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Abstract
Varying depth of high-throughput sequencing reads along a chromosome makes it possible

to observe copy number variants (CNVs) in a sample relative to a reference. In exome and other
targeted sequencing projects, technical factors increase variation in read depth while reducing the
number of observed locations, adding difficulty to the problem of identifying CNVs. We present
a hidden Markov model for detecting CNVs from raw read count data, using background read
depth from a control set as well as other positional covariates such as GC-content. The model,
exomeCopy, is applied to a large chromosome X exome sequencing project identifying a list of
large unique CNVs. CNVs predicted by the model and experimentally validated are then recovered
using a cross-platform control set from publicly available exome sequencing data. Simulations
show high sensitivity for detecting heterozygous and homozygous CNVs, outperforming
normalization and state-of-the-art segmentation methods.

KEYWORDS: exome sequencing, targeted sequencing, CNV, copy number variant, HMM,
hidden Markov model
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1 Introduction
Copy number variants (CNVs) are regions of a genome present in varying number

in reference to another genome or population. CNVs are increasingly recognized

as important components of genetic variation in the human genome and effective

predictors of disease states. CNVs have been associated with a number of human

diseases including cancer (Campbell et al., 2008), autism (Sebat et al., 2007, Gless-

ner et al., 2009), schizophrenia (St Clair, 2009), HIV (susceptibility) (Gonzalez

et al., 2005), and intellectual disability (Madrigal et al., 2007). These variants pro-

duce phenotypic changes through gene dosage effects, when the number of copies

of a gene leads to more or less of a gene product, through gene disruption, when

a CNV breakpoint falls within a gene, or through regulatory effects, when a CNV

affects regulatory sequences such as enhancers and insulators (Kleinjan and van

Heyningen, 1998). Recent studies report that 20−40 megabases, around 1% of the

genome, are copy number variant in individual human genomes, making CNVs a

larger source of basepair variation than single nucleotide polymorphisms (Conrad

et al., 2010, Pang et al., 2010).

Two primary technologies for genome-wide detection of CNVs are array

comparative genomic hybridization (arrayCGH) and high-throughput sequencing

(HTS). ArrayCGH measures the fluorescence of two labeled DNA samples, which

competitively bind to many probe sequences printed on an array. When the values

from the probes are lined up according to genomic location, regions with variant

copy number ratio can be observed as consecutive probes with higher or lower fluo-

rescence ratio. CNVs exhibit a number of different signatures in resequencing data,

where HTS reads from a sample are mapped to a reference genome, as reviewed

by Medvedev et al. (2009). One kind of HTS signature is given by aberrant dis-

tances between the mapped positions of a paired end fragment overlapping a CNV,

or between the ends of an unmappable read overlapping a CNV breakpoint. An-

other HTS signature, which this paper will focus on, is the amount of HTS reads

mapping to regions along the chromosome, or “read depth”. The signature in this

case is a region with higher or lower read depth compared to a control sequencing

experiment, or compared to other regions within an experiment, assuming that HTS

reads are distributed uniformly along the sample genome.

The read depth CNV signature is similar to the pattern seen in arrayCGH,

so it is helpful to review the algorithms devised for this task. Popular algorithms

for analyzing arrayCGH data include circular binary segmentation (Venkatraman

and Olshen, 2007) and hidden Markov models (Fridlyand, 2004, Marioni et al.,

2006). Hidden Markov models are useful for segmentation of many kinds of ge-

nomic data, as they represent linear sequences of observed data made up of homo-

geneous stretches associated with a hidden state. There are efficient algorithms for
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assessing the likelihood of an HMM with certain parameters given observed data

and for estimating the most likely sequence of underlying states for a set of param-

eters (Rabiner, 1989). The HMMs designed for arrayCGH data take as input log

ratios of measured fluorescence, a continuous variable, while read depth data con-

sists of discrete counts of reads. We will therefore consider how to adjust the HMM

framework to model read counts.

The main obstacle for CNV detection from read depth is the variance due

to technical factors rather than copy number changes. HTS reads are subject to

differential rates of amplification before sequencing and differential levels of errors

during sequencing and mapping. For any HTS experiment, read depth in a ge-

nomic region can be related to local GC-content (Benjamini and Speed, 2011), as

well as sequence complexity and sequence repetitiveness in the genome. In whole

genome sequencing, it has been shown that normalizing read depth against GC-

content can be sufficient to predict CNVs accurately (Campbell et al., 2008, Yoon

et al., 2009, Alkan et al., 2009, Boeva et al., 2011, Miller et al., 2011). In paired

sequencing experiments, such as in tumor/normal samples, position-specific effects

can be eliminated through direct comparison, similarly to the elimination of probe-

specific effects in arrayCGH (Chiang et al., 2008, Xie and Tammi, 2009, Ivakhno

et al., 2010, Shen and Zhang, 2011, Sathirapongsasuti et al., 2011). However, HTS

experiments do not always cover the whole genome and do not always include a

reference sample sequenced using the same experimental protocol.

In targeted sequencing, such as exome sequencing, DNA fragments from

regions of interest are enriched over other fragments and sequenced. Ideally, the

sequenced reads map only to the targeted regions. Targeted sequencing therefore

results in fewer positions at which to observe a change in read depth attributable to

a CNV. Most target enrichment platforms use the following steps:

1. DNA from a sample is fragmented and prepared for later sequencing.

2. Prepared DNA fragments are hybridized to biotinylated RNA oligonucleotides

and captured with magnetic beads or hybridized to probes on an array.

3. The beads are washed, eluted and the RNA is digested or the array is washed

and eluted.

4. The remaining DNA sequences are amplified and sequenced.

Within the targeted regions, the enrichment steps lead to less uniform read

depth than in whole genome sequencing, but the read depth pattern is consistent

among samples using the same sequencing technology and enrichment platform.

Sequencing with three different technologies using the same enrichment platform,
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Harismendy et al. (2009) find “a unique reproducible pattern of non-uniform se-

quence coverage” within each group and low correlation of read depth across differ-

ent technologies. Testing three different target enrichment platforms with the same

sequencing technology, Hedges et al. (2011) report high correlation within samples

from the same platform and low correlation across different platforms. Taking ad-

vantage of the reproducibility of read depth, Herman et al. (2009) and Nord et al.

(2011) are able to identify CNVs in targeted sequencing by normalizing read depth

in individual samples against average depth over control samples, though thresholds

must be set for calling a position as CNV.

We sought to extend the HMM framework for CNV detection in targeted

sequencing data, modeling read counts in non-overlapping genomic windows as

the observed variable generated from a distribution depending on the hidden copy

number state. Similar to the usage of covariates by Marioni et al. (2006) in modulat-

ing transition probabilities, we outline a model which fits non-uniform read counts

to positional covariates such as background read depth, GC-content and window

width. Background read depth is generated similarly to the methods of Herman

et al. (2009) and Nord et al. (2011) by taking the median of normalized read depth

per window over a control set. By using a number of explanatory covariates, one

can analyze samples which have positive but low correlation with background read

depth and residual dependence on GC-content. Another benefit of the HMM frame-

work is the forward algorithm, which allows for fitting the distributional parame-

ters without knowing the underlying copy number state. The model formulation

replaces preprocessing, thresholding, and window-merging steps with the optimiza-

tion of a statistical likelihood over a parameter space.

We will present an HMM for predicting copy number state in exome and

other targeted sequencing data using observed read counts and positional covari-

ates. We show that this model can successfully detect private CNVs in an exome

sequencing project using all samples to generate background read depth. We then

evaluate the robustness of our method using a control set from publicly available

exome sequencing data from an alternate enrichment platform. We simulate CNVs

of various sizes and copy number in exome sequencing data and find that our model

outperforms normalization and segmentation methods in recovering the simulated

CNVs. Finally, we summarize the results and discuss possible extensions of the

method.
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2 Methods

2.1 Modeling resequencing read counts

As a measure of read depth, we count the number of start positions of reads with

high mapping quality in non-overlapping windows along a chromosome. To exam-

ine the characteristics of targeted sequencing read depth, we will count reads from

a whole exome sequencing project (Li et al. (2010), discussed later) in variable-size

windows subdividing the consensus coding sequence (CCDS) (Pruitt et al., 2009).

The distributions of counts per window for one sample often have positive skewness

(Figure 1). Over all windows, the maximal count can be up to 20 times the mean

count.

Figure 1: Distribution of read counts in windows covering the CCDS regions of

chromosome 1 for one exome sequencing sample, cropped at 100 reads per window.

In this paper, we use two methods of generating windows from targeted

regions. The method referred to above subdivides the CCDS regions such that a re-

gion of x basepairs (bp) is split evenly into max(1,�x/100�) windows. This ensures

that the individual windows covering smaller exons are of comparable size to the

multiple windows dividing larger exons. Smaller windows could theoretically be

chosen for higher resolution, but in exome sequencing data the resolution of CNV

detection is inherently limited by the sparse distribution of exons in the genome.

Furthermore, the windows must be large enough such that the read counts are suf-

ficiently high (from sensitivity analysis ∼ 50 reads per window) for the samples

with the least amount of sequencing. The windows generated from subdividing the
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CCDS regions of chromosome 1 are 112 bp on average. Another method of gener-

ating windows is to subdivide the targeted regions, which can increase the number

of observed basepairs as the targeted regions in exome enrichment often overhang

the CCDS regions. Both methods are comparable in terms of the qualitative signa-

ture of CNVs in read depth and the resulting predicted CNV breakpoints. Setting

windows within the CCDS regions has two advantages though. First, the CCDS re-

gions are more likely to be covered equally across different enrichment platforms,

enabling cross-platform comparison or control sets. Second, we find that the ex-

tremes of the targeted regions have more variability than the centers. By starting

with the CCDS regions we can avoid these variable flanking regions.

A suitable distribution for modeling the observed read counts in windows

should have support on the non-negative integers. We could consider the Poisson

distribution with a position-dependent mean parameter, representing the underlying

rate of technical inflation of read counts. If the counts for a given window are

distributed as a Poisson, then replicates should have equal mean and variance. We

can check this assumption with read counts from a set of samples with similar

amount of total sequencing. While these samples are not replicates, we expect that

the private CNVs and SNPs which would alter read counts per sample should be

rare in the coding regions. Plotting the variance over the mean for the read counts

shows that most windows fall above the line y = x, and are therefore overdispersed

for Poisson distributed data (Figure 2).

Robinson et al. (2010) and Anders and Huber (2010) suggest that the neg-

ative binomial is a more appropriate distribution for HTS read count data, having

both a mean parameter μ and dispersion parameter φ . The density for a random

variable X ∼ NB(μ,φ) is defined by

P(X = x) =
Γ(x+1/φ)
x! Γ(1/φ)

(
μ

μ +1/φ

)x

(1+ μφ)−1/φ , μ,φ > 0 (1)

with mean and variance given by

E(X) = μ, Var(X) = μ(1+ μφ) (2)

The negative binomial is often used in ecological and biological contexts

when the rate underlying a count statistic is variable and covariates cannot be found

which would account for the variance. It can be derived as a mixture of Poisson

distributions with the mean parameter following a gamma distribution, and it con-

verges as φ → 0 to a Poisson with mean μ . We will use positional covariates to

account for as much variance in read counts over windows as possible, but allow

for the situation that unknown factors lead to overdispersed counts. We will first

attempt to fit a single value of φ over all windows, then add model parameters to

allow for φ to vary over windows.
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Figure 2: Mean and variance of read count for 23,619 windows over 40 samples

with similar amount of total mapped reads.

To obtain a measure of the positional non-uniformity in read depth, we cal-

culate the median of sample-normalized read counts over a control set. Because

samples vary in the total number of reads which map to the reference genome, we

first need to normalize read counts per sample. Boxplots of read counts per window

for 5 samples are shown in Figure 3. The distributions all exhibit positive skewness

but the median and quartiles are shifted. Given a matrix C of counts of reads in T
windows on a chromosome (rows) across N samples (columns), Cnorm is formed by

dividing each column by its mean. Distributions of sample-normalized read counts

per window (rows of Cnorm) indicate high variance in medians across consecutive

windows (Figure 4). Some but not all of this variance of median read depth can

be explained by GC-content (Figure 5). We calculate the background read depth

by taking the median of the sample-normalized read count per window (median of

rows of Cnorm), and the background variance similarly.
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Figure 3: Boxplots of read counts for 5 samples over windows covering exons of

chromosome 1.

Figure 4: Sample-normalized read counts for 15 consecutive windows over 200

samples.

2.2 Hidden Markov model to predict sample CNVs

HMMs are a natural framework to segment genomic data with a discrete number

of states, and we can take advantage of the algorithms that have been developed to
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Figure 5: Smooth scatterplot of median read depth over GC-content. Median read

depth is the median of sample-normalized read counts from 200 samples.

evaluate these models. The observed variable is c∗ j, the j-th column of C, which

represents the counts of HTS reads for sample j in T non-overlapping windows

positioned linearly along a chromosome. Using the notation of Rabiner (1989) and

Fridlyand (2004), we write c∗ j as �O = {O1, . . . ,OT}. We define exomeCopy, a

homogeneous discrete-time HMM to generate �O, by the following:

1. The number of states K. The set of states {S1, . . . ,SK} represents the possible

copy number states of the sample. �Q = {q1, . . . ,qT} represents the vector

of underlying copy number states over T windows. qt = Si indicates that at

window t, the sample has copy number Si.

2. The initial state distribution �π = {πi} where

πi = P(q1 = Si), 1≤ i≤ K (3)

3. The state transition probability distribution A = {ai j} where

ai j = P(qt+1 = S j|qt = Si), 1≤ i, j ≤ K, 1≤ t ≤ T −1 (4)

4. The emission distribution B = {bi(�O)} where

bi(�O) = { f (Ot |qt = Si)}, 1≤ i≤ K, 1≤ t ≤ T (5)
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f ∼ NB(Ot ,μti,φ), 1≤ i≤ K, 1≤ t ≤ T (6)

NB is the negative binomial distribution with mean and dispersion parameters

μ,φ > 0. Note that the mean of the emission distribution changes for different

windows and states.

The choice of the number of underlying copy number states K must be fixed

before fitting parameters, as well as the possible copy number values {Si} and ex-

pected copy number d. We tested the model for {Si}= {0,1,2,3,4} for the diploid

genome (d = 2), and {Si}= {0,1,2} for the non-pseudoautosomal portion of the X

chromosome in males (d = 1). Sets {Si} with higher possible copy number values

can be used as well.

Two transition probabilities are fitted in the model: the probabilities of tran-

sitioning to a normal state and to a CNV state. These are depicted for a chromosome

with expected copy count of 2 in Figure 6, with transitions going to the normal state

as black lines and transitions going to a CNV state as gray dotted lines. The proba-

bility of staying in a state (grey solid lines) is set such that all transition probabilities

from a state (rows of A) sum to 1. The initial distribution π is set equal to the tran-

sition probabilities from the normal state.

0 1 2 3 4

Figure 6: Transition probabilities for copy number states of the HMM with {Si}=
{0,1,2,3,4} and expected copy number d = 2.

Consecutive windows in targeted sequencing can be adjacent on the chro-

mosome if they subdivide the same targeted region or distant if they belong to

different targeted regions. Therefore we might consider modifying the transition

probabilities per window, because two positions that are close together on the chro-

mosome should have a higher chance of being in the same copy number state than

those which are distant. This is reflected in the heterogeneous HMM of Marioni

et al. (2006) with transition probabilities that exponentially decay or grow to the

stationary distribution as the distance grows. In testing we observed that a simple
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transition matrix results in similar CNV calls as the heterogeneous model without

having to fit extra parameters.

While the HMMs of Fridlyand (2004) and Marioni et al. (2006) fit an un-

known mean for the emission distribution of each hidden state, the emission dis-

tributions of exomeCopy for different states differ only by the discrete values {Si}
associated with the hidden copy number state. Similar to the usage of positional

covariates by Marioni et al. (2006) to modulate the transition probabilities, we use

covariates to adjust the mean of the emission distribution, μti. We introduce the fol-

lowing variables: X , a matrix with leftmost column a vector of 1’s and remaining

columns of median background read depth, window width and quadratic terms for

GC-content; and �β a column vector of coefficients with length equal to the number

of columns of X . The mean parameter μti of the t-th window and the i-th state is

calculated by the product of the sample to background copy number ratio and a lin-

ear combination of the covariates xt∗, the t-th row of X. The mean parameter must

be positive, so if the product is negative we take a small positive value ε .

μti = max

(
Si

d
(xt∗�β ) , ε

)
ε > 0 (7)

The parameters of the HMM can be written compactly as �λ = (�π,A,B).
The underlying parameters necessary to fit are the transition probability to normal

state, the transition probability to CNV state, �β and φ . Parameters which are fixed

are K, {Si} and d. The input data is �O and X . The forward algorithm allows for

efficient calculation of the likelihood of the parameters given the observed sequence

of read counts, L(�λ |�O) (Rabiner, 1989). We use a slightly modified version of the

likelihood function to deal with outlier positions. Some samples will occasionally

have a very large count in window t such that bi(Ot) < ε for all states i and ε equal

to the smallest positive number representable on the computer. In this case, the

model likelihood is penalized and the previous column of normalized probabilities

for the forward algorithm is duplicated.

To find an optimal�λ , we use Nelder-Mead optimization on the negative log

likelihood function, with the optim function in the R package stats (R Develop-

ment Core Team, 2011). A value of�λ is chosen which decreases the negative log

likelihood by an amount less than a specified relative tolerance. For this value of�λ ,

the Viterbi algorithm is used to evaluate the most likely sequence of copy number

states at each window,

Viterbi path = argmax
�Q

(P(�Q | �O,�λ ))
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This most likely path is then reported as ranges of predicted constant copy

number. The ranges extend from the starting position of window s with q̂s �= q̂s−1

to the ending position of window e, such that q̂e = q̂t , s ≤ t < e. For targeted

sequencing, the nearest windows are not necessarily adjacent, so the breakpoints

could occur anywhere in between the end of window s−1 and the start of window

s, for example. Ranges which correspond to CNVs can be intersected with gene

annotations to build candidate lists of potentially pathogenic CNVs.

The optimization procedure requires that we set initial values for the various

parameters to be fit. Initializing the probability to transition to a CNV state very low

and the probability to transition to normal state high ensures that the Markov chain

stays most often in the normal state. X is scaled to have non-intercept columns

with zero mean and unit variance, as this was found to improve the results from

numerical optimization. �β is initialized to β̂ using linear regression of the raw

counts �O on the scaled matrix of covariates X . φ is initialized using the moment

estimate for the dispersion parameter of a negative binomial random variable (Bliss

and Fisher, 1953). Although each window is modeled with a different negative

binomial distribution, we found a good initial estimate for φ uses the sample mean

ō of �O and the sample variance s2 of (�O−X β̂ ):

φ̂ = max

(
(s2− ō)

ō2
, ε

)
, ε > 0 (8)

We extend exomeCopy to an alternate model, exomeCopyVar, where φ is

replaced by �φ which can vary across windows. The input data for modeling �φ is

the variance at each window of sample-normalized read depth, which can be seen

in Figure 4. This modification could potentially improve CNV detection by ac-

counting for highly variable windows using information from the background. We

introduce Y , a matrix with leftmost column a vector of 1’s and other columns of

background standard deviation and background variance. The emission distribu-

tions are then defined by

f ∼ NB(Ot ,μti,φt), 1≤ i≤ K, 1≤ t ≤ T (9)

φt = max(yt∗�γ , ε) , ε > 0 (10)

�γ is a column vector of coefficients fitted similarly to �β using numerical optimiza-

tion of the likelihood. �γ is initialized to [φ̂ ,0,0, . . .] with φ̂ defined in Equation

8.
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Table 1: Summary of exomeCopy notation

Ot observed count of reads in the t-th genomic window

f the emission distribution for read counts

μti the mean parameter for f at window t in copy state i
φ the dispersion parameter for f
Si the copy number value for state i
d the expected background copy number (2 for diploid, 1 for haploid)

X the matrix of covariates for estimating μ
Y the matrix of covariates for estimating φ
β the coefficients for estimating μ
γ the coefficients for estimating φ

3 Results

3.1 XLID project: chromosome X exome resequencing

The accuracy with which a model can predict CNVs from read depth depends on

many experimental factors, so we try to recover both experimentally validated and

simulated CNVs using backgrounds from different enrichment platforms. First we

run exomeCopy on data from a chromosome X exome sequencing project to find the

potential genetic causes of disease in 248 male patients with X-linked Intellectual

Disabilities (XLID) (Manuscript submitted). As males are haploid for the non-

pseudoautosomal portion of chromosome X, detection of CNVs is easier than in the

case of heterozygous CNVs, where read depth drops or increases by approximately

one half. The high coverage of the targeted region in this experiment also facilitates

discovery of CNVs from changes in read depth. Each patient’s chromosome X

exons are targeted using a custom Agilent SureSelect platform and 76 bp single-

end reads are generated using Illumina sequencing machines. Reads are mapped

using RazerS software (Weese et al., 2009). Total sequencing varies from 1 to

20 million reads per patient over 3.8 Mb of targeted region. Reads are counted

in 100 bp windows covering the targeted region, and only windows with positive

median read depth across all samples are retained. The positional covariates used

are background read depth from all patients and quadratic terms for GC-content.

exomeCopy predicts on average 0.3% of windows per patient to be CNV.

This represents 11,581 CNV segments from all patients combined, with 60% being

single windows with outlying read counts. For candidate CNV validation we retain

640 predicted CNVs covering 5 or more windows. The larger segments are stronger

causal candidates and we suspect are less enriched with artifacts. The majority of

the 640 predicted CNVs are common across many patients. There are 66 predicted
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CNVs present in 1-2 patients, 14 in 3-10 patients, 8 in 11-20 patients, and 7 in

21-75 patients, described further in Table 2. We retain 16 predicted novel CNVs,

which are present in 1-2 patients, not in the Database of Genomic Variants (Zhang

et al., 2006) and not already known to be associated with XLID.

As of writing, 10 predicted novel CNVs, 6 duplications and 4 deletions, have

been tested and all were confirmed by arrayCGH or PCR. These CNVs are strong

causal candidates based on segregation in the patients’ families and the genes which

are contained in the CNVs. This estimated lower bound of patients with causal

candidate CNVs, about 4%, is in agreement with results from a previous study

suggesting that 5-10% of cases of XLID can be attributed to CNVs (Madrigal et al.,

2007). Plots of experimentally validated CNVs found by our method are shown

in Figure 7, with each point corresponding to the raw read count from a window

covering the targeted region.

Table 2: Predicted XLID CNVs by type, frequency, genomic size and inclusion in

the Database of Genomic Variants (DGV)
Genomic size

[600bp-10kb] (10-20kb] (20-100kb] (100kb-4Mb]

Type Freq. DGV+ DGV- DGV+ DGV- DGV+ DGV- DGV+ DGV-

Dup. 1-2 10 10 2 3 2 3 2 16

3-10 9 2 0 0 0 1 1 0

11-20 2 1 1 0 2 0 0 0

21-75 2 3 2 0 0 0 0 0

Del. 1-2 6 6 0 1 1 2 0 2

3-10 1 0 0 0 0 0 0 0

11-20 2 0 0 0 0 0 0 0

21-75 0 0 0 0 0 0 0 0

3.2 Recovering XLID CNVs with a cross-platform control set

To investigate the effect of background read depth on CNV detection, we attempt

to recover the experimentally validated CNVs in the XLID patients, substituting

the XLID read depth background used in the previous section with a read depth

background from a whole exome sequencing project of 200 Danish male and fe-

male individuals published by Li et al. (2010) (referred to afterward as “Danish” or

“Danish exomes”). We also run exomeCopy on the 9 XLID patients using no back-

ground read depth, but only GC-content and window width information. In contrast

to the custom Agilent platform used in the XLID project, the Danish samples were

enriched for exons using a NimbleGen array and the coverage is substantially lower,

with a median of 15 reads per window compared to 326 per window in the XLID
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Figure 7: Experimentally validated CNVs identified in the XLID read depth data.

The y-axis corresponds to the raw read counts for windows along the targeted re-

gion. The x-axis corresponds to the index of the windows. The color is the predicted

copy number with blue indicating a hemizygous duplication and red indicating a

hemizygous deletion.

project. For comparison of background read depth between the XLID samples and

the Danish samples, we restrict the analysis to 9,710 CCDS-based windows on

chromosome X, excluding the pseudoautosomal regions and regions not covered

by both enrichment platforms. The CCDS regions are split evenly into windows no

larger than 200 bp.

Comparing median read depth for XLID samples with median read depth

for Danish samples shows positive but not strong correlation across the different

platforms (Figure 8). Comparing within groups shows that two randomly selected

subsets of a group are highly correlated in both datasets. This is in agreement with

the observations of Hedges et al. (2011) that read depth is highly correlated within

enrichment platforms but only partially correlated across platforms.

As a robust measure of signal to noise, we calculate the median read depth

divided by the median absolute deviation of read depth across windows on chro-

mosome X covered by different enrichment platforms. We also provide read depth

statistics from 16 high coverage paired-end exome sequencing samples and one

whole genome sample from the 1000 Genomes Project (1000 Genomes Project

Consortium, 2010). In the case of paired-end data, each sequenced read is counted

in its respective window. The decreased signal to noise ratio displayed in Table

3 for the exon sequencing projects supports our assumption that exon enrichment

leads to increased non-uniformity in read depth.

We run exomeCopy on 9 of the XLID patients with experimentally validated

CNVs, once while substituting the XLID background with the Danish background,
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Figure 8: XLID median normalized read depth and Danish exome median normal-

ized read depth. Between groups there is positive but not strong Pearson correlation,

while randomly dividing groups and comparing median read depth within groups

gives very high correlation.

Table 3: Read depth statistics for experiments in CCDS-based windows on chr X

study submitted Li et al. 1000 Genomes 1000 Genomes

population XLID Danish PUR NA12878

sequencing target chrX exons exome exome whole genome

# samples used 248 200 16 1

median read count 326 ± 96 15 ± 6 200 ± 102 105

(mean ± sd)

signal-noise ratio 2.0 ± 0.2 1.3 ± .1 1.1 ± .03 2.7

(mean ± sd)

mean pairwise .87 .77 .97 –

correlation

and again using no background read depth, only GC-content and window width as

covariates. One experimentally validated duplication is removed from analysis, as

it spans windows not targeted by the NimbleGen platform. The median read depth

from the XLID dataset and the Danish exome dataset is only partially correlated (r

= 0.58), so dividing one by the other would not necessarily help to recover CNV

signal. However, exomeCopy is able to adapt to less correlated backgrounds by

reducing the contribution of the background term and increasing the contribution

of the other covariates, window width and quadratic terms for GC-content. The

results in Table 4 demonstrate that with an independent control set for generating
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background, exomeCopy is frequently able to recover most of the windows con-

tained within the experimentally validated CNVs. The sensitivity is measured as

the percent of windows which are predicted as CNV out of the total number of win-

dows contained within the validated CNV region, as the HMM does not always fit

the entire span with the correct copy number state. The use of Danish exome back-

ground is always more sensitive in recovering CNVs than when exomeCopy is run

without any read depth background. The average percent of windows predicted to

be CNV is 5.4% and 1.9%, using Danish background and without background re-

spectively. Also noteworthy in Table 4 is that CNVs with comparable genomic size

can cover different numbers of windows, so methods for CNV detection in exome

data should be sensitive to events covering only a few windows.

Table 4: Recovery of experimentally validated XLID CNVs

CNV type # windows genomic % CNV windows recovered

size in kb Danish bg without bg

duplication 488 899 80 31

duplication 218 291 96 94

duplication 90 541 100 34

duplication 90 541 100 1

duplication 74 329 87 83

deletion 51 237 100 100

deletion 21 169 77 77

deletion 17 27 100 100

deletion 4 49 100 100

3.3 Sensitivity analysis on simulated autosomal CNVs

In order to further evaluate the performance of the model on CNVs in autosomes

and in low coverage samples, we simulate heterozygous and homozygous CNVs of

various size on chromosome 1 in the Danish exome data. Simulated heterozygous

deletions and duplications are generated by randomly sampling 50% of reads in a

specified region and either removing or doubling the counts respectively. Simulated

homozygous deletions and duplications are generated by removing 95% of the reads

or doubling the reads respectively.

For sensitivity analysis, we simulate CNVs overlapping varying numbers of

CCDS-based windows on chromosome 1, and report the percent of windows within

the simulated CNV with accurate predicted copy number, averaging over a number
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of simulation runs. We report the sensitivity in terms of windows rather than base-

pairs, as the major factor influencing sensitivity is the amount of exonic (targeted)

basepairs contained within the CNV. The number of windows is approximately the

amount of targeted basepairs contained within the CNV divided by the average

window size (112 bp for CCDS regions on chromosome 1). For reference, we in-

clude Table 5 which gives the estimated quartiles of genomic sizes in kilobases for

varying number of CCDS-based windows on chromosome 1.

Table 5: Quartiles of genomic size (kb) by number of CCDS-based windows

# CCDS-based windows 1Q 2Q 3Q

10 10 23 58

20 35 72 160

50 125 238 460

100 324 566 1043

200 684 1145 2037

400 1640 2656 4400

We test the recovery of simulated CNVs with or without background vari-

ance information using exomeCopy and exomeCopyVar respectively. The model

incorporating background variance performs nearly the same, although it has in-

creased calling outside of the simulated CNVs and longer running time (Figure 9).

For both models we can calculate the variance-mean ratio of the emission distribu-

tion for the normal state, (1 + φ μnormal), averaging over all windows. exomeCopy

fits the dispersion parameter φ such that the variance of the emission distribution

is on average 1.51 times the normal state mean. This supports the earlier analysis

that read counts are overdispersed for Poisson. exomeCopyVar fits �φ with a linear

combination of columns in Y (Equation 10) such that the variance of the emission

distribution is on average 1.32 times the normal state mean. φt is set to nearly zero

for some windows, reducing the emission distributions to Poisson, but has higher

φt than used by exomeCopy for windows with high background variance.

We further compare the sensitivity of exomeCopy against segmentation of

normalized log ratios. We leave out exomeCopyVar as it uses background vari-

ance information in predicting copy number state which cannot be incorporated

into normalization methods. We use two state-of-the-art segmentation algorithms

for arrayCGH log ratios, the circular binary segmentation algorithm of Venkatra-

man and Olshen (2007) (referred to as “DNAcopy”) and the hidden Markov model

of Marioni et al. (2006) (referred to as “BioHMM”), implemented in the R packages

DNAcopy and snapCGH respectively. For comparing against normalization methods,

we calculate the log2 ratio of sample counts plus a pseudocount of 0.1 over the me-

dian background. Log ratios are regressed on the remaining covariates (window
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Comparison of algorithms on simulated CNV

size of CNV in windows
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Figure 9: exomeCopy and exomeCopyVar perform similarly in recovering simu-

lated CNVs of different type and size. Average percent of windows called CNV

outside of the simulated CNVs is 0.5% and 0.8% and average run time is 7.6 s and

10.3 s for exomeCopy, exomeCopyVar respectively. Each point is the average over

100 simulations.

width, quadratic terms for GC-content, and an intercept term), and the residuals are

used as input to the segmentation algorithms.

Segmentation algorithms on the normalized data are preferable to the many

false positives that would result from using thresholds. DNAcopy and BioHMM

are run using default settings, except the epsilon was lowered for BioHMM to

1e-4 to allow for sufficient number of simulations and var.fixed was set to TRUE.

Predicted segment means are translated into estimates of discrete copy number by

thresholding at intermediate values. For diploid genome sequences, normalized log

ratio in (−∞, log2(0.25)] is recorded as homozygous deletion, normalized log ratio

in (log2(0.25), log2(0.75)] is recorded as heterozygous deletion, etc. Relaxed eval-

uation allows any predicted value in (−∞, log2(0.75)] to be accepted for deletions

and any predicted value in (log2(1.25),∞) to be accepted for duplications.

exomeCopy has equal or superior sensitivity to normalization and both seg-

mentation methods for almost all types of CNVs (Figure 10). exomeCopy is often

more sensitive for CNVs overlapping less than 100 windows, which is important

as many of the experimentally validated CNVs from the XLID project overlapped

100 or fewer windows (Table 4). In the case of homozygous deletions, all methods

can recover almost all windows of the simulated CNVs. In the relaxed evaluation,
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Comparison of algorithms on simulated CNVs

size of CNV in windows
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Figure 10: Performance of algorithms in recovering simulated CNVs on chr 1 of

the Danish exome samples. exomeCopy is equally or more sensitive for almost all

types and sizes of CNVs. Average percent of windows called CNV outside of the

simulated CNVs is 0.4%, 5.2%, 0.2% and average run time is 7.4 s, 111.9 s, 3.7 s

for exomeCopy, BioHMM, and DNAcopy respectively. Each point is the average

over 100 simulations.

the results are very similar, with improved recovery for BioHMM in homozygous

duplications and heterozygous deletions (Figure 11).

As our method relies on the sample having increased read depth relative to

the background, it can be expected that the presence of the identical CNV in the

control set would reduce sensitivity. To estimate this effect on sensitivity, we simu-

late CNVs both in the test sample and at different minor allele frequencies (MAF)

in the control population. 400 simulations are performed for both homozygous

and heterozygous deletions/duplications covering 100 windows on chromosome 1

in the Danish exome data. We vary the MAF and the number of control samples

used to make the background. The simulated CNV is inserted into control sample

chromosomes with probability equal to the MAF. At MAF levels less than 10%,

we find that exomeCopy has 86% sensitivity or greater, nearly equal to the sensi-

tivity with an MAF of 0% (Table 6). The number of controls used does not seem to

have a large effect on the sensitivity, however individual samples in small control

sets might bias results. The average percent of windows called CNV outside of the

simulated CNVs is less than 0.9% for all combinations.
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Comparison of algorithms on simulated CNV (relaxed)

size of CNV in windows
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Figure 11: Relaxed evaluation of algorithms in recovering simulated CNVs on chr 1

of the Danish exome samples. The same simulations as in Figure 10 are presented,

but evaluation ignores the difference between heterozygous and homozygous pre-

dicted CNVs. BioHMM has improved recovery of small homozygous duplications

and heterozygous deletions.

Table 6: Percent of simulated CNV windows recovered by minor allele frequency

and number of controls
MAF

CNV type # controls 0% 1% 5% 10% 25% 50%

10 100 100 100 100 98 68

homozygous deletion 20 100 100 100 100 99 62

100 100 100 100 100 100 56

10 97 96 92 88 59 16

homozygous duplication 20 96 95 94 91 55 9

100 95 97 94 90 59 3

10 99 99 98 96 51 0

heterozygous deletion 20 99 99 98 96 48 0

100 99 98 99 97 42 0

10 89 89 87 75 38 0

heterozygous duplication 20 90 90 86 83 35 1

100 91 88 88 82 36 0

20

Statistical Applications in Genetics and Molecular Biology, Vol. 10 [2011], Iss. 1, Art. 52

DOI: 10.2202/1544-6115.1732



Fitted coefficients over background correlation
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Figure 12: Effect of background correlation on the absolute value of fitted coef-

ficients. The x-axis shows the correlation of the simulated background with the

original Danish background. Each point is the average over 100 simulations.

We demonstrate exomeCopy adjusting to less correlated or uncorrelated

backgrounds in Figure 12. After adding increasing amounts of noise to the orig-

inal Danish background, the absolute value of the coefficients for window width

and quadratic terms for GC-content rise to replace the coefficient for noisy back-

ground. In the case that the sample is entirely uncorrelated with the background, the

model will remove all contribution of the background in modeling the read counts.

Simulations on the Danish exome data demonstrates that exomeCopy can

often recover CNVs in low coverage data if they overlap sufficient amount of tar-

geted sequence. However, we expect that exomeCopy will have improved perfor-

mance with higher coverage autosomal datasets. To assess the influence of total

sequencing depth on recovery of different kinds of CNVs, we performed further

simulations on 16 high coverage exome sequencing samples from the PUR popula-

tion of the 1000 Genomes Project. (1000 Genomes Project Consortium, 2010) The

library format is paired-end data, and we count both ends in their respective win-

dows. Although this decision introduces dependency between the counts in nearby

windows, it avoids the loss of sample coverage information at either or both posi-

tions.

To simulate experiments with different amounts of total sequencing, we sub-

sample reads from the original PUR samples to achieve 10, 20, 50 and 100 aver-

age read counts in windows subdividing the CCDS regions of chromosome 1. At

each level of read depth, we create a background across all 16 PUR samples, then

simulate CNVs of varying length and type as before. As expected, increasing the
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Influence of read depth on simulated CNVs
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Figure 13: Performance of algorithms in recovering simulated CNVs on chr 1 after

subsampling reads from the high coverage 1000 Genomes exome sequencing data.

exomeCopy is increasingly sensitive with increasing average read counts. Average

percent of windows called CNV outside of the simulated CNVs is always less than

0.7%. Each point is the average over 100 simulations.

read depth increases the sensitivity of exomeCopy, especially for the detection of

the smallest heterozygous duplications, with 78% or more windows recovered at

an average read count of 50. (Figure 13). This simulation suggests that average

read counts of at least 50 per window will result in high sensitivity to detect both

heterozygous and homozygous CNVs.

4 Discussion
Targeted sequencing is desirable for achieving high read coverage over regions of

interest, while keeping costs and the size of generated data to manageable amounts.

Exome sequencing prioritizes the discovery of variants in exons, as we expect these

variants are more likely to be associated with a distinct phenotype than those which

do not overlap exons. Nevertheless, methods for finding CNVs in targeted sequenc-

ing read depth data must overcome non-uniform patterns in read depth introduced

by enrichment steps and a reduced number of genomic loci at which to observe

changes.
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We introduce a statistical model, exomeCopy, for detecting CNVs in tar-

geted sequencing data which is robust across various enrichment platforms and dif-

ferent types and sizes of CNVs. In testing on exome sequencing data, our approach

is more sensitive than normalization and state-of-the-art segmentation methods in

finding duplications and heterozygous deletions which overlap few exons (Venka-

traman and Olshen, 2007, Marioni et al., 2006). exomeCopy formulates the CNV

detection problem as the optimization of a likelihood function over few parameters,

and therefore requires no thresholds or preprocessing decisions which might affect

downstream results. In modeling sample read count using a number of covariates

in addition to background read depth, our method can find CNVs in samples which

show low correlation with the background. This allows for targeted sequencing

projects with few samples to use median read depth from another project as back-

ground. While intuitively exomeCopy could also be applied to detect amplifications

in cancer sequencing using the healthy tissue read depth as background, we believe

the paired tumor/normal sequencing setup deserves a different statistical treatment.

We therefore recommend the use of methods specifically designed for segmentation

of paired tumor/normal exome sequencing experiments. (Sathirapongsasuti et al.,

2011)

Two limitations of CNV detection with targeted sequencing read depth are

the effect of polymorphic CNVs in the control set and the inability to precisely

localize CNV breakpoints. Although the median read depth method works well

for finding CNVs which are rare in the control set, it might miss CNVs which

are polymorphic. We formulate an HMM where the expected copy number d of

the control set is constant over all windows. For genotyping polymorphic CNVs,

one could locally cluster samples in the control set by read depth and attempt to

assign absolute copy numbers to the samples in a given region (Alkan et al., 2009).

Then the read depth for a copy number of d could be extrapolated from the clusters

using their assigned copy numbers. Addressing the problem of localization, CNVs

predicted from read depth in windows will not include exact breakpoints, and in the

case of exome sequencing, the predicted breakpoints could fall anywhere between

the outermost affected exons and the closest unaffected exons. Other sequencing

based methods, such as partial mapping or anchored split mapping can be employed

to recover breakpoints which fall within continuous targeted regions (Nord et al.,

2011, O’Roak et al., 2011).

As sequence read counts are increasingly taken as quantitative measure-

ments, statisticians and bioinformaticians must adapt methods to separate techni-

cal bias from biologically meaningful signal. From our investigations, we find in-

creased sensitivity to the underlying CNV signal in statistical modeling of the raw

count data compared to converting counts to normalized log ratios. We expect that

similar methods of contrasting individual samples against a background capturing
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technical bias will be useful in other sequencing protocols such as RNA-Seq and

ChIP-Seq.

5 Software
All calculations are performed in the R computing environment (R Development

Core Team, 2011). exomeCopy is available as an R package through the Biocon-

ductor project (http://www.bioconductor.org) (Gentleman et al., 2004).
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ranz, M. Tejada, L. A. Pérez-Jurado, X. Estivill, and M. Milà (2007): “X-

chromosome tiling path array detection of copy number variants in patients

with chromosome X-linked mental retardation.” BMC genomics, 8, 443+.

Marioni, J. C., N. P. Thorne, and S. Tavaré (2006): “BioHMM: a heterogeneous
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