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Abstract
The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical
and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples
(n=393) were obtained by sampling thirteen locations during three years (2003-2005 period).
These samples had a wide range of soil characteristics due to variations in land use, vegetation
cover and specific climatic conditions. Biochemical properties also included microbial biomarkers
based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross
validation was used to establish relationships between the NIR spectra and the reference data from
physical, chemical and biochemical analyses. Based on the values of coefficient of determination
(r2) and the ratio of standard deviation of validation set to root mean square error of cross
validation (RPD), predicted results were evaluated as excellent (r2>0.90 and RPD>3) for soil
organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass
carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA
biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular
mycorrhizal fungi and total PLFA biomass. Good predictions (0.81<r2<0.90 and 2.5<RPD<3)
were obtained for exchangeable calcium and magnesium, water soluble carbon, water holding
capacity and urease activity. Resultant models for protozoa and fungi were not accurate enough to
satisfactorily estimate these variables, only permitting approximate predictions (0.66<r2<0.80 and
2.0<RPD<2.5). Electrical conductivity, pH, exchangeable phosphorus and sodium, metabolic
quotient and Gram negative bacteria were poorly predicted (r2<0.66 and RPD<2). Thus, the results
obtained in this study reflect that NIR reflectance spectroscopy could be used as a rapid,
inexpensive and non-destructive technique to predict some physical, chemical and biochemical
soil properties for Mediterranean soils, including variables related to the composition of the soil
microbial community composition.
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1. Introduction
The need for the development of more time- and cost- efficient methodologies for soil
analysis is increasing. There is a great demand for rapid and predictive soil data to be used
in environmental monitoring, soil quality assessment and precision agriculture and forestry
(Cohen et al., 2005; Viscarra Rossel et al., 2006). For this reason near infrared (NIR)
reflectance spectroscopy is considered as an alternative to complement (or even replace)
conventional analytical methods.

NIR reflectance spectroscopy was initially developed in the early 1970's for rapid analysis of
the moisture content of cereal grains (Chang et al., 2001). Over the past few decades,
however, NIR reflectance spectroscopy has rapidly developed to become a fast and robust
analytical method for many agricultural, pharmaceutical and food products (Blanco and
Villarroya, 2002). In particular for soils, this technique permits the evaluation of different
properties related to moisture and organic content matter, including carbon and nitrogen
content or cation exchange capacity (Ben-Dor and Banin, 1995; Shepherd and Walsh, 2002;
Islam et al., 2003; Chodak et al., 2004). Various authors have shown the effectiveness of
NIR reflectance spectroscopy in estimating macro and micronutrients in soils (Dunn et al.,
2002; Malley et al., 2002; Cozzolino and Morón, 2003; Islam et al., 2003), physical
characteristics (Stenberg et al., 1995; Shepherd and Walsh, 2002; Cozzolino and Morón,
2003; Sorensen and Dalsgaard, 2005) and biochemical properties (Palmborg and Nordgren,
1993; Reeves et al., 2000; Chang et al., 2001; Coûteaux, et al., 2003; Cohen et al., 2005). In
addition, this technique has been successfully used to predict maximum temperatures
reached on burned soils (Guerrero et al., 2007). The conventional analytical methods
exchangeable individually for most of the soil properties listed above are time consuming,
destructive of samples and often use many chemical reagents. The advantages of using NIR
reflectance spectroscopy include the simplicity of sample pre-treatment (sieving of soils), its
lack of chemical reagents, its non-destructive nature, and the fact that it is rapid, inexpensive
and accurate for analysis (Norris et al., 1976).

In the NIR region, the radiation is absorbed by the different chemical bonds, such as C–H,
N–H, S–H, C=O and O–H of any chemical compounds present in the sample. Moreover, the
radiation is absorbed in accordance with the concentration of these compounds. As a
consequence, NIR reflectance spectra basically contain information about the organic
composition of a soil sample. The NIR spectrum results from the overtones and
combinations of fundamental vibrational bands for each of the chemical bonds, which are
more strongly absorbed in the mid-infrared (MIR) region (Burns and Ciurczak, 2001).
Nonetheless, as a consequence of overlapping bands, NIR information can not be directly
interpreted from the obtained spectra. NIR reflectance spectroscopy is based on the use of
calibrations, coupled with chemometrics techniques, which utilize absorbances at many
wavelengths to predict particular properties of a sample (Batten, 1998). Normally, NIR
spectra are used to establish a regression model in which the significant information
contained in the spectra is concentrated into a few variables, optimized to produce the best
correlation with the predicted property. Nevertheless, practically all published authors agree
that to assure the reliability of this technique, it is necessary to include a great number of
samples from zones with a wide range in the values of soil properties.
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The objective of the present work is to explore the potential of models using NIR reflectance
spectroscopy to estimate different physical, chemical and biochemical properties in soils
from the Alicante Province of Spain, as rapid methods for soil analysis are essential to
assess responses to perturbations, evaluate the effectiveness of restoration practices, or select
the most sustainable management practices. Soils employed for this experiment were
sampled from sites with different climatic conditions, vegetation cover and land uses, to
guarantee a wide range in physical, chemical and biochemical characteristics, with the aim
of creating models for extensive use in this region.

2. Materials and Methods
2.1 Soil samples

For this study, we used soil samples employed for previous researches. Soil samples were
obtained from thirteen locations in the province of Alicante (SE Spain) during three years
(2003-2005). The soil samples had a wide range in physical, chemical and biochemical
characteristics (Table 1) due to variations in land use, vegetation cover and specific climatic
conditions. Climate in all sites is Mediterranean, with mean annual temperature ranging
from 13°C to 18°C, and mean annual precipitation from 270 mm to 600 mm, widely
representative of the province of Alicante. The soil samples were collected from non-
disturbed forest soils (259 samples), deforested forest soils (64 samples), arable soils (40
samples) and abandoned arable soils (40 samples). In year 2003, two land uses (non-
disturbed forest and deforested forest) were selected in two locations (Sierra de Orihuela and
Maigmó North slope). A plot of 200 m2 was defined for each land use in each location.
Samplings were carried out in winter, spring, summer and fall. In each of the four
samplings, 16 soil samples per location were collected (8 from the non-degraded and 8 from
the degraded zone). In year 2004, a single sampling was carried out in summer. A plot of 5
km2 was defined in five non-distrubed forest sites (Sierra de Orihuela, Sierra de Crevillent,
Maigmó South slope, Maigmó North slope and Puig Campana), where thirty soil samples
were collected in each location. In year 2005, a single sampling was carried out in summer.
We selected three land uses (undisturbed forest, arable and abandoned arable) in twelve
locations (Sierra de Orihuela, Sierra de Crevillent, Maigmó South slope, Camara, Puig
Campana, Peña de Sella, Puerto de Tudons, Puerto de Benifallim, Sierra del Reconco, Sierra
de Salinas, Sierra de la Taja and Catí) A plot of 200 m2 was defined for each land use in
each location, where 3-5 soil samples were collected. See Zornoza et al. (2006, 2007, 2008)
for more details about experimental design and soil sampling.

Regarding vegetation, non-disturbed forest soils have in common the presence of a tree
stratum occupied by Pinus halepensis Miller, with understory vegetation dominated by some
shrub species and Brachipodium retusum (Pers.) Beauv. as main herbaceous species.
Deforested soils have suffered from a total elimination of the vegetation cover, although
some spontaneous species have appeared, which consist of annual herbaceous species and
some shrub, with vegetation cover <20%. Arable soils were cultivated with almond trees
(Prunus amygdalus L.) Abandoned almond orchards presented some shrub species
(dominated by Rosmarinus officinalis L., Rhamnus lycioides L., Helichrysum stoechas (L.)
Moench, and Cistus albidus L.). Soils consisted of Calcixerolls, Haploxerolls, Xerorthents
and Torriorhents (Soil Survey Staff, 1998), all of which had developed over calcaric
bedrock.

In all samplings, individual soil samples (0-10 cm depth) were randomly collected from the
mineral A horizon. Prior to analysis, the samples were air-dried for a week. After drying
they were passed through a 2 mm mesh sieve. For all assays, two replicates per sample were
used, and data are expressed on an oven dry weight basis. The number of soil samples used
for the models construction was different depending on each soil property (Table 1).
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2.2 Analytical Methods
Soil pH was measured in deionised water (1:2.5 w/v). Electrical conductivity (EC) was also
measured in deionised water (1:5 w/v). Soil moisture was determined gravimetrically after
heating the samples at 105°C for 24 h. Soil organic carbon (SOC) was determined by
potassium dichromate oxidation (Nelson and Sommers, 1982). Total nitrogen (NK) was
determined by the Kjeldahl method (Bremmer and Mulvaney, 1982). Cation exchange
capacity (CEC) was measured by the method described by Roig et al. (1980). Exchangeable
phosphorus (P) was determined by the Burriel-Hernando method (Díez, 1982).
Exchangeable Ca, Mg, K and Na were extracted with 1N ammonic acetate (Knudsen et al.,
1982) and measured by atomic absorption and emission spectrophotometry. Water holding
capacity (WHC) was assayed by the method expounded by Forster (1995). Microbial
Biomass Carbon (MBC) was determined using the fumigation-extraction procedure (Vance
et al., 1987), and the 0.5 M K2SO4 extracted carbon was measured in the same way as
indicated for water soluble carbon (WSC). Basal soil respiration (BSR) was monitored for 4
days at 55% WHC and 25°C with a multiple sensor respirometer (Micro-Oxymax,
Columbus, OH, USA). Metabolic quotient (qCO2) was calculated by the relationship
between BSR and MBC (BSR/MBC). Urease activity was measured according to the
method of Nannipieri et al. (1980). Acid phosphatase activity was assayed by the method of
Tabatabai and Bremmer (1969). The activity of β-glucosidase was determined according to
Tabatabai (1982).

Phospholipid fatty acid (PLFA) analysis was carried out as described in Bossio et al. (1998).
Briefly, fatty acids were extracted from 8 g soil samples using
chloroform:methanol:phosphate buffer. PLFAs were separated from neutral and glycolipid
fatty acids on a solid phase extraction column (0.58 Si; Supelco Inc., Bellafonte, PA).
Afterwards mild alkaline methanolysis, samples were analysed using a Hewlett Packard
6890 Gas Chromatograph with 25 m Ultra 2 (5% phenyl)-methylpolysiloxane column (J &
W Scientific, Folsom, CA). Fatty acids were quantified by comparison of the peak areas
with those of an internal standard 19:0 peak. The peaks were named using bacterial
standards and identification software from the Microbial Identification System (Microbial
ID, Inc., Newark, DE). Fatty acid nomenclature used was that described by Frostegard et al.
(1993). The fatty acids i 15:0, 15:0, a 15:0, i 16:0, 16:1ω7, i 17:0, a 17:0, cy 17:0, 17:0,
18:1ω7 and cy 19:0 were chosen to represent bacteria (Frostegard et al., 1993). The
unsaturated PLFA 18:26ω was used as indicator of fungal biomass (Federle, 1986). PLFAs
cy 17:0, 18:1ω7, cy 19:0, 17:1ω9c, 16:1ω9c, 18:1ω9c and 15:1ω4c were chosen to
represent Gram-negative [G-] bacteria (Zelles et al., 1994). The branched, saturated i 14:0, i
15:0, a 15:0, i 16:0, i 17:0 and a 17:0 were chosen to represent Gram-positive [G+] bacteria
(Zelles et al., 1994). The PLFAs 10 Me 16:0, 10 Me 17:0 and 10 Me 18:0 were selected as
indicators of actinomycetes biomass (Zelles et al., 1994). The PLFA 16:1ω5 was used as
representative of vesicular-arbuscular mycorrhizal [VAM] fungi (Olsson et al., 1995). The
fatty acids 20:2ω6,9c, 20:3ω6,9,12c and 20:4ω6,9,12,15c were chosen to represent protozoa
(White et al., 1996). The total biomass was estimated as the sum of all the extracted PLFAs
[totPLFAs].

2.3 NIR spectra
Aliquots of around 50 g of soil samples were placed in glass Petri-dishes, and scanned on
reflectance mode from 12000 to 3800 cm-1. For these measurements we used a Fourier-
Transform near infrared (FT-NIR) spectrophotometer (MPA, Bruker Optik GmbH,
Germany), equipped with quartz beamsplitter and PbS detector. It was also equipped with an
integrating macrosample sphere and rotating sample cup, allowing the scanning of large
areas of the samples. In each of the reflectance measurements, 64 scans were averaged.
Samples were measured in duplicate, increasing the surface of soil sample scanned. After
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this, they were averaged again. The time employed for the spectral measurement was
approximately 1 minute per sample. The resolution used for spectral analysis was 8 cm-1.
Background corrections were made before each sample scan. The x-scale of each NIR
spectrum was transformed from wavenumber to wavelength, obtaining a 1000-absorbance
point's spectrum between 830 and 2630 nm.

2.4 Models construction
Prediction models were constructed based on this following equation:

[1]

where Y is the target parameter (analyzed soil property in laboratory), b the calibration
function and X the NIR spectra.

Two matrixes were constructed previously:

- the NIR-spectra matrix, composed of as many rows as soil samples used for
calibration and 1000 columns (1000 absorbance values between 830 and 2630 nm).
This matrix is the source of the X-term in the prediction models [1].

- the matrix of soil properties analyzed in laboratory, composed of as many rows as soil
samples used for calibration and 1 column (with the value of the analyzed soil property
in each soil sample). This matrix was the source of the Y-term in prediction model [1].

For the model construction (empirical calibration functions), we used partial least squares
(PLS) regressions. PLS regression is widely employed as chemometrics in NIR analysis
(Burns and Ciurczak, 2001; McCarty et al., 2002). Briefly, PLS reduces the NIR matrix to a
few components, such as in a principal component analysis (PCA), but during the
components extraction step in PLS, the data of the target parameter to be estimated is taken
into account. The number of PLS components (so called PLS-vectors) used is the ‘rank’ of
the PLS regression (the rank of the model). The first PLS-vectors are those which provide
more information about the target parameter. In general terms, models with low ranks are
preferred, because the higher the rank used, the higher the noise included.

Typical spectroscopic preprocessing of the spectra were tested: with no data preprocessing,
first derivative, second derivative, linear offset subtraction, straight line subtraction,
multiplicative scatter correction, vector normalization, min-max normalization, and
combinations of them (Conzen, 2003). In fact, more than one thousand possibilities were
tested using spectroscopic software (OPUS version 5.5, Bruker Optik GmbH, Germany)
during each calibration. These procedures were made with the aim of reducing optical
interference not related to the chemical composition of the sample such as, for example,
those variations caused by different sample particle size (Blanco and Villarroya, 2002).
Derivative treatment not only reduces scattering effects but also increases the resolution of
spectral peaks (Burns and Ciurczak, 2001). In each case, we selected the preprocessing
method so that the PLS algorithm can establish the best correlation between the spectral and
the analytical data.

We used the cross validation method for the model construction. With this method, n-1
samples were used for calibration, while the excluded sample was estimated (and validated)
with the others. This exclusion-step was repeated successively until all samples were
validated with calibrations performed by the others. All of these procedures were conducted
using the software OPUS version 5.5 (Bruker Optik GmbH, Germany).
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2.5 Selection of models and statistics
The best models were defined as those which presented lower values of root mean square
error in cross validation (RMSECV), low ranks and higher coefficient of determination (r2).
Furthermore, with the aim of comparing the accuracy of our models with others NIR-models
cited in the literature, we calculated the RPD, being the ratio of the standard deviation of
analysed data to RMSECV. The equations describing the statistics employed are:

[2]

[3]

[4]

[5]

To evaluate the accuracy of models, the coefficient of determination and the RPD statistic
were used. According to Saeys et al. (2005), a value for r2 between 0.66 and 0.80 indicates
approximate quantitative predictions, whereas a value for r2 between 0.81 and 0.90 reveals
good prediction. Calibration models having r2 >0.90 are considered to be excellent.
Regarding RPD statistic, an RPD<2 is considered insufficient for applications, whereas a
value for RPD between 2 and 2.5 makes approximate quantitative predictions possible. For
values between 2.5 and 3 predictions can be classified as good, and an RPD>3 indicates an
excellent prediction.

When no accurate models were obtained, analytical data of soil properties were transformed
using square roots or logarithms (Table 2). These transformations assure normal distribution
of data, which favors a better fit by PLS regressions.

Apart from the PLS models, correlations were developed to study the relationships between
physical, chemical and biochemical properties, and soil organic matter. This analysis was
performed with the software SPSS for Windows, Version 13.0.

3. Results
3.1. Spectra

The NIR spectra of all soil samples were similar in appearance, with the lowest absorbance
values in arable soils. Fig. 1 shows an example of spectra for an undisturbed forest soil, a
deforested forest soil, an arable soil and an abandoned arable soil. All NIR spectra of the soil
samples had the highest absorbance peaks at approx. 1400, 1900 and 2200 nm. The band at
1400 nm is usually associated with O-H and aliphatic C-H, whilst the absorbance band at
1900 nm is related with amide N-H and O-H. In the band of 2200 nm there are groups such
as phenolic O-H, amide N-H, amine N-H and aliphatic C-H (Fidêncio et al., 2002;
Cozzolino and Morón, 2003). Thus, owing to the overlap of bands, quantitative predictions
are difficult by direct interpretations from the NIR spectra, and multivariate analyses are
needed to discern the response of soil properties from spectral characteristics.
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3.2. Calibrations of prediction models
The ability of NIR reflectance spectroscopy to predict the 27 soil properties is summarized
in Table 2. The coefficient of determination (r2), RMSECV, rank and RPD are given.
Preprocessing methods were chosen as those which provided the best models for each soil
property (lowest values in RMSECV and rank, and highest values in r2). Scatter plots of
predicted vs actual values for biochemical properties are shown in Fig. 2.

For physical and chemical properties, (Table 2) the best results were achieved for SOC
(r2=0.98; RPD=5.75), NK(r2=0.96; RPD=4.88), soil moisture (r2=0.96; RPD=4.69) and CEC
(r2=0.92; RPD=3.46), considered as excellent predictions. Ca and Mg showed values of
r2>0.90, but RPD<2.5. Thus, these predictions, although good, cannot be considered
excellent. Models for WSC and WHC were also accurate to predict these variables, with
r2>0.80 and RPD> 2.5. To the contrary, pH, EC, P and Na were poorly predicted, with
RPD<2.

For the biochemical properties (Fig. 2), excellent predictions were achieved with MBC
(r2=0.91; RPD=3.26), BSR (r2=0.92; RPD=3.59), acid phosphatase activity (r2=0.93;
RPD=3.66) and β-glucosidase activity (r2=0.93; RPD=3.66). Urease activity was also
predicted satisfactorily by NIR spectroscopy (r2=0.80; RPD=2.66), whilst prediction for
qCO2 was very poor (r2=0.60; RPD=1.92). NIR reflectance spectroscopy could satisfactory
predict several variables related to soil microbial groups based on PLFAs biomarkers.
Successful predictions were achieved for bacteria (r2=0.93; RPD=3.74), G+ bacteria
(r2=0.91; RPD=3.24), actinomycetes (r2=0.92; RPD=3.54), VAM fungi (r2=0.91;
RPD=3.04) and totPLFAs (r2=0.91; RPD=3.14). The predictions of fungi and protozoa were
not as good as those of the previous variables, and only approximate quantitative predictions
are possible. The variable G- bacteria was poorly predicted (r2=0.60; RPD=1.60).

4. Discussion
The soil properties which were most strongly correlated with soil reflectance properties were
SOC, NK and soil moisture, as often reported in literature (Chang et al., 2001; Fystro, 2002;
Fidêncio et al., 2002; Ludwig et al., 2002; Shepherd and Walsh, 2002; Islam et al., 2003;
Chodak et al., 2004). This makes sense because NIR reflectance spectroscopy provides
information about the relative proportions of bonds such as C-H, N-H, S-H and O-H, present
in the organic compounds (O-H also included in the water molecule). Although moisture
was determined in air-dried soil samples, there is still remaining water adsorbed on the
surface areas of clay minerals and organic matter, in equilibrium with atmospheric water
vapor.

Similar results to those achieved in our study with CEC have been reported in other studies
(Chang et al., 2001; Dunn et al., 2002; Chodak et al., 2004). However, no articles have been
found in literature describing models relating to WHC, despite the fact that this parameter
reflects the capacity of a soil to retain water, an important attribute for soil quality
assessment or agriculture management. Exchangeable Ca and Mg were also satisfactorily
predicted, as has been observed by other researchers (Malley et al., 2002; Shepherd and
Walsh, 2002; Dunn et al., 2002; Cozzolino and Morón, 2003; Chodack et al., 2004).

Nevertheless, CEC, WHC and exchangeable Ca and Mg do not have a primary response in
the NIR region, and so, they are not directly predicted by NIR reflectance spectroscopy.
Thus, correlation of these properties with soil organic matter (r>0.70; P<0.001) may explain
some of this effect. Chang et al. (2001) carried out an experiment to verify if predictions of
variables that do not have primary response in the NIR region were achieved by correlations
with properties exhibiting a primary response. These authors compared the predictions of
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secondary properties (such as CEC) by multiple linear regression using primary properties
as explanatory variables, with predictions using the NIR spectroscopy. They found that
while high regression coefficients were obtained by multiple linear regressions, high
regression coefficients were also obtained using the NIR spectroscopy, which confirmed
their hypothesis. Thus, the ability of NIR-PLS to predict CEC, WHC and exchangeable Ca
and Mg, may be due to the strong dependence of these properties on organic matter and
clays, which have a primary response in the NIR region. These properties are principally
controlled by clay and organic matter type and content, which have functional groups with
variable charges responsible for the adsorption of the different cations and water. In
addition, exchangeable Ca and Mg dominate the exchange complex in the studied soils.
Thus, their concentrations highly depend on the functional groups of organic matter and
clays, and, as a result, they are well predicted by NIR spectroscopy.

Poor predictions have been obtained for exchangeable K, Na, and P, as observed in previous
studies (Chang et al., 2001; Malley et al., 2002; Shepherd and Walsh, 2002; Dunn et al.,
2002; Cozzolino and Morón, 2003; Chodak et al., 2004). In addition, pH and EC were also
unsatisfactorily predicted, confirming similar findings by Chang et al. (2001), Dunn et al.
(2002), Islam et al. (2003) or Pirie et al. (2005). These properties do not have a primary
response in the NIR region. Thus, the ability of NIR-PLS to predict these properties would
depend on their relationships with organic matter and clay content, as observed for CEC,
WHC and exchangeable Ca and Mg. However, exchangeable K, Na and P, pH and EC were
not correlated with organic matter, and this may be the reason why no satisfactory
predictions were achieved for these variables, suggesting that organic matter type and
content and clay content do not directly govern these properties in the studied soils.

We have demonstrated the premise of using NIR reflectance spectroscopy to predict various
biochemical properties. Contrary to the latter parameters, these properties are based on
organic compounds, and, as a consequence, have functional groups able to absorb radiation
in the NIR region and provoke direct changes in the reflectance characteristics of the
samples. This technique has not been as widely used for biochemical as for traditional soil
chemical properties. Palmborg and Nordgren (1993) reported values of r2=0.70 and r2>0.90
in prediction models for MBC and BSR respectively. Cheng et al. (2001) obtained
approximate predictions for MBC (r2=0.60; RPD=1.10) and BSR (r2=0.82; RPD=2.31).
Excellent predictions were achieved by Coûteaux et al. (2003) for MBC (r2=0.95;
RPD=4.40). It is interesting to point out that although MBC and BSR were well predicted by
NIR spectroscopy, the qCO2, a ratio of BSR to MBC, was poorly predicted. One possible
explanation is that the efficiency in C use, represented by this quotient, strongly depends on
the physiological status of the microbial community, a characteristic unlikely to influence
the spectra to register a measurable effect. Certain enzyme activities were also satisfactorily
predicted by NIR reflectance spectroscopy, as reported by Cohen et al. (2005) for acid
phosphatase (r2=0.94; RPD=2.62), β-glucosidase (r2=0.96; RPD=2.64), dehydrogenase
(r2=0.96; RPD=1.89) and peptidase (r2=0.94; RPD=2.37). Nevertheless, Reeves et al. (2000)
achieved poor predictions for acid phosphatase, urease, arylsulfatase and dehydrogensase,
with r2<0.75.

There have been few attempts to predict variables related to the soil microbial community
composition by NIR reflectance spectroscopy. The first study we know that measured
relationships between microbial community data and soil reflectance was that expounded by
Johnson et al. (2003). The authors did not develop quantitative prediction models, but
observed that the grouping of soil samples based on their soil reflectance properties was
similar to the grouping based on DNA fingerprinting. Rinnan and Rinnan (2007) applied
NIR reflectance spectroscopy to predict, as in our research, groups of microorganisms based
on PLFAs. These authors could satisfactorily predict totPLFAs (r2=0.78), fungi (r2=0.78)
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and the ratio fungi to bacteria (r2=0.80), the predictions being similar to those shown in our
study for fungi, but poorer for totPLFAs. The ability of NIR to predict these variables based
on PLFAs, if it holds true for a larger set of samples under different conditions, is
particularly promising because PLFA analyses are expensive, laborious and require great
amounts of chemical reagents, while NIR is much faster, inexpensive and needs no chemical
reagents. Since soil microbial properties have proved to be sensitive and reliable indicators
for soil quality (Nannipieri et al., 1990; Dick et al., 1996), there has been a great expansion
of research into the possibilities of using variables related to soil microbial community
structure to assess degradation processes, restoration strategies or management practices. As
a consequence, it is worthwhile to direct efforts on the applicability of NIR to create
accurate prediction models for PLFAs biomarkers in soil. Cohen et al. (2005) and Rinnan
and Rinnan (2007), however, speculated that the low concentrations of microbiological
variables in the soil matrix make it unlikely that it will be possible to obtain direct
measurable effects by changes in the reflectance characteristics, and good predictions could
be the consequence of high correlations with total soil organic matter quantity and quality.
Rinnan and Rinnan (2007) observed that the regression coefficients of the microbiological
variables were rather similar to those of organic matter, concluding that NIR detected a
combination of soil constituents containing organic functional groups, which are related to
the studied microbiological variables. Nonetheless, in our study we have not found high
similarities between the regression coefficients of the biochemical properties and SOC.
Furthermore, the structure of the PLS vectors are also different for all these properties,
suggesting that calibrations have been carried out independently, with different spectral
regions implied in each property. As it is shown in Table 3, correlations between SOC
concentration and NIR absorbance data have been developed in the ranges 1732-1914 and
2092-2630 nm. Nonetheless, for the calibration of the biochemical properties, other ranges
of the spectrum have been used. Concretely, there are regions under 1732 nm used in most
calibrations, indicating that this region has variations in the spectral data which have their
origin in variations in the biochemical properties concentrations. That is to say, this region
must contain information about functional groups bound to the biochemical properties, as it
is present in practically all cases. As a consequence, calibrations have been developed by
means of the best correlations between the concentration of the biochemical properties and
the variations in the spectra. In Table 4 we show the values of r2 after simple linear
regressions of biochemical properties with SOC, and the values of r2 achieved after PLS
regressions with NIR spectra. The values of r2 in the linear regressions are always lower
than r2 obtained with NIR spectra. Hence, PLS regressions extract information from the NIR
spectra directly related to the biochemical properties, as this accuracy can not be explained
by direct correlations with SOC.

To conclude, this study confirms the usefulness of NIR spectroscopy for the prediction of
various properties in Mediterranean soils. NIR spectroscopy offers a number of important
advantages over other methods. It is a rapid, non-destructive method, requires minimal pre-
treatment of samples (only air-drying and sieving), it is highly accurate and free of chemical
reagents and harmful waste production. NIR spectroscopy used in association with
sophisticated chemometrics tools permits the construction of accurate and reliable prediction
models for several physical, chemical and biochemical properties, including variables
related to the microbial community composition of the soil. Therefore, NIR spectroscopy
could be used as a rapid analytical tool for soil quality assessment and soil management.
Furthermore, low costs of sample evaluation would allow high spatial and temporal
resolution for routine monitoring across large areas, which may greatly reduce management
uncertainty (Cohen et al., 2005). However, further work is needed to develop more reliable
models including a larger number of samples from different soil types and zones with a wide
range of soil characteristics. Nonetheless, the excellent prediction models that were
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developed here, with a large number of soil samples (393) from different land uses and soil
types in SE Spain, could be used to characterize other soils collected in this general region.
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Figure 1.
Representative NIR spectra of 4 soil samples chosen to illustrate the variation in absorbance
across the different land uses employed in this study.
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Figure 2.
Relationships between biochemical properties measured by standard laboratory procedures
and predicted by NIR reflectance spectroscopy. MBC: microbial biomass carbon; BSR:
basal soil respiration; VAM fungi: vesicular-arbuscular mycorrhizal fungi; totPLFAs: total
biomass PLFAs. The 1:1 line is indicated in each figure. Blank symbols denote outliers (not
removed).
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Table 3

Spectral ranges used for calibrations of soil organic carbon and the biochemical properties.

Soil property
a Spectral ranges (nm)

SOC 1732-1914, 2092-2630

MBC 1374-2092, 2270-2630

BSR 1372-2092, 2270-2452

Phosphatase 1014-1195, 1732-2092, 2270-2630

β-glucosidase 1372-2272

Urease 1195-1734, 1912-2094

Bacteria 1195-1913, 2092-2274, 2452-2632

Fungi 1193-1555, 1912-2453

G- bacteria 1737-1914

G+ bacteria 1014-1195, 1373-1724, 1912- 2274, 2452-2632

Actinomycetes 1014-1195, 2092-2274, 2452-2632

VAM fungi 1014-1195, 1374-1555, 2092-2274, 2452-2632

Protozoa 1014-1195, 2092-2274, 2452-2632

TotPLFAs 1374-1734, 1912-2094, 2452-2632

a
SOC: soil organic carbon; MBC: microbial biomass carbon; BSR: basal soil respiration; qCO2: BSR/MBC; VAM fungi: vesicular-arbuscular

mycorrhizal fungi; TotPLFAs: total biomass PLFAs.
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Table 4

Determination coefficients (r2) for simple linear regressions of the biochemical properties with soil organic
carbon, and PLS regressions.

Soil property (X)

Simple linear regression (Y=SOC) PLS regression (Y=NIR spectra)

r2 r2

MBC 0.76 0.91

BSR 0.68 0.92

qCO2 0.10 0.60

Phosphatase 0.88 0.93

β-glucosidase 0.55 0.93

Urease 0.46 0.80

Bacteria 0.81 0.93

Fungi 0.49 0.77

G- bacteria 0.49 0.60

G+ bacteria 0.81 0.91

Actinomycetes 0.82 0.92

VAM fungi 0.73 0.91

Protozoa 0.68 0.73

TotPLFAs 0.79 0.91

SOC: soil organic carbon; MBC: microbial biomass carbon; BSR: basal soil respiration; qCO2: BSR/MBC; VAM fungi: vesicular-arbuscular

mycorrhizal fungi; TotPLFAs: total biomass PLFAs.

Soil Biol Biochem. Author manuscript; available in PMC 2012 December 07.


