstream of

a minimal promoter and luciferase reporter (D-boxcry1a-Luc)

(Figure 4E). Similar to the functional D-box located within

the per2 promoter [21], the D-box within the cry1a LRR shows

a clear light-driven rhythmic pattern of expression with an

increase after ‘‘lights on’’ and arhythmicity after transfer of the

cells into DD conditions. This data demonstrates that this D-

box alone is sufficient to direct a light inducible expression

pattern that closely resembles that of the cry1a promoter. Thus,

the light regulation of the cry1a gene appears to be mediated by

a single D-box enhancer element.

Light Induced D-box Enhancer Activity Requires de novo
Protein Synthesis
Given that light–induced expression of both per2 and cry1a is

dependent on the D-box enhancer, we speculated whether the

differential requirement of the two genes for protein synthesis

Figure 2. Role of AP-1 enhancer elements in light-induced expression of cry1a. (A) Schematic representation of the 1.3 kb cry1a promoter.
The 53 bp exon 1 is indicated by a green rectangle. The transcription start site (TSS) at position2688 bp and the ATG at position +1 bp are indicated.
Violet rectangles denote the three AP-1 sites (AP-1#1 at position21168 bp, AP-1#2 at position2702 bp and AP-1#3 at position2416 bp). (B – E)
Representative real time bioluminescence assays of PAC-2 cells transfected with the following constructs (B) cry1a-Luc. (C) cry1a-Luc (black trace) and
cry1a AP1 mut -Luc (green trace). (D) AP1-Luc. (E) AP1-Luc in the presence (red trace) or absence (black trace) of 50 ng/ml of the phorbol ester TPA. The
black arrow indicates the time of TPA or DMSO-control addition. In each panel relative bioluminescence is plotted on the y-axis and time (hrs) on the
x-axis. Each time-point represents the mean of at least four independently transfected wells +/2 SD from a single experiment. Each experiment was
performed a minimum of three times. Yellow and black bars above each panel represent the light and dark periods, respectively.
doi:10.1371/journal.pone.0051278.g002

Central Role of D-Boxes in Light-Driven Expression
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may be linked to differences in the sequences of the two D-

boxes in their promoters or alternatively to the contribution of

the per2 E-box enhancer. To test these hypotheses we treated

with CHX, PAC-2 cells transfected with various heterologous E-

and D-box luciferase reporter constructs. Then, luciferase

mRNA expression was monitored by qRT-PCR analysis

following exposure to light.

Neither the D-boxper2 -Luc nor the D-boxcry1a -Luc construct was

able to drive light induced luciferase mRNA expression when

protein synthesis was blocked by CHX treatment (Figure 5A–B

and Table S2 B). In contrast, upon light exposure expression of the

transfected E-box reporter (E-boxper1b/2-Luc) as well as the

endogenous E-box-regulated gene, per1b, displayed a progressive

increase that persisted for the entire time course of CHX

treatment, compared with non treated and constant dark controls

(Figure 5C,D and Table S2 B). The light-induced gene expression

driven by E-boxes during CHX treatment exhibit different kinetics

compared with those of the D-box under normal conditions

(p,0.0001, two-way ANOVA). Finally, the expression of a lucif-

erase reporter construct containing tandem repeats of adjacent E-

and D-boxes (E/D-boxper2-Luc), showed a light induced expression

pattern in the presence or absence of CHX (Figure 5E and Table

S2 B). Thus, this artificial construct based on the structure of the

light responsive module of the per2 promoter [21], behaves in

a similar fashion to the endogenous per2 gene (see Figure 1A and

Table S2 B). Together these results indicate that it is the E-box

within the per2 promoter that confers the specific light dependent

response of the per2 gene in the absence of de novo protein synthesis.

The more general requirement of light induced gene expression

for protein synthesis appears to reflect the regulatory properties of

the D-box enhancer element.

Regulation of the cry1a D-box by PAR bZip Transcription
Factors
Which factors play a role in the protein synthesis-dependent

activation of cry1a by light? We have recently identified a family

of zebrafish transcription factors which share homology with the

mammalian D-box binding PAR bZip transcription factors

DBP, TEF and HLF [21,24]. These factors exhibit both clock

and light driven expression in a range of zebrafish embryonic

tissues [21,24]. We first wished to study the clock and light

regulated expression of these factors in PAC-2 cells. Cells were

entrained for 2 days to LD cycles and then subsequently

harvested at regular time points on the third day either under

LD or constant darkness conditions for subsequent qRT-PCR

analysis (Figure 6A–G). With the exception of TEF-1, all the

PAR bZip factors exhibited robust rhythms of expression both

under LD and DD conditions pointing to strong circadian clock

regulation (Figure 6C–G and Table S2 C). In contrast, for

TEF-1, while rhythmic expression was evident under LD

Figure 3. Identification of the light-responsive region within
the cry1a promoter. (A) Schematic representation of cry1a-Luc and
deletion constructs 1 to 17 (grey bars) (see also Table S5). The 186 bp
cry1a light responsive region (cry1a LRR) is indicated by dotted lines
and black arrows (region between 2401 bp and 2215 bp). (B–C)
Representative real time bioluminescence assays from PAC-2 cells
transfected with cry1a-Luc (black trace) and cry1a-Luc Deletion 12 or

cry1a-Luc Deletion 13 (green traces) (Figure 3B and C). In both cry1a-Luc
Deletions 12 and 13, the phase of rhythmic expression is significantly
shifted (for both p,0.0001, t-test). In deletions 12 and 13, the increase
in luciferase activity that anticipates the onset of the light phase is
indicated by a horizontal black arrow. (D) Representative real time
bioluminescence assay from PAC-2 cells transfected with cry1a-Luc
(black trace) and cry1a LRR-Luc (red trace). In each panel relative
bioluminescence is plotted on the y-axis and time (hrs) on the x-axis.
Each time-point represents the mean of at least four independently
transfected wells +/2 SD from a single experiment. Each experiment
was performed a minimum of three times. Yellow and black bars above
each panel represent the light and dark periods, respectively.
Statistically significant differences are indicated by an asterisk (*) and
are reported in Table S3.
doi:10.1371/journal.pone.0051278.g003
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conditions, constant expression was detected during the first day

in constant darkness (Figure 6B and Table S2 C). Thus, while

TEF-1 appears to behave as a predominantly light driven gene

(see also Figure 1B), all other PAR bZip factors are dynamically

expressed under LD cycles. Which members of this family are

able to mediate transcriptional transactivation by the D-box

within the cry1a LRR region? To address this question we

performed an in vitro luciferase assay testing the effect of co-

expression of each PAR bZip factor with the cry1a LRR-Luc

reporter (Figure 6H). All the factors analysed with the exception

of DBP-1 activated reporter gene expression although with

different levels of induction (dark grey bars). Consistent with this

activation by the PAR bZip factors being D-box mediated,

mutation of this D-box element within the cry1a LRR

completely abolished the observed transactivation (green bars).

Thus, it is tempting to speculate that a requirement for

expression of the zebrafish PAR bZip factors could potentially

Figure 4. A single functional D-box is necessary and sufficient for the light response of the cry1a gene. (A) Schematic representation of
cry1a LRR- Luc and sub-deletion constructs 1 to 13 (dark grey bars). The red rectangle denotes the putative E-box while the three yellow ellipses
represent the putative D-boxes. The region delimited by cry1a LRR-Luc Sub-Deletions 5 and 6 is indicated by red arrowheads and red dotted lines. This
region includes the light responsive D-box. (B–E) Representative real time bioluminescence assays from transfected PAC-2 cells. The identity of the
transfected constructs and their colour codes are indicated above each panel. In each panel relative bioluminescence is plotted on the y-axis and
time (hrs) on the x-axis. Each time-point represents the mean of at least four independently transfected wells +/2 SD from a single experiment. Each
experiment was performed a minimum of three times. Yellow and black bars above each panel represent the light and dark periods, respectively.
Statistically significant differences are reported in Table S3.
doi:10.1371/journal.pone.0051278.g004

Central Role of D-Boxes in Light-Driven Expression

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e51278



Figure 5. Light induced D-box enhancer activity requires de novo protein synthesis. (A–C and E) qRT-PCR analysis of luciferase mRNA
expression in PAC-2 cells transfected with different heterologous luciferase reporter constructs, in the presence (red traces) or absence (green traces)
of CHX during 8 hours of light exposure or DD conditions (+CHX, blue traces, 2CHX, black traces). (D) qRT-PCR analysis of endogenous per1b
expression in PAC-2 cells in the presence or absence of CHX during 8 hours of light exposure or DD conditions (colour coded the same as in panels A–
C and E). Each construct is indicated above its respective panel. Relative mRNA levels are plotted on the y-axis and were set arbitrarily as 1 at time-
point 0 hrs. Time (hrs) is plotted on the x-axis. In each panel, points are plotted as means of three independent experiments +/2 SD. All statistical
analyses (two-way ANOVA) are presented in Table S2 B or in the results section.
doi:10.1371/journal.pone.0051278.g005

Central Role of D-Boxes in Light-Driven Expression
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Figure 6. Regulation of the cry1a D-box by PAR bZip transcription factors. (A) Schematic representation of the experimental design. Black
and yellow bars represents 12 hours dark and light periods respectively, while the dark grey bar denotes the subjective day period under constant
darkness. Arrows indicate sampling time points where ZT and CT represent zeitgeber times and circadian times respectively (ZT0 represents ‘‘lights
on’’). (B–G) qRT-PCR analysis of PAR bZip gene expression in PAC-2 cells under LD (pink traces) and DD (black traces) conditions. Each gene is

Central Role of D-Boxes in Light-Driven Expression
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explain the protein synthesis dependence of D-box-mediated

transcription.

Discussion

Teleosts have proved to be fascinating models for exploring how

light regulates the vertebrate circadian timing system [10].

However, light exposure of most tissues and cells triggers

expression of a set of genes that is not restricted to components

of the circadian clock [19,20,24]. Thus, a key question is how

diverse the regulatory mechanisms are which link photoreceptors

with gene expression. We have now demonstrated that the D-box

serves as the principle light responsive promoter element in both

light inducible zebrafish clock genes. Together with a general

enrichment of D-box enhancers in the promoters of light induced

genes [19], this implies a general importance of this element in

light responsive transcription. In mammals, D-box binding factors

appear to play a key role linking the circadian clock mechanism

with downstream targets [27]. Thus, our findings suggest that

during vertebrate evolution, there has been a major shift in the

role of D-boxes from being the targets of light signaling pathways

to being elements of clock output pathways. In this regard it will be

of great interest to compare the role of D-boxes in mammals and

teleosts in other physiological mechanisms.

Our results (summarized in Figure 7) reveal that D-box –

mediated light-induced gene expression requires de novo protein

synthesis. Our previous studies have demonstrated that a family of

6 PAR bZip D-box binding factors is widely expressed in zebrafish

tissues [21,24]. Many of these genes are clock regulated and the

expression of one member of this family, tef-1 is directly induced by

light. Here we demonstrate that these factors show similar clock or

light driven regulation in the PAC-2 cell line. Furthermore, with

one possible exception (DBP-1), all factors serve to trans-activate

expression from the D-box located in the cry1a LRR. We

therefore speculate that translation of these transcription factors

may be a prerequisite for D-box function. Given that tef-1 is

encoded by a light-inducible gene, it is tempting to speculate that it

may play a preferential role in relaying lighting information to the

regulation of gene expression. However, the kinetics of light

induced tef-1 mRNA expression is very similar to that of other light

induced genes (see Figure 1). Specifically, it does not display the

rapid induction characteristic of immediate early response genes

that one would predict for an upstream element. Furthermore,

while the activation of immediate early response genes classically

does not rely upon de novo protein synthesis, we have shown that

light induced mRNA expression of tef-1 is blocked by cyclohex-

imide treatment. This implies that upstream of tef-1 there may be

additional light-regulated, immediate early response regulators.

The original transcriptome analysis which lead to identification of

many light-induced genes was based on a commercial microarray

and therefore is far from representative of the entire light regulated

transcriptome [19]. For this reason it will be valuable to use whole

transcriptome sequencing approaches to search more systemati-

cally for immediate early response genes that might lie upstream of

D-box regulators.

Amongst immediate early response genes, those encoding

elements of the AP-1 transcription factor complex such as c-fos

and c-jun have been well documented to rapidly relay changes in

the cellular environment to gene expression [28,29]. Interestingly,

in a previous report, light-dependent changes in AP-1 DNA

binding activity were implicated as playing a key role in the

response of the zebrafish cry1a gene to light [25]. However, our

results failed to confirm these predictions. In the previous study,

the contribution of AP-1 sites in the cry1a promoter was not tested

by a functional promoter analysis. Furthermore, the Z3 cell line

used in that study was derived independently from the PAC-2 cell

line and so may exhibit different regulatory properties [30]. Thus,

in the future it will clearly be important to assess how light

dependent changes in AP-1 DNA binding may interact with the

D-box transcriptional regulatory machinery, possibly in a promoter

dependent fashion.

We have demonstrated that the continued induction of the per2

gene by light in the absence of protein synthesis is based on

regulation by the E-box element within the light responsive

module of its promoter (Figure 7). Given that the E-box represents

a target of the core circadian clock mechanism, this implies that

light induced per2 expression requires regulatory input from the

circadian clock. The apparent absence of this regulation in the

cry1a gene implies basic differences in the roles for these two

negative elements of the core clock mechanism. Interestingly, the

basal level of E-box driven expression increases in a light-

dependent fashion in the absence of protein synthesis. It is

tempting to speculate that this may result from the lack of synthesis

of negative regulators of CLOCK and BMAL upon light exposure.

Alternatively, this may reflect the existence of light-dependent

post-translational modifications to the core clock elements that

modulate E-box function.

Previous studies have identified many potential candidates for

the photoreceptors in zebrafish peripheral tissues including opsins,

cryptochromes and ROS [18,22,23]. The finding that D-boxes

serve as the principle light responsive enhancer elements therefore

predicts that D-box binding transcription factors may serve as key

convergence points for diverse light dependent signaling pathways.

Materials and Methods

Cell Culture
The PAC-2 cell line [31] was cultured as previously described

[15,32]. For incubation under different lighting regimes, cells were

maintained in thermostatically controlled darkrooms or light-

sealed incubators and were illuminated with a tungsten light

source (20 mW/cm2). Cycloheximide (CHX), puromycin, aniso-

mycin and phorbol ester 12-O-tetradecanoylphorbol-13-acetate

(TPA) treatments were as recommended by the manufacturer

(Sigma Aldrich). Stable PAC-2 cell lines were established as

described elsewhere [15,21]. The FuGene HD reagent was used

for transient transfections according to the manufacturer’s pro-

tocol (Roche Diagnostics).

indicated above its respective panel. Relative mRNA levels are plotted on the y-axis and ZT or CT times on the x-axes. In each panel, points are plotted
as the means of three independent experiments +/2 SD. Yellow and black bars above each panel represent the light and dark periods, respectively.
The statistical significance of rhythmic expression was assessed by t-test analysis in Table S2 C. (H) In vitro luciferase assay of PAC-2 cells co-
transfected with expression constructs encoding the six PAR bZip factors and the cry1a LRR-Luc or cry1a LRR D-box mut-Luc reporters (dark grey and
green bars, respectively). Each expression construct is indicated below its respective bars. Relative bioluminescence levels (%) are plotted on the y-
axis where the highest value measured during the experiment is set arbitrarily as 100%. The results are plotted as the means of three independent
experiments performed in triplicate, +/2 SD. Each independent experiment was standardized for transfection efficiency using a b-galactosidase assay.
The statistical significance of levels of transactivation was assessed by t-test analysis with * p,0.05, ** p,0.001, *** p,0.0001.
doi:10.1371/journal.pone.0051278.g006
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Quantitative RT-PCR (qRT-PCR)
Total RNA was extracted using Trizol reagent (GIBCO-BRL)

according to the manufacturer’s instructions. Total RNA was

reverse-transcribed into cDNA by using Superscript III Reverse

Transcriptase (Invitrogen) with a mixture of oligo dT and random

primers. Quantitative RT-PCR analysis was performed using

a StepOnePlus Real-Time RT-PCR System (Applied Biosystems)

and SYBR Green I fluorescent dye (Qiagen). Relative expression

levels were normalized using zebrafish b-actin. The relative levels

of each mRNA were calculated using the 2-DDCT method. For

each gene the primer sequences used for qRT-PCR are listed in

Table S1.

Luciferase Constructs
cry1a-Luc. A DNA fragment of 1.3 kb encompassing 1.25 kb

of the 59 flanking and 53 bp of exon 1 of the cry1a gene was PCR

amplified from zebrafish genomic DNA using specific primers

incorporating a 59 KpnI (59–GACCACAGACTGGTACCGTG-

CATTAAA–39) and a 39 XhoI restriction site (59–AGATCTC-

GAGGCCGCAAGCCCTTCCTG–39) using a XL PCR kit

(Roche). The PCR product was then cloned into the luciferase

expression vector pGL3Basic (Promega).

cry1a LRR-Luc. The 186 bp light responsive region (LRR)

identified in the cry1a promoter was PCR amplified from the cry1a-

Luc construct with the following primers: 59 KpnI (59–GCA-

TAACTCGGTACCCAACTTTCTCTACATGCGAG–39) and

39 XhoI (59–AATTTGGAACTCGAGCACAGATGAAGC–39)

and cloned into pGL3Basic.

cry1a-Luc deletion 1 to 17 and cry1a LRR-Luc sub-

deletion 1 to 13. Luciferase constructs were generated using

as template the cry1a-Luc and the cry1a LRR-Luc constructs,

respectively by a PCR based deletion strategy as previously

described [21]. The exact position and length of each deletion with

respect to the ATG (position +1) is listed in Table S5. Period (t)
and peak (ZT) values for all deletion constructs are listed in Table

S3.

Mutagenesis
Site directed mutagenesis was performed using the QuikChange

Multi Site-Directed Mutagenesis Kit (Stratagene) according to the

manufacturer’s instructions. Table S4 displays the primer

sequences containing the specific mutations introduced for each

construct.

Heterologous Constructs
All heterologous promoter constructs were based on the

minimal promoter luciferase expression vector pLucMCS (Strata-

gene). E-boxper1b/2-Luc contains four copies of the per1b E-box

(59–CACGTG–39) [15] which is identical to that in the per2 gene

LRM region [21]. D-boxper2-Luc contains six copies of the per2

D-box 59–CTTATGTAAA–39 [21]. D-boxcry1a-Luc contains

four copies of the cry1a D-box 59–AAGTTATACAAC–39

(position 2331 bp relative to the ATG). E/D-boxper2-Luc
reporter construct contains four copies of alternating per2 E-box

(59–CACGTG–39) and D-box (59–CTTATGTAAA–39) sequences

[21]. Finally, the AP1-Luc reporter construct consists of four

copies of the sequence 59-TGACTCA-39 (canonical cry1a AP-1#1

site, Figure 2A).

Real-Time Bioluminescence Assay and Data Analysis
All real-time bioluminescence assays were performed and

analyzed as described previously [15,21] using an EnVision

multilabel counter (Perkin Elmer) under various lighting condi-

tions.

Figure 7. Contribution of de novo protein synthesis to light–induced clock gene expression. (A) Under normal conditions light exposure
triggers expression of the gene encoding the PAR bZip factor, TEF-1. This in turn binds to D-boxes in the cry1a and per2 promoters and trans-activates
gene expression. In parallel, light also entrains the circadian clock. Via binding of the CLOCK–BMAL complex, the clock regulates the E-box in the per2
promoter and thereby contributes to light induced gene expression [21]. The clock also regulates expression of the additional PAR bZip factors (PAR)
that contribute to D-box driven transcription. (B) Upon light exposure and coincident inhibition of de novo protein synthesis by treatment with
cycloheximide (+CHX), translation of TEF-1 and the other PAR bZip factors is prevented. Therefore, light-driven transactivation via the D-box enhancer
of the cry1a promoter is abolished. However, light-induced expression of the per2 promoter persists due to regulation by the E-box. Specifically, upon
cycloheximide treatment the core clock machinery directs increased activation via the E-box in a light dependent manner. We speculate that this up-
regulation of E-box driven expression may also influence other clock-regulated genes including those encoding the PAR bZip factors.
doi:10.1371/journal.pone.0051278.g007
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Expression Constructs
All PAR bZip factor expression constructs (TEF-1, TEF-2,

HLF-1, HLF-2, DBP-1, DBP-2) were based on the CMV

promoter driven expression vector pCS2-MTK. Identification

and cloning of all six PAR transcription factor cDNAs is described

elsewhere [21,24]. The N-terminally myc-tagged Cry1a expression

construct which was used in the experiment presented in Figure S1

A, was based on pCS2-MTK.

In Vitro Luciferase Assay
PAC-2 cells were plated at a density of 1.256105 cells per well

in a 24-well plate (CELLSTAR, Greiner Bio-One). 24 hours later,

cells were cotransfected with 250 ng of cry1a LRR-Luc or cry1a LRR

D-box mut-Luc reporters, 50 ng for each PAR bZip expression

vector together with 50 ng of b-galactosidase expression vector (to

normalize for transfection efficiency). All transfections were

performed using FuGene HD reagent according to the manu-

facturer’s recommendations (Roche Diagnostics). b-galactosidase
activity assays were performed using a standard protocol [33].

Luciferase activity was measured using the Luciferase Assay

System kit (Promega) and a VICTOR Multilabel Plate Reader

(Perkin Elmer) following the manufacturer’s instructions.

Western Blotting
Protein extracts were prepared by homogenizing samples in

16Laemmli buffer. The samples were electrophoresed on a SDS

polyacrylamide gel and transferred to an Immobilon-P membrane

(Millipore). Binding of the antibodies was visualized using the

Pierce-ECL detection system (Thermo Scientific). The myc

antibody was purchased from Santa Cruz and b-actin antibody

from Sigma Aldrich.

Statistical Analysis
Data were analyzed by unpaired t-test and two-way ANOVA

using GraphPad Prism 4.0 for Windows (Graph Pad Software,

http://www.graphpad.com). All the results were expressed as

means +/2 SD. p,0.05 was considered statistically significant.

For all t-tests presented in Table S2 A (referring to Figure 1)

the values at ‘‘time 00 and the highest values observed in the

time course of each experiment were considered. For all t-tests

presented in Table S2 C (referring to Figure 6B–G) the peak

and trough values observed under LD or DD conditions were

considered. Period (t) and peak (ZT) values in Table S3 were

calculated using Cosinor analyses performed using COSINOR

v3.0.2 software (Antoni Diez-Noguera, University of Barcelona).

Supporting Information

Figure S1 (A) Cycloheximide effectively blocks protein
synthesis in PAC-2 Cells. Representative data from western

blotting analysis of PAC-2 cells transiently transfected with a myc-

tagged Cry1a expression vector. 18 hrs after transfection the cells

were treated with CHX (10 mg/ml) or vehicle (DMSO) and then

harvested for protein extracts during a 36 hours time course. Myc-

tagged protein and endogenous beta-actin protein levels were

visualized. (B) Endogenous b-actin mRNA levels are not
affected by cycloheximide or light treatment. qRT-PCR
analysis of endogenous b-actin mRNA expression in PAC-2 cells in

the presence (red traces) or absence (black traces) of CHX during 8

hours of light exposure (left panel) or under DD conditions (right

panel). The samples analyzed were those tested in Figure 1. Yellow

and black bars above each panel indicate the lighting conditions.

Relative mRNA levels are plotted on the y-axis and were set

arbitrarily as 1 at time-point 0 hrs. Time (hrs) is plotted on the x-

axis. In both panels, points are plotted as means of four

independent experiments +/2 SD.

(TIF)

Figure S2 Effect of alternative protein synthesis inhibi-
tors. qRT-PCR analysis of endogenous per2 and cry1a expression

in PAC-2 cells in the presence (red traces) or absence (black traces)

of either (A) puromycin or (B) anisomycin during 8 hours of light

exposure. After 3 days in DD the cells were treated with either

puromycin (35 mM) or anisomycin (35 mM) 1 h before sampling.

Yellow bars above each panel indicate the lighting conditions.

Relative mRNA levels are plotted on the y-axis and were set

arbitrarily as 1 at time-point 0 hrs. Time (hrs) is plotted on the x-

axis. In each panel, points are plotted as means of three

independent experiments +/2 SD.

(TIF)

Figure S3 cry1a-Luc deletion constructs analysis. Rep-

resentative real time bioluminescence assay of PAC-2 cells

transfected with cry1a-Luc (black trace) or cry1a-Luc deletion

constructs (green traces) under different lighting conditions. Each

construct is indicated above its respective panel. In each panel

relative bioluminescence is plotted on the y-axis and time (hrs) on

the x-axis. Each time-point represents the mean of at least four

independently transfected wells +/2 SD from a single experiment.

Each experiment was performed a minimum of three times.

Yellow and black bars above each panel represent the light and

dark periods, respectively.

(TIF)

Figure S4 cry1a LRR-Luc sub-deletion constructs anal-
ysis. Representative real time bioluminescence assay from PAC-2

cells transfected with cry1a LRR-luc (black trace) or cry1a LRR-luc

sub-deletion constructs (green traces) under different lighting

conditions. Each construct is indicated above its respective panel.

In each panel relative bioluminescence is plotted on the y-axis and

time (hrs) on the x-axis. Each time-point represents the mean of at

least four independently transfected wells +/2 SD from a single

experiment. Each experiment was performed a minimum of three

times. Yellow and black bars above each panel represent the light

and dark periods, respectively.

(TIF)

Table S1 qRT-PCR primer sequences.
(DOC)

Table S2 t-test and two-way ANOVA analysis. (A) t-test

analysis of data presented in Figure 1. In all these t-tests, the values

at ‘‘time 00 and the highest values observed in the time course of

each experiment are considered. (B) Two-way ANOVA analysis of

data presented in Figures 1 and 5. Lighting conditions are

indicated by colour-coding (yellow for light exposure and dark

grey for constant darkness). Cycloheximide treatment is indicated

by +CHX and non-treated controls by 2CHX. (C) t-test analysis

of data presented in Figure 6B–G. In all these t-tests, the values

obtained at the peaks and troughs were considered. In all three

panels, ‘‘N.S.’’ denotes no statistical significance (p.0.05).

(DOC)

Table S3 Cosinor analysis. Period (t) and Peak (ZT) values

for all luciferase reporter constructs analyzed. ‘‘N.S.’’ denotes no

statistically significant rhythm detected (p.0.05).

(DOC)

Table S4 Mutagenesis primer sequences. Wild type target

sequences are indicated and the mutated counterparts are

highlighted in bold in the sequences.

(DOC)
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Table S5 Position and size of all deletions and sub-
deletions generated in the context of cry1a-Luc and cry1a
LRR-Luc, respectively.
(DOC)
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