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Abstract
Standard fluorescence microscopy approaches rely on measurements at single excitation and
emission bands to identify specific fluorophores and the setting of thresholds to quantify
fluorophore intensity. This is often insufficient to reliably resolve and quantify fluorescent labels
in tissues due to high autofluorescence. Here we describe the use of hyperspectral analysis
techniques to resolve and quantify fluorescently labeled cells in highly autofluorescent lung tissue.
This approach allowed accurate detection of green fluorescent protein (GFP) emission spectra,
even when GFP intensity was as little as 15% of the autofluorescence intensity. GFP-expressing
cells were readily quantified with zero false positives detected. In contrast, when the same images
were analyzed using standard (single-band) thresholding approaches, either few GFP cells (high
thresholds) or substantial false positives (intermediate and low thresholds) were detected. These
results demonstrate that hyperspectral analysis approaches uniquely offer accurate and precise
detection and quantification of fluorescence signals in highly autofluorescent tissues.
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1. Introduction
Resolving, tracking, and quantifying proteins and cells using fluorescence microscopy have
become hallmark techniques for visualizing the inner workings of complex biological
systems. However, it is often daunting to reliably identify fluorescent signals in tissues, due
to high levels of autofluorescence and low signal-to-noise ratios. One tissue that exhibits a
high level of autofluorescence is lung tissue, likely due to the high content of collagen and
elastin which have fluorescence emission peaks in the 450-550 nm range.[1], [2]
Quantifying fluorescent signals in the presence of high autofluorescence has been even more
problematic. Fluorescent protein assays present additional challenges, as there are limits to
protein expression levels while maintaining cellular viability. In specific, it is particularly
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difficult to discriminate between lung autofluorescence (peak wavelength ≈ 505 nm) and
fluorescent labels in the green portion of the spectrum, such as green fluorescent protein
(GFP).[3] This has been prohibitive for long-term proliferation and migration studies of
endothelial cells, as many of these studies use GFP-expression as the primary labeling
method.[4], [5] To compensate, image contrast and linearity (gamma) are often adjusted to
display only regions of high fluorescence emission. This intensity thresholding assumes that
high intensity fluorescence is due to GFP emission and that low-intensity fluorescence is due
to autofluorescence (or other unwanted signals). Hence, while fluorescence imaging of GFP-
labeled cells has been used in lung tissue studies,[6] it remains difficult to accurately
differentiate between lung autofluorescence and fluorescent protein signals using standard
(single-band) fluorescence microscopy techniques. This uncertainty results in a low
specificity and sensitivity for detecting GFP, which subsequently results in a high incidence
of false-positive identification and/or occurrence of type II errors. Thus, accurate,
quantitative detection of GFP-expressing cells in lung tissues is prohibitively difficult using
single-band (a.k.a. single-wavelength) fluorescence microscopy.

To overcome these limitations we have utilized hyperspectral imaging and quantitative
image-analysis approaches. Hyperspectral imaging was originally developed by NASA and
the DOD to solve specific remote sensing problems.[7] From a sampling standpoint,
hyperspectral imaging refers to the acquisition of spectral bands contiguously (often at
constant wavelength spacing) over a specified wavelength range.[8] From an analysis
standpoint, hyperspectral imaging often carries with it the assumption that many more
spectral bands are collected than there are constituent species in the sample (which allows
for band-reduction and orthogonal sub-space projection methods to be applied with little
loss in the ability to identify these species). The approach described herein meets both of
these requirements.

Hyperspectral image analysis can identify unique emission spectra of specific features or
fluorophores within complex image datasets. While hyperspectral imaging techniques have
been demonstrated in wide-field fluorescence microscopy,[9-11] confocal microscopy,
[12-15] and in in vivo fluorescence imaging,[16-21] a thorough and quantitative comparison
between single-band and hyperspectral fluorescence imaging has not been performed.
Despite this, hyperspectral systems are now available from major microscope
manufacturers.[13], [22] Hence, there is a significant need to demonstrate a definitive
approach for designing hyperspectral assays. This necessitates performing spectral
calibration, understanding hyperspectral image analysis, and quantitatively comparing
results from single-band and hyperspectral microscopy assays.

Hyperspectral instruments typically use a large array of optical filters,[23] a dispersive
element,[9] a tunable filter,[16], [17], [24], [25] or interferometry[26] to select wavelengths
from either the excitation[16], [27] or emission lightpath (common in most instruments).
This makes hyperspectral imaging systems inherently more complex – and typically more
expensive – than their single-band counterparts. The analysis of hyperspectral image data is
correspondingly complex, and while steps have been made in commercial software to
streamline this process, it is critical to understand the basic principles of spectral image
analysis before planning a hyperspectral assay. In specific, accurate definition of the spectral
library and flat-field spectral correction are steps that directly affect the sensitivity and
specificity of the spectral image analysis, as we demonstrate herein. For a further
introduction into hyperspectral imaging, Garini et al. provide a broad overview of
hyperspectral filtering configurations for life sciences applications,[12] while McNamara et
al. provide a summary of spectral microscopy data and sources.[28] Although applications
of hyperspectral analysis have been demonstrated for separating multiple fluorescence
signals[7], [14], [16], [22] and separating autofluorescence and fluorescence signals,[17] a
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definitive approach to hyperspectral imaging, and comparison between hyperspectral and
single-band microscopy is lacking.

The goal of this work is to develop a definitive approach for hyperspectral microscopy, and
to compare this approach to traditional single band (single-wavelength) microscopy. This is
demonstrated through identifying and quantifying GFP-expressing pulmonary microvascular
endothelial cells (PMVECs) in highly autofluorescent tissues – specifically lung tissue. The
results clearly indicate that this hyperspectral imaging approach results in improved
sensitivity and specificity, while outlining standardized methods for experimental design and
image analysis. This approach is applicable to a wide range of conditions and samples,
whether separating tissue autofluorescence from fluorescence (as demonstrated here) or
separating signals from multiple fluorescent labels.

2. Methods
Cell, animal, and sample preparation

Pulmonary microvascular endothelial cells (PMVECs) were isolated from CD rats as
described elsewhere.[29] Briefly, distal lung parenchyma was dissected from each lobe,
minced in 1 mm pieces and digested with collagenase II. Cells were filtered, by using a 40
mm BD strainer and seeded in tissue culture coated dishes. Cells were suspended in DMEM
media supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. After a
month, endothelial cell colonies, characterized by a panel of surface markers, were expanded
and sorted using a BD Aria II sorter. Two weeks later, cells that exhibited high proliferative
behavior (e.g. those that form colonies of more than 10,000 cells) were further expanded.
We have previously documented the endothelial progenitor capacity of these cells.[30]

Highly proliferative PMVECs were then transfected for 48 hours with a lentivirus encoding
green fluorescent protein (GFP) or an empty vector control, both under a CMV promoter.
GFP positive PMVECs were selected one week post-transfection by a cell sorter (BD Aria II
sorter). The day GFP positive- and GFP negative-PMVECs were infused, cells were
trypsinized, counted using a trypan blue exclusion approach (countess, Invitrogen) and
suspended at a concentration of 3 millions cells per ml of clinical grade saline solution.
Samples of GFP positive- and GFP negative-PMVECs were prepared as a confluent
monolayer on 25mm round glass coverslips, for use as control samples. Prior to imaging,
cells were incubated with Hoechst 33342 (Invitrogen Corporation, Carlsbad, CA) at a
concentration of 5 μg/mL for 30 minutes. Coverslips with confluent cells were then fixed in
a circular holder and bathed in 2 mL of a buffer containing (mM): 145 NaCl, 4 KCl, 10
HEPES, 10 D-glucose, 1 MgCl2, 1 CaCl2, pH 7.35.

Animal care and procedures conformed to the Public Health Service (PHS) Policy on
Humane Care and Use of Laboratory Animals and The Institutional Animal Care and Use
Committee (IACUC). Adult male CD rats were anesthetized with a blend of ketamine (75
mg/kg, BW) and xylazine (10 mg/kg, BW) intraperitoneally. Mechanical ventilation was
initiated following a tracheostomy at 6 mL/kg, BW with room air. A thoracotomy was
performed and the pulmonary artery and left atrium cannulated with PE-240 tubing. Blood
from the pulmonary circulation was rinsed with 50 mL saline solution using a roller pump.
After that, 3 million GFP positive PMVECs, 3 million GFP negative PMVECs, or saline
solution containing 5% Bovine serum albumin were perfused into the lungs of 3 different
animals by using the same constant volume perfusion approach described. Perfusion was
maintained for 5 minutes, after which the pulmonary circulation was tightened using
umbilical tape and the trachea tightened during maximal inspiration to achieve adequate
lung inflation. Perfused lungs were then fixed in optimal cutting temperature (OCT)
compound and stored in a light protected container at −80°C for at least 24 hours. Tissues
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were processed for cryosections of 10 μm thickness. Sections were mounted on poly-L-
lysine coated slides and stained with 10 μL of 0.225 μM Hoechst 33342. Fluorescent
Mounting Medium (Dako Cytomation, Carpinteria, CA) was used to apply the coverslips.

Instrument configuration, calibration, and image acquisition
The series of steps in this spectral imaging approach have been designed to maximize the
sensitivity for detection of GFP-expressing cells while minimizing (and in many cases,
eliminating) false-positive errors. These steps are outlined in Figure 1.

Spectral microscope—Fluorescence microscopy (Figure 2) was performed using an
inverted fluorescence microscope (TE2000-U, Nikon Instruments, Melville, NY), equipped
with a 40X-oil immersion objective (S Fluor, 40X/1.30 Oil, DIC H/N2, Nikon Instruments).
Although chromatic correction information is not available from the manufacturer, we have
observed little change in focal length between 450 and 650 nm. It should be noted that high
degree of chromatic aberration, were it present, would result in a distorted spectral profile
that would affect the transfer function of the microscope and could result in nonlinear
spectral mixing. Fluorescence excitation was provided by a liquid light guide-coupled Xe
arc lamp (Lambda DG-4, Sutter Instrument Company, Novato, CA). Spectral filtering of the
fluorescence emission was accomplished using a variable-bandwidth acousto-optic tunable
filter (AOTF), specially configured for microscopic use (HSi-300 Hyperspectral Imaging
System, ChromoDynamics, Orlando, FL). For Hoechst 33342 imaging, a 360/40 nm
excitation was used with a 400 nm long-pass dichroic beamsplitter and the emission filter
tuned to 450 nm. For spectral imaging of GFP and lung autofluorescence, a 430 nm
excitation was used with a 450 nm long-pass dichroic beamsplitter (and a variable
wavelength emission). Images were detected using a cooled, back-illuminated, charge-
coupled device (CCD) camera (Cascade 512B, Photometrics, San Diego, CA). The tunable
filter allows selection of a bandwidth from 1.7-47 nm FWHM and tuning over a range of
450-800 nm. The transmission band of the HSi-300 is roughly Gaussian in shape. Hence,
with appropriate excitation and beam-splitting optics (provided through additional filter
cubes), a wide variety of fluorophores may be imaged using this system. The tunable filter
and CCD camera were both controlled using μManager software (Vale Lab, UCSF).[31]

Instrument calibration—The factory wavelength calibration of the HSi-300 was verified
using a multi-ion discharge lamp (MIDL, LightForm, Inc., Asheville, NC) and methods
outlined by Lerner and Zucker[32]. In summary, the MIDL emission spectrum was
measured using a fiber-coupled, high-sensitivity CCD spectrometer (QE65000, Ocean
Optics, Inc., Dunedin, FL). The MIDL was then placed on the microscope stage and a
spectral image stack was collected. The spectrum from the image stack was extracted and
compared with the spectrometer-measured spectrum to verify that emission peaks occurred
at correct wavelengths. As the spectral peaks were aligned within the wavelength step-size
of the HSi-300, no further wavelength-calibration was performed.

A modified version of a spectrofluorimeter correction procedure was used to account for
wavelength-dependent response of the imaging system[33]. A sample blank was made for
each type of sample imaged – a blank slide and coverslip mounted using antifade
fluorescence mounting medium was used as the tissue blank, and a 25 mm round coverslip
in a round holder bathed in Tyrodes solution was used as the cell-suspension blank. For a
given measurement, the corresponding sample blank was placed on the stage and
background (dark) and control (bright) spectral image sets were acquired using identical
exposure settings as the tissue and cell samples. The dark image set was acquired with the
excitation shutter open. The dark image set is a measure of background fluorescence, stray
light, noise, and instrument offset that is present in all image sets for a particular acquisition
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configuration. The bright image set was acquired similarly to the dark image set, with the
addition of a NIST-traceable light source (LS-1-CAL-INT, Ocean Optics, Inc., Dunedin,
FL) that was adjusted to fill the dynamic range of the CCD camera at the highest output
wavelength. The bright image set is a measure of how the spectral imaging system
attenuates a known light source in a wavelength-dependent manner, for a particular
acquisition configuration. The average dark and bright spectra were extracted from each of
these image sets. The spectral transfer function was calculated as:

(1)

Where IBright is the bright spectrum, IDark is the dark spectrum, and ILamp is the real (NIST-
traceable) lamp spectrum. A correction coefficient was also calculated as:

(2)

All images in this study were corrected by subtracting a dark spectrum and then multiplying
by the correction coefficient, as follows:

(3)

Where IRaw is the raw spectral image stack and ICorrected is the corrected spectral image
stack. Image correction and conversion to band-sequential image files was performed using
MATLAB software (The MathWorks, Inc., Natick, MA).

Image acquisition—Spectral images of fluorescence emission were acquired at 5 nm
increments, from 450-800 nm, using a 8.5 nm bandwidth (FWHM). The overlap in adjacent
wavelengths results in a slightly decreased spectral resolution, but an increased signal
strength, allowing spectral image stacks to be acquired with a shorter acquisition time and
less photobleaching. For adherent cells on 25 mm round coverslips, an exposure time of 100
ms per wavelength was used. Five fields of view were acquired for each cell type (non-
expressing and GFP-expressing PMVECs).

For lung cryoslices, an exposure time of 2000 ms was used. 16 fields of view were acquired
from each animal (control and PMVEC-perfused lung). Fields of view were selected
sequentially in a 4 × 4 field-of-view region to avoid operator bias. Background (dark)
subtraction and flat-field correction were applied to all samples using a corresponding blank
sample and identical acquisition settings.

For all samples, a nuclear (Hoechst 33342) and brightfield image was also collected for each
field of view. Nuclear images were used in image processing to identify the center of cells
while brightfield images were used to verify the structure of tissue cryoslices.

Single-band analysis
Single-band (a.k.a. single wavelength) analysis of the identical image sets was performed by
summing fluorescence emission bands corresponding to a standard GFP emission filter,
(ET525/50m, Chroma Technology Corp., Bellows Falls, VT). Single-band images were then
thresholded to identify GFP-positive and negative pixels.

Theoretical sensitivity analysis—The sensitivity of single-band thresholding was
assessed by artificially adding known amounts of GFP signal to spectral images. The GFP
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signal that was added was taken from a control sample of GFP-expressing cells grown on
coverslip (as described above). Hence, this signal includes both the reference GFP spectrum,
and some elements of instrument noise. This GFP signal was added to a 30 × 30 pixel square
in the image. These images were summed to produce a single-band image, as described
above, and subsequently thresholded, using three thresholds (corresponding to low, medium,
and high sensitivities for GFP). The number of GFP-positive pixels was measured and
plotted as a function of the amount of GFP added to the original spectral image.

Cell quantitation analysis—Measurement of GFP-expressing PMVECs was
accomplished using Cell Profiler software.[34] An image analysis pipeline was created,
using the nuclei and thresholded image as inputs. Thresholding and primary object detection
was performed to locate all nuclei and GFP regions (defined as positive pixels in the single-
band thresholded image). Nuclei contained within GFP regions were then identified through
masking and categorized as GFP nuclei. Partially masked nuclei were excluded. All other
nuclei were categorized as native (lung tissue) nuclei. The number, size, and shape of GFP-
expressing cells per field-of-view was counted and output to an excel file.

Spectral analysis
The first step in supervised analysis of spectral image data is to construct a spectral library.
ENVI software (ITT Visual Information Solutions, Boulder, CO) was used for spectral
analysis and unmixing, and Excel (Microsoft Corporation, Redmond, WA) was used for
manipulation, normalization, and plotting of extracted spectra. Spectral image stacks were
visualized as false-colored RGB composites (red = 610 nm, green = 515 nm, blue = 480
nm).

GFP-expressing PMVECs were used as the pure GFP signal in the spectral library. For each
field of view (FOV), cellular and background ROIs were defined through thresholding.
Intensity-thresholding was performed at the peak bandwidth for GFP (500 nm). Pixels at or
below the background threshold were identified as background, while pixels at or above the
cellular threshold were identified as the cell spectrum. The intensity threshold was set
arbitrarily high, to ensure that non-fluorescent or weakly fluorescent regions were not
selected. The same intensity threshold was applied to all cellular FOV. For each FOV, the
pixel-averaged background spectrum was subtracted from the pixel-averaged cell spectrum,
producing a background-corrected fluorescent protein spectrum. This spectrum was
averaged over all FOV and the resulting spectrum saved in the spectral library.

The tissue autofluorescence spectrum was selected through thresholding negative control
samples to select regions of tissue autofluorescence, using the same method as described for
cellular ROIs. As with the control cell images, intensity-thresholding was performed using
the 500 nm band (the peak emission wavelength of autofluorescence). The intensity
threshold was set arbitrarily high, to ensure that non-fluorescent or weakly autofluorescent
regions were not selected. The same intensity threshold value was applied to the 16 fields of
view acquired for the control lung. The pixel-averaged spectra from these ROIs were
extracted from all 16 fields of view. These spectra were averaged, resulting in a FOV-
averaged spectrum for tissue autofluorescence and background. The final spectral library
contained three spectra (end-members): GFP, tissue autofluorescence, and tissue
background. These spectra were normalized to unity and were used as the basis for linear
unmixing and the theoretical sensitivity analysis.

Linear unmixing was performed using ENVI software. ENVI uses a linear least squares
approach to calculate the abundance of each component (end-member) in the spectral
library, for each pixel in the image. Because linear unmixing estimates the amount, or
abundance, of each signal source in a pixel, it is often referred to as a sub-pixel analysis
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technique. Unmixed images were saved as tiff files and used as the input images for
quantitative analysis.

Theoretical sensitivity analysis—The theoretical assay sensitivity was tested by
artificially adding known amounts of GFP signal to negative control images, using a custom
MATLAB script. For each negative control image, a 30 × 30 pixel square area was selected.
Fluorescent protein signal was artificially added to this square area in fixed amounts, chosen
as a percentage of the maximum autofluorescence intensity, at 500 nm, found across all of
the control samples.

Spectral image stacks with artificially added GFP signal were unmixed using the linear
unmixing procedure described. To determine the minimum detection limit of GFP, the
unmixed GFP image was normalized by dividing by the intensity of the spectral image (at
500 nm – the peak wavelength for GFP and autofluorescence in this study). The normalized
unmixed GFP intensity of pixels within the 30 × 30 pixel square was then plotted as a
function of the amount of GFP added. The minimum detection limit was defined as the
unmixed GFP intensity that was 3 standard deviations above a value of 0. Hence a pixel with
GFP would have to be 3 standard deviations from the mean in order to not be detected as
GFP-positive (Type II error).

All unmixed GFP images were then thresholded using this minimum detection limit to
define GFP-positive pixels. The number of GFP-positive pixels was plotted as a function of
the amount of GFP added. While spectral unmixing is not typically used to make a positive/
negative decision such as this, this analysis was performed to compare the sensitivity of this
spectral approach to single-band fluorescence microscopy (described above).

Cell quantitation analysis—Measurement of GFP-expressing PMVECs was
accomplished using Cell Profiler software[34], similar to the process described above for
single-band images. An image analysis pipeline was created, using the nuclei image and
unmixed GFP, autofluorescence, and background images as inputs. Thresholding and
primary object detection were performed to locate all nuclei and GFP regions. Nuclei
contained within GFP regions were then identified through masking and categorized as GFP
nuclei. All other nuclei were categorized as native (lung tissue) nuclei. Secondary object
detection was subsequently performed to identify GFP-expressing cells and native (lung)
cells. The number, size, and shape of each type of cell per field-of-view was counted and
output to an excel file.

3. Results
We have modified an inverted fluorescence microscope with a tunable filter for
hyperspectral image acquisition. We have used this microscope to acquire hyperspectral
images of lung cryoslices containing GFP-expressing PMVECs. We have also developed
analysis methods using spectral flat-field correction and linear unmixing that allow
separation of GFP signals from autofluorescence and quantitation of PMVEC count. We
have compared this hyperspectral microscopy approach to standard, single-band (a.k.a.
single-wavelength) fluorescence microscopy, using both experimental and theoretical
methods for assessing sensitivity and specificity. This approach holds great promise for cell-
tracking and proliferation studies in both ex vivo and in vivo samples, especially for cases
where traditional fluorescence microscopy fails to delineate between a desired fluorescence
signal and background autofluorescence. The steps described herein, as well as measures for
performing instrument calibration and estimating assay sensitivity, form a basic
understanding from which many variants of biological hyperspectral imaging assays may be
developed.
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Limitations of single-band fluorescence microscopy
The standard approach for fluorescence imaging (single-band fluorescence microscopy) was
evaluated for the case of GFP expressing cells in the pulmonary vasculature. The equivalent
of a single-band fluorescence image was calculated by summing spectral bands within the
range of a standard GFP-emission filter (ET525/50m, Chroma Technology Corp., Bellows
Falls, VT). Single-band images were then intensity-thresholded to identify GFP emission.

Determining the theoretical sensitivity of single-band fluorescence
microscopy—The sensitivity of single-band thresholding was assessed by artificially
adding a 30 × 30 pixel region of known amounts of GFP signal to spectral images of lung
autofluorescence. Spectral images were summed as described above to generate single-band
images (Figure 3, A), which were intensity-thresholded to measure the sensitivity for
detecting GFP (Figure 3, B). A high threshold resulted in a lower number of false-positives,
but also a low sensitivity for detecting GFP with significant type II errors (Figure 3, C). By
contrast, a low threshold resulted in a high number of false-positives, but also a higher
sensitivity for GFP detection. It may be possible to slightly decrease the number of false-
positives by using a narrower emission filter. However, we believe this improvement would
be minimal, as the lung autofluorescence in these studies has the same peak fluorescence
wavelength as GFP. Regardless of the threshold level, the number of false-positive events
was far higher than that achieved through the hyperspectral approach, as described below. In
addition, the variation in autofluorescence levels across different fields-of-view of the lung
was much higher than the 30 × 30 pixel region, as evidenced by the standard error of the
mean associated with this measurement (Figure 3, D, error bars).

Quantifying GFP-expressing cells using single-band intensity thresholds—
Experimental images of GFP-expressing cells in lung cryoslices were summed as described
above and analyzed to determine whether a single-band intensity threshold could accurately
detect these cells. The analysis results were nonspecific, identifying regions of high
autofluorescence as well as GFP-expressing cells (Figure 4, A,B & C,D). Thresholded
single-band images were analyzed using Cell Profiler software[34] to identify GFP regions
based on fluorescence intensity (Figure 4, F). It is uncertain whether GFP-expressing cells
were accurately identified using this technique (Figure 4, G), as there was an equivalent
number of GFP-expressing cells detected in the control tissue (high incidence of type I
errors). Although a high threshold decreased the incidence of false-positives, it also
decreased the sensitivity for GFP detection (Figure 3, C), with no significant increase in
specificity (Figure 4, B). Given the limitations of single-band fluorescence microscopy for
detecting a fluorophore in highly autofluorescent tissue, we have developed the
hyperspectral imaging approach (below) for differentiating GFP-expressing PMVECs from
lung autofluorescence using linear spectral unmixing and quantitative image analysis.

Advantages of hyperspectral fluorescence microscopy and quantitative image analysis
The hyperspectral imaging approach described here consists of a combination of calibration,
correction, sampling, and analysis steps. These steps ensure that: (1) the imaging system is
wavelength-calibrated, (2) the measured signal is corrected for a flat spectral response, (3)
non-specific system background is removed, (4) appropriate controls enable an accurate
sampling of each spectral component, and (5) the spectra are accurately represented and
quantitative analysis is possible.

Spectral calibration and flat-field correction—The first step in the hyperspectral
microscopy approach was to ensure that the hyperspectral imaging system provided an
accurate measurement of the fluorescence emission spectrum. Hence, prior to performing
experimental measurements, the hyperspectral microscope was calibrated and corrected to
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produce a flat spectral response. These steps are important for insuring reproducible results
and for comparing spectra across multiple systems. Wavelength calibration was performed
using a multi-ion discharge lamp (MIDL). Measuring the MIDL spectrum using the spectral
fluorescence microscope revealed that the factory calibration of the tunable filter was within
the 8.5 nm bandwidth used for these experiments (Figure 5, A). Hence, no further
wavelength calibration was performed.

Spectral flat-field correction was performed using a NIST-traceable light source (Figure 5,
B). These measurements revealed significant wavelength-dependent attenuation, as
evidenced by the spectral transfer function (Figure 5, D). This attenuation was primarily due
to the transmittance spectrum of the long-pass dichroic beamsplitter, the transmission
properties (at each tuning wavelength) of the tunable filter, and the quantum efficiency of
the CCD detector. The oscillations in the transfer function that are visible above 650 nm are
artifacts of the dichroic beamsplitter, as is the abrupt cut-off at 710 nm. Wavelength-
dependent effects of the tunable filter and the CCD detector quantum efficiency are less
obvious, but also contribute to the spectral transfer function. The inverse of the transfer
function (Figure 5, E) was used as a correction coefficient that was applied to each image
acquired to restore the system to a flat spectral response.

Determining the theoretical sensitivity of hyperspectral microscopy—Once the
hyperspectral microscope was calibrated and corrected for flat-field response, the sensitivity
for detecting GFP in the presence of lung autofluorescence was measured. A theoretical
sensitivity analysis was performed by artificially adding a 30 × 30 pixel square of GFP
spectrum to control lung images (Figure 6, B). Linearly unmixed images accurately
identified the 30 × 30 square, even at low levels of GFP. Results from this analysis revealed
that GFP may be detected when the GFP signal contribution is as little as 15% of the peak
autofluorescence intensity. Sensitivity results were recorded in terms of absolute GFP signal
added and unmixed GFP signal detected – a standard method for assessing the static
sensitivity of a detection system (Figure 6, C).[35] For reference, the peak autofluorescence
signal across all fields-of-view was 204 intensity units. This curve represents an overall
measure of the sensitivity that is achievable with hyperspectral microscopy for this specific
assay, and includes experimental and equipment characteristics. Hence, this is a lumped
sensitivity measurement, and should be repeated for changes in experimental or equipment
conditions (different probes, tissues, equipment configurations, etc.).

Once the minimum detection limit was identified, it was then used as the cut-off threshold
for identifying GFP-positive pixels. The GFP detection threshold was defined as the value
when the unmixed GFP signal was 3 standard deviations above 0. Hence, at this spectral
threshold a pixel with GFP would have to be 3 standard deviations from the mean in order to
be detected as containing no GFP (type II error). This threshold was applied across all
unmixed control images with varying amounts of GFP signal added. Results show that GFP
is detectable across a range of fields-of-view with a low incidence of type I errors and a high
sensitivity (Figure 6, D), when compared to the single-band analysis (Figure 3, C). There
was also more than an order-of-magnitude lower variation in unmixed hyperspectral images
than in single-band images (as seen by comparing Figure 6, D and Figure 3, D). These
results suggest this hyperspectral microscopy approach decreases the number of false-
positive pixels while greatly improving the GFP sensitivity (decreasing the number of type
II errors).

Spectral image analysis allows separation of GFP from autofluorescence
signal—Accurate identification of GFP-expressing PMVECs is the critical outcome of the
approach presented in this article. In contrast to single-band fluorescence microscopy,
hyperspectral microscopy and subsequent spectral image analysis of PMVEC-perfused lung
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tissues revealed that GFP emission could be adequately separated from lung
autofluorescence using linear unmixing. GFP-expressing PMVECs contributed to the total
fluorescence emission, but were of no greater intensity than surrounding lung
autofluorescence (Figure 7, A). However, linear unmixing of hyperspectral images
effectively separated autofluorescence from GFP emission (Figure 7, D-F). False-colored
image overlays allowed visualization of GFP and autofluorescence, within the context of
Hoechst-labeled nuclei (Figure 7, H), while grayscale unmixed images were retained for
quantitative analysis of PMVECs. Visual inspection of merged images revealed that
perfused PMVECs accumulated in the pulmonary septal network (Figure 8, C). In this initial
study, PMVECs were present as clusters, probably resulting from an inability to pass
through narrow portions of the microvasculature or from possible rupturing of the
microvasculature under perfusion conditions. Inspection of Hematoxylin and Eosin – stained
cryoslices revealed relatively little disruption of the alveoli or septal network (Figure 8, A-
B), confirming that the microvasculature was generally intact for these studies.

Quantifying GFP-expressing cells using hyperspectral microscopy—
Quantitative image analysis was performed on unmixed images using Cell Profiler
software[34]. Nuclei were defined as features in the image of Hoechst emission (360/40 nm
excitation, 450 nm emission) with a diameter between 1.6-6 μm (Figure 8, D). Similarly,
GFP cells were defined as having a diameter between 4-39 μm (Figure 8, E). Analysis
results revealed an average of 88 ± 40 (standard error of the mean) GFP-expressing cells per
field-of-view (Figure 8, H). By contrast, control images produced an average of 0 ± 0 GFP-
expressing cells per field-of-view. These results indicate that the combination of
hyperspectral imaging, linear unmixing, and quantitative image analysis can result in an
approach with high sensitivity for GFP and the capability to detect individual GFP-
expressing cells with little-to-no type I errors. By contrast, single-band fluorescence
microscopy could only distinguish between changes in intensity, and for cases where GFP
emission is equivalent to autofluorescence emission, resulted in a poor GFP detection
sensitivity and a high level of false-positives.

4. Discussion
In this study, we have developed a hyperspectral imaging approach for tracking GFP-
expressing PMVECs in the lung vasculature. This hyperspectral imaging approach was
compared to traditional single-band (a.k.a. single-wavelength) fluorescence microscopy to
assess its validity, and improvements in sensitivity and specificity, with corresponding
abolishment of type I and II errors. While GFP emission was detectable using single-band
fluorescence imaging, it was indistinguishable from surrounding autofluorescence (Figure 4,
B & D). Consequently, intensity thresholding and image analysis using single-band
fluorescence microscopy resulted in a much higher cell count than hyperspectral microscopy
techniques (Figure 4, G and Figure 8, H). This higher cell count was the result of false-
positive detection of GFP-expressing cells, as evidenced by the positive count in control
tissue samples.

A theoretical sensitivity analysis was performed to measure the static sensitivity of the each
approach to incremental increases in GFP signal. Results revealed that, for single-band
microscopy, the number of false-positive pixels can be reduced by increasing the detection
threshold (Figure 3, C). However, in doing so, the sensitivity for GFP detection was
decreased to the point that very few true GFP-labeled pixels were detected (increased type II
errors). More importantly, the image-to-image variations in autofluorescence intensity and
the high number of autofluorescent pixels made it impossible to accurately identify GFP-
labeled structures, whether they were the 30 × 30 pixel square or a GFP-labeled PMVEC
(the occurrence of type I errors can vary significantly from one field-of-view to another).
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Hence, although the GFP region is in theory detectable, there is no way to discriminate this
region from other highly autofluorescent pixels present in many of the fields-of-view. This
implies that, in single-band microscopy, GFP-expressing cells will only be detectable when
they are located in regions surrounded by relatively low autofluorescence. Conversely,
regions of high autofluorescence will be inaccurately identified as GFP. These limitations of
single-band fluorescence microscopy make it prohibitive for accurate and sensitive detection
of GFP-expressing cells in highly autofluorescent tissues.

To address these limitations, the custom hyperspectral widefield fluorescence microscope
and corresponding spectral calibration, correction, and analysis methods were developed.
Linear unmixing of hyperspectral image sets revealed that GFP could be adequately
separated from lung autofluorescence. A theoretical sensitivity study confirmed that GFP
could be detected within lung tissues when the GFP intensity was only 15% of the peak
autofluorescence signal. Visualization of overlayed unmixed images revealed that PMVECs
aggregated in narrow portions of the pulmonary septal network (Figure 8, C). These results
are in agreement with the expected distribution of cells in pressurized perfusion studies.
Quantitative analysis of unmixed hyperspectral image sets found an average of 88 cells per
mm2. This hyperspectral imaging and quantitative image analysis approach should be
applicable in experiments in which single-band fluorescence microscopy fails to adequately
delineate a given fluorophore from tissue autofluorescence. These experiments also
highlight the need to determine the accuracy with which a label can be identified within a
specific sample prior to performing quantitative analyses, such as cell counting or tracking.

Wavelength calibration and flat-field correction were critical components of this approach,
and should be applied to correct for wavelength-dependent response in hyperspectral
imaging systems. It should be noted that while flat-field correction restores a measured
spectrum to its actual characteristics, photon-dependent effects, such as signal-to-noise, are
not compensated for. For example, if equal intensity fluorescence emission were present at
600 and at 700 nm, the flat-field corrected image would display this spectrum as having
equal intensities at both wavelengths. However, given the transfer function of Figure 5, D,
the noise characteristics of 700 nm emission would be much poorer than those at 600 nm, as
an order-of-magnitude fewer photons would be detected at 700 nm. Hence, specifying that
each of the optical elements have as flat of a spectral response as possible is critical in a
hyperspectral microscopy system. In the case of dichroic beam splitters, there are relatively
few off-the-shelf solutions that present a sharp edge and also maintain a high percent
transmission over a large wavelength range (450-800 nm, for example). Hence, although the
dichroic beamsplitter used in this study is more than sufficient for GFP (with a wavelength
range of 480-550 nm), a custom dichroic filter would be desirable if fluorophores in the far-
red (>700 nm) portion of the spectrum were present.

To verify the accuracy of the hyperspectral system, the GFP-emission from in vitro culture
(Figure 6, A) was also measured using a 32-channel spectral confocal microscope (A1,
Nikon Instruments) and a spectrofluorimeter (data not shown). All three spectra were in
agreement, although it should be noted that the GFP peak emission wavelength measured
(500 nm) is blueshifted by about 10 nm from spectra that are often supplied in the default
library of several spectral analysis software packages. This shift can cause significant effects
when performing linear unmixing. Hence, when possible we recommend that the spectral
library should always be collected from negative and positive test samples, rather than from
manufacturer-measured spectra (often measured under different experimental conditions).
As a final note, the flat-field correction performed here is a lumped-parameter correction. It
is also possible to test each component in the fluorescence emission light path
independently. While these optical testing methods are beyond the scope of this discussion,
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they are similar to those used in flat-field correction and may be helpful in diagnosing the
source of unexpected spectral attenuation in a system.

The theoretical sensitivity of this hyperspectral microscopy approach was assessed by
adding GFP signal to control (autofluorescence) images. This method maintains the
variability of image information while adding known contributions of a specific signal. To
determine a minimum sensitivity for GFP detection, the unmixed GFP signal was
normalized to the total pixel intensity at the peak emission wavelength (500 nm, for both
GFP and autofluorescence). Because the spectral library was also normalized (to unity), this
represents a method for calculating the percentage of the total signal contributed by GFP.
Using this method, a minimum detectible level of GFP was selected to be when the unmixed
GFP signal was 3 standard deviations above 0 (as measured on a per-pixel basis). Detecting
GFP-positive pixels based on this unmixed threshold revealed a large increase in both
sensitivity and specificity, when compared to single-band microscopy (Figure 3, C and
Figure 6, D). These results demonstrate that hyperspectral fluorescence microscopy is
theoretically much more sensitive for detecting GFP emission than single-band microscopy
and display a lower incidence of false-positive pixels. Although this sensitivity study applies
to a specific experimental and equipment configuration, the improvements in sensitivity and
specificity calculated here clearly portray the power of hyperspectral microscopy for
separating fluorescence signals with similar – in this case identical – peak emission
wavelengths. This theoretical sensitivity analysis is applicable for many other assay types,
and could be modified to measure sensitivities of multiple fluorophores in complex
hyperspectral microscopy assays.

The accuracy of spectral imaging analysis is highly influenced by the signal strength and
noise characteristics of the detector, as well as perturbations due to the system as a whole
(fluctuations in illumination intensity, ambient light, temperature, etc.). Hyperspectral
measurements of the fluorescence emission spectrum are inherently noisy, when compared
to broad-band measurements. This is because the narrow-band filtering required to image
the fluorescence emission at many discrete wavelengths naturally results in decreased signal
strength. We have estimated the SNR in selected hyperspectral images by using the method
of Amer and colleagues [36], which has been previously demonstrated as applicable to
fluorescence microscopy images [37]. For these images, the SNR of dominant spectral
bands ranged from 6-20, while the SNR of lesser bands ranged from 0.3-0.7 (Supplemental
Figure 2). As would be expected, the wavelength distribution of the SNR is similar in shape
to the main spectral components that comprise an image, as these components represent the
main signal source. One advantage to hyperspectral imaging – in addition to its
discriminatory abilities – is that linear unmixing analysis often results in improved SNR. For
example, prior to unmixing the SNR at 500 nm ranged from 10-15 for selected cryoslices
containing both lung tissue and GFP-expressing cells. After unmixing, the SNR for the GFP-
unmixed images ranged from 14-40, while the SNR for AF ranged from 0.3-10 (highly
variable due to the varying levels of autofluorescence in different fields-of-view). Hence,
there is commonly a 2-3 fold increase in SNR after unmixing, when compared to single-
channel images. This is expected, as most linear unmixing algorithms take into account all
of the spectral bands, and hence, are somewhat insensitive to noise or fluctuations in one
single band. In this manner, hyperspectral imaging with linear unmixing could be thought of
as a dimensionality-reduction technique that improves SNR characteristics.

While linear unmixing often increases the SNR ratio for components in the spectral library,
the SNR of individual wavelength bands (prior to unmixing) is often relatively low, due to
narrow bandwidth filtering. However, the SNR of individual wavelength bands can usually
be improved through several methods: increasing the bandwidth of the spectral filter,
increasing the image acquisition time, and increasing the detector gain. Increasing the
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bandwidth of the spectral filter can be achieved post-acquisition by binning spectral bands.
Spectral band binning has the effect of improving the SNR, but decreasing the number of
available bands for analysis. A more desirable alternative is to widen the bandwidth of the
filter during image acquisition. In the HSi-300 tunable filter we have used for these studies,
it is possible to vary the bandwidth of the filtered light, which allows for spectral
oversampling. In these studies, a 5 nm step size was used between each band, while an 8.5
nm bandwidth was specified. This has the advantage of increasing the signal strength while
decreasing the spectral resolution to a lesser extent than spectral band binning. More
importantly, using a wider spectral band during acquisition (as opposed to post-acquisition
spectral band binning) allows a decreased acquisition time to be used, minimizing spectral
photobleaching artifacts (discussed below).

Another method for improving the SNR in hyperspectral imaging is to increase the image
acquisition time. However, there are limits to the maximum acquisition time that can be
tolerated before significant photobleaching has occurred. These limits should be more
stringent in hyperspectral imaging instruments that acquire spectral bands sequentially –
such as in this study – as time-dependent photobleaching will alter the measured spectral
signature (spectral artifact). Because photobleaching rates vary between fluorophores,
spectral artifact may affect different spectral components in an image to varying degrees,
which is very difficult to compensate for. Hence, there is a trade-off between achieving a
high SNR through increased image acquisition time and minimizing spectral photobleaching
artifacts. An alternative to increasing the acquisition time is to increase the detector gain.
These studies were performed using a cooled, electron-multiplying CCD (EMCCD) camera,
in which it was possible to achieve a very high gain, although at the expense of increased
noise characteristics (as demonstrated by the single-channel SNR values mentioned above).

Reproducible sample preparation played a key role in these studies, due to the fact that
subtle variations in fluorescence spectra can have a large impact on unmixing results. It has
been commonly reported that tissue fixation techniques can affect the tissue
autofluorescence properties. Prior to beginning these studies, we compared lung tissues
fixed through paraffin-embedding and cryofixation using optimal cutting temperature (OCT)
compound. We found that paraffin-embedding resulted in much higher autofluorescence
levels that OCT compound. Because of this, OCT-embedding and cryoslicing were selected
as the method of fixation for these studies. To reduce the sample-to-sample variability, a
background (dark) spectrum was subtracted from each hyperspectral image set prior to
multiplying by the flat-field correction coefficient. However, if there is significant
variability in tissue processing or imaging conditions, this background spectrum may not be
uniform across cryosections, or even consecutive fields-of-view. Hence, it is important to
maintain a stringent experimental protocol and to reduce stray (room) light during the
imaging process. For these studies, the hyperspectral fluorescence microscope was installed
on a vibration-isolated (floating) optical bench and electronically and optically shielded
using a Faraday cage enclosure with photographic black-out cloth. Room lights were turned
off during all imaging sessions.

During tissue preparation, nuclei were labeled with what would normally be considered a
very low concentration of Hoechst stain. This was done to minimize the contribution of
Hoechst emission to the tissue autofluorescence spectrum. Stained and unstained tissues
were further compared spectrally to confirm that Hoechst emission contributed little to the
autofluorescence properties of the tissue.

In addition to tissue processing, the optical scattering nature of tissues may also affect the
accuracy of spectral analysis. The present analysis makes use of a linear mixing model,
which assumes that each spectral component, or end-member, contributes independently to
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the total signal measured for any given pixel. The presence of optical scattering molecules,
however, may remove this independence, as the optical pathlength will vary depending on
the scatter coefficient, which is in turn dependent on the molecular composition of the tissue
at any point. For example, a location composed primarily of collagen may present a longer
effective pathlength than a location containing GFP. If linear unmixing were used to analyze
this image, the abundance values for the pixel corresponding to the collagen location would
deviate from the actual abundances that would be expected if the nonlinear nature of the
mixing were taken into account. While we believe these effects are relatively small for the
10 μm cryoslices used in this study, comparing the differences in abundances that are
produced with a linear versus a nonlinear mixing model remains a topic for further
investigation. For an introduction into linear and nonlinear mixing models used in remote
sensing, the reader is referred to Keshava and Mustard.[38]

Tissue autofluorescence emission spectra can vary widely with excitation wavelength.[2]
Autofluorescence emission in the lung was found to be associated primarily with vascular,
microvascular, and bronchiolar structures (Supplemental Figure 1, A). These structures have
a complex cellular and extracellular composition. When multiple fluorophores in these
structures contribute to a bulk autofluorescence spectrum, the rule of thumb of independent
excitation and emission spectra cannot be applied (i.e., the “bulk” autofluorescence
spectrum for a structure will be dependent on the excitation wavelength). In addition, micro-
environmental changes (pH, ionic gradients, etc.) may affect the spectrum and quantum
yield of fluorescent proteins. Because of this, we reiterate that spectral libraries, especially
those containing tissue autofluorescence, should be generated from negative and positive
controls using the exact settings as those used to image actual test samples. It is possible to
store or compile large spectral libraries for future analysis. While this is a useful tool for
saving and organizing spectra from many different experiments, extreme care should be
taken when using spectra acquired under different conditions (because of the factors
described above). The tissue autofluorescence spectrum from a previously saved library may
not be the same autofluorescence spectrum presented by a new sample. At best, these
differences will produce inaccuracies and higher levels of error in the spectral analysis. At
worst, these differences will produce misleading results.

The broad emission spectrum of lung autofluorescence – between 450 and 600 nm – is likely
due to combinations of native fluorophores, in varying environmental conditions. Emission
peak wavelengths of elastin have been identified at 420 nm[1], 500 nm, and 520 nm[39].
This variance may indicate the dependence of fluorescence excitation and emission spectra
on the cellular microenvironment and state of the fluorophore (e.g., changes in pH, elastin
bundles, collagen cross-linking). Therefore, the broad fluorescence emission we have
observed may very well be due to elastin, as well as other fluorophores native to the lung. In
our studies we have observed a wide variation in tissue autofluorescence, with clearly
identifiable changes in autofluorescence associated with different structures of the lung. For
example, bronchiolar smooth muscle produces a predominantly 500-550 nm fluorescence
emission while columnar epithelium has clear contributions in the 650-750 nm range
(supplemental data). Thus, the analysis of spectral properties of native tissues may be a
promising area for extracting additional information during a fluorescent protein assay.
However, it should be noted that the addition of multiple variants of autofluorescence to the
spectral library will result in more possible combinations of fluorophores that minimize the
least-squares error solution that is often implemented in linear unmixing. Hence, for
autofluorescence spectra that have small amounts of natural variation an appropriate number
of controls should be performed to accurately sample the mean spectrum, while spectra that
are clearly different in nature should be accounted for with different components in the
spectral library. In this research, the autofluorescence spectrum represents a mean sampled
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of 16 fields-of-view, and should be widely applicable as a representative autofluorescence
spectrum.

5. Conclusion
Hyperspectral microscopy and corresponding spectral analysis are powerful methods for
detecting weak fluorescent signals within a high autofluorescence background. Our results
indicate that hyperspectral microscopy has both increased sensitivity and specificity,
compared to single-band microscopy methods. When combined with quantitative image
processing, this approach has allowed us to detect single GFP-labeled cells in highly
autofluroescent tissues with zero type I errors (false-positives). Our results also reinforce the
need to accurately correct for the transfer function of the imager, and to include appropriate
controls and training-set samples for building the spectral library. There are many
opportunities for further advancing the effectiveness of hyperspectral microscopy. Other
spectral analysis methods (such as mixture tuned matched filtering[40]) may better account
for multiple, similar signals present in a sample and should be further investigated as
potential methods for analyzing the molecular composition of cells and tissues. A
combination of several excitation wavelengths while scanning the fluorescence emission
spectrum may yield improved ability to discriminate amongst similar spectra. These
advances will further increase the sensitivity and specificity of hyperspectral microscopy, as
well as allow facilitate the translation of this technology to clinical devices.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic depicting the steps required for hyperspectral image acquisition, spectral flat-field
correction, and spectral analysis.
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Figure 2.
Photograph of the spectral widefield fluorescence microscope showing the tunable filter
(AOTF), AOTF controller, and charge-coupled device camera.
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Figure 3.
Theoretical sensitivity analysis revealed that single-band fluorescence imaging assays can be
designed to have either high sensitivity with low specificity or low sensitivity with slightly
improved specificity. A 30 × 30 pixel square of GFP signal was added to control
hyperspectral images (A). Wavelengths between 500-550 nm were summed to approximate
a standard GFP emission filter and thresholded to detect GFP signal based on intensity
differences (B). Thresholded data are shown without error bars (C) to visualize the
dependence of sensitivity (the minimum amount of GFP added that can be detected) and
specificity (type I errors are represented by the number of GFP-positive pixels when 0 GFP
was added); and with error bars (± SEM, n = 16 fields-of-view) to illustrate the high
variance that is inherent in using single-band thresholding for GFP detection when there is a
high level of autofluorescence (D).
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Figure 4.
Single-band analysis of GFP-expressing pulmonary microvascular endothelial cells in lung
cryosections reveals poor sensitivity and specificity for GFP-expressing cells. Using single-
band (500 nm, 50 nm bandwidth) fluorescence emission, both control lung (A & B) and lung
perfused with GFP-expressing endothelial cells (D & E) show high levels of fluorescence.
Thresholding may be used in an attempt to identify GFP emission (arrow indicates a
possible GFP-expressing cell), but also results in a significant number of false-positive
regions, as evident in the control. For quantitative analysis, single-band images (C) were
analyzed using Cell Profiler software[34] and intensity-thresholding techniques. Nuclei and
GFP regions (F) were identified, and the total number of nuclei and the number of nuclei
within GFP regions were measured (G). Results show a poor sensitivity and high incidence
of type I errors. This threshold corresponds to the medium threshold in the theoretical
sensitivity analysis (Figure 3) and the threshold used for spectral analysis (Figure 6).
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Figure 5.
Spectral flat-field correction was used to compensate for wavelength-dependent attenuation
of the fluorescence emission. Wavelength (A) and spectral flat-field calibration (B-E) were
performed for the hyperspectral microscope. (A) Multi-ion discharge lamp peaks measured
with the hyperspectral microscope aligned with peaks measured using a spectrometer to
within the 5 nm spectral step size of the tunable filter; (B) the spectrum of the NIST-
traceable lamp used to measure flat spectral response; (C) the NIST-traceable lamp spectrum
as measured through the hyperspectral microscope; (D) the transfer function of the
hyperspectral microscope; (E) the correction coefficient needed to achieve a flat spectral
response.
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Figure 6.
The theoretical sensitivity of the hyperspectral microscope for detecting GFP in lung
cryoslices was tested by adding a 30 × 30 pixel square of GFP signal to control tissue
hyperspectral images and performing linear unmixing. (A) The spectral library used for
linear unmixing; (B) total fluorescence emission (top) and unmixed GFP (bottom) of a
negative control hyperspectral image showing increasing amounts of added GFP signal; (C)
the sensitivity response of the hyperspectral microscopy assay for GFP in lung tissues was
used to select a GFP-detection threshold (in this case, when the unmixed signal was 3 std.
dev. above the baseline), which was then used to determine whether a pixel was GFP-
positive or GFP-negative; (D) the total number of GFP-positive pixels increases when the
GFP signal is higher than the threshold determined from (C). Using this threshold, the mean
occurrence of type I errors across all fields-of-view is 386 pixels (out of 262,144 pixels, or
0.15%). By contrast, the mean occurrence of type I errors for the highest threshold using
single-band microscopy was 2367 pixels (0.9 %). Both specificity and sensitivity were
significantly increased compared to single-band thresholding (Figure 3).
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Figure 7.
Linear unmixing was applied to flat-field corrected spectral images. (A) Total fluorescence
intensity of a 10 μm-thick lung cryoslice containing perfused GFP-expressing pulmonary
microvascular endothelial cells (PMVECs); (B) image of Nuclei (Hoechst 33342 staining)
with 360/40 nm excitation and 450 nm emission; (C) brightfield image at 500 nm; unmixed
images of autofluorescence (D), GFP (E), and background (F); the spectra used for
unmixing (G) were acquired from GFP-expressing PMVECs and negative control tissue; (H)
false-colored overlay of unmixed image showing autofluorescence (red), GFP (green),
nuclei (blue), and background (orange). Control lung cryoslices showed minimal false-
positive GFP signal with identical imaging and linear unmixing (data not shown).
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Figure 8.
Perfused pulmonary microvascular endothelial cells (PMVECs) accumulated within the
alveolar septal network of rat lungs. Hematoxylin and Eosin stained 10 μm cryoslices at
10X (A) and 40X (B) magnification showed that the alveoli and surrounding septal network
were intact. The linear-unmixed spectral fluorescence image of the subsequent 10 μm
cryoslice shows GFP-expressing PMVECs (green), nuclei (blue), and autofluorescence
(red). Unmixed images were quantitatively analyzed using Cell Profiler software[34]. Nuclei
(D) and GFP-positive (E) regions were identified using thresholding algorithms – nuclei
contained within GFP-positive regions were classified as PMVEC nuclei. The threshold for
detecting GFP in spectral images was equivalent to the threshold used for single-band
analysis (Figure 4, F). GFP-expressing PMVECs (F) and native tissue cells (G) were
identified using secondary object detection. Using this approach, a mean value of 88 GFP-
expressing cells was detected for the PMVEC-perfused tissue (H), with 0 type I errors
detected within this sample size (n = 16 fields-of-view).
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