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Physiological responses, developmental programs, and cellular functions rely on complex networks of interactions at
different levels and scales. Systems biology brings together high-throughput biochemical, genetic, and molecular
approaches to generate omics data that can be analyzed and used in mathematical and computational models toward
uncovering these networks on a global scale. Various approaches, including transcriptomics, proteomics, interactomics, and
metabolomics, have been employed to obtain these data on the cellular, tissue, organ, and whole-plant level. We summarize
progress on gene regulatory, cofunction, protein interaction, and metabolic networks. We also illustrate the main approaches
that have been used to obtain these networks, with specific examples from Arabidopsis thaliana, and describe the pros and
cons of each approach.

INTRODUCTION

Physiological responses, developmental programs, and cellular
functions rely on diverse interactions, such as those between
DNA and proteins, between proteins, or in a sequence of en-
zymatic activities, that form complex networks to control bi-
ological processes (Vidal et al., 2011). Minor perturbations at
one part of the system could cause ripples, or even waves, of
effects across the entire network. Alternatively, regulation within
a network could render the system robust to any minor pertur-
bation. Understanding the nature of these complex phenomena
requires in-depth and integrated knowledge of the molecular,
biochemical, and physiological aspects of a biological process.

Characterizing mutant phenotypes has gradually increased
our understanding of specific functions and modes of action of
individual proteins, resulting in the description of small gene
regulatory networks (GRNs) that underlie specific responses and
developmental or biochemical steps. Examples of this include
stem cell fate in the shoot apical meristem (Dodsworth, 2009),
circadian clocks (Pokhilko et al., 2010, 2012), auxin signaling in
the embryo (Lau et al., 2011), and light signal transduction
(Rausenberger et al., 2011). While such a focused approach is
informative, a holistic systems biology view allows us to gain
comprehensive insight and to connect the dots of the molecular
networks underlying plant growth and development. A full un-
derstanding of a process on a systems level also requires

knowledge of the dynamic behavior of these components and
their interactions (Albert, 2007).
Uncovering the complex set of transcriptional and protein

interactions that regulate development and response to the
environment requires the identification of networks on a genome
and proteome scale. Interactions can be either physical (e.g.,
association between two proteins or protein and DNA) or func-
tional (in a biochemical or signaling pathway), and these inter-
actions often can be inferred from available data (Yellaboina
et al., 2007). Systems-level network analysis approaches can be
quantitative or qualitative. The former aims at precise network
structure and kinetics data to simulate the dynamics of a bi-
ological process, while the latter relies on collective topological
features (Albert, 2007). Here, we summarize the progress made
in uncovering genome-wide gene cofunction, gene regulatory,
protein interaction, and metabolic networks. Network science
identifies individual entities (nodes) and their links (edges) (Vidal
et al., 2011). We will illustrate some of the main experimental
and computational methods with specific examples from Arabi-
dopsis thaliana and describe the pros and cons of different
approaches.

GENOME-WIDE COFUNCTIONAL NETWORK INFERENCE
AND ANALYSIS

Advances in high-throughput technologies have led to the gen-
eration of extensive gene expression data sets on a genome-wide
scale. The observation that genes sharing a common function can
be transcriptionally coordinated (Hughes et al., 2000; Kim et al.,
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2001; Wu et al., 2002; Stuart et al., 2003) has enabled these data
sets to be analyzed such that putative functional associations
between genes can be inferred. Coexpression approaches use
statistical metrics to establish correlations between gene ex-
pression profiles across many samples based on the principle of
guilt-by-association (Figure 1A) (Usadel et al., 2009). Given the
abundance of existing gene expression data, the generation of
coexpression networks is a feasible top-down approach to gen-
erate genome-wide cofunctional network models in plants.

Coexpression networks most commonly use the Pearson cor-
relation coefficient to establish linear pairwise correlations be-
tween gene pairs in an adjacency matrix. Another associative
metric that can be used is the Spearman correlation coefficient
which enables nonlinear correlations between genes to be un-
covered (Usadel et al., 2009). A modified graphical Gaussian
model that takes into account partial correlations between genes
after removing the effects of other adjacent genes has also been
used (Ma et al., 2007). Following the establishment of gene as-
sociations, a cutoff threshold is then set, and pairwise interaction
values exceeding this selected threshold are kept. The strength of
the correlations between gene pairs can be considered as edge
weights indicating the strength of coregulation between gene
pairs. The end result of such an approach is a network consisting
of nodes representing genes connected by edges representing
a significant similarity in their common expression pattern. It
is important to note that both positively and negatively acting
components of a biological process can be coexpressed (Bassel
et al., 2011b; Lee et al., 2011), so it is not possible to predict the
function of putative coregulated gene pairs using this approach.

Functional modules consisting of subsets of highly inter-
connected nodes can be identified within networks. These
cofunctional modules comprise strongly connected nodes, based
on their collective interaction strength, with only weak interactions
to other nodes in the network. In the case of coexpression

networks, the modules represent groups of coexpressed genes
or modular units of gene expression that may act together within
a biological process with which they are associated. A variety of
network clustering algorithms have been developed to identify
modules in networks, including molecular complex detection
(Bader and Hogue, 2003), Markov clustering algorithm (Enright
et al., 2002), MCLUST (Fraley and Raftery, 2003), biclustering
(Preli�c et al., 2006), and the heuristic cluster chiseling algorithm
(Mutwil et al., 2010). Some of these methods place genes into
mutually exclusive clusters, which may not be realistic in a bio-
logical context where individual genes are capable of acting
in multiple pathways, while other methods do not take into
account interaction strength. A recently developed clustering
algorithm named ClusterONE allows for overlap in module de-
tection while considering edge weights (Nepusz et al., 2012).
These algorithms produce clusters of varying gene members
and sizes based on the subjective modification of their re-
spective thresholds. Variability in module detection can also be
compounded by the generation of different networks from the
same data when using different methods (Aoki et al., 2007).
Another source of variation is in the decision for placing the
significance cutoff in the correlation coefficient affecting overall
network size and topology. Too high a cutoff would not enable
weakly coordinated processes to be captured, while too low a
cutoff leads to large gene networks and a greater false positive
rate. The use of known network topology to guide threshold
cutoffs when generating cofunctional networks is also ambigu-
ous, as conflicting reports have shown biological networks ei-
ther to be scale free (follow a power law distribution; Barabasi
and Albert, 1999) or not scale free (Khanin and Wit, 2006; Daudin
et al., 2008).
Once a coexpression network has been generated, identifying

modules by clustering can help extract biological meaning from
the network. A module that contains genes that are annotated to

Figure 1. Schematic Representation of Different Types of Networks.

(A) and (B) Cofunctional networks.
(A) A coexpression association where two genes are linked based on a common expression pattern.
(B) A cofunctional association where two genes are linked based on coexpression and/or other shared properties.
(C) A gene regulatory interaction where a TF directly binds the promoter to regulate the expression of a target gene.
(D) and (E) Two different approaches for uncovering GRNs using either a TF-centered approach (D) or a target-centered approach (E).
(F) Protein–protein interactions reflecting an experimentally determined physical interaction between two proteins.
(G) Metabolite interaction where two metabolites are linked through a common edge that represents a biochemical reaction converting one metabolite
into the other.
Genes are colored in black, proteins are colored in gray, and metabolites are colored white.
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overrepresented Gene Ontology (GO) categories (Ashburner
et al., 2000) suggests this unit of genes may be involved in
a given biological process. Uncharacterized genes within such
a module can be candidates for participating in the same pro-
cess. Similarly, genes directly connected to (or coexpressed
with) known central regulators of a developmental process are
candidates within this cofunctional framework. Identifying sta-
tistically overrepresented cis-elements in the promoters of the
genes within a coexpression module may help infer regulatory
interactions between transcription factors (TFs) and their tar-
gets. Given that members of a module in a coexpression net-
work are highly transcriptionally coordinated across multiple
samples, common upstream regulatory factors likely act through
shared promoter elements. Shared cis-elements may be signif-
icantly overrepresented within a given module, providing clus-
tered targets for TFs known to bind these sites. This information
can be used to infer GRNs between TFs and their targets (see
below).

Another means of extracting biologically relevant information
from coexpression networks is to focus on genes with the greatest
number of edges, so-called hub nodes, which show the greatest
amount of transcriptional coordination with other genes. The
centrality hypothesis states that if these connections are func-
tionally relevant, removal of this central hub would severely perturb
the network, possibly leading to an altered phenotype. The ex-
ploration of hub nodes often results in pleiotropic phenotypes due
to the genes of interest being involved in multiple processes and
hence can be enriched in false positives (Han et al., 2004; Yu et al.,
2008a).

Coexpression networks created using various combinations
of these approaches have led to the identification of previously
uncharacterized genes in Arabidopsis involved in cell wall syn-
thesis (Persson et al., 2005), flower development (Usadel et al.,
2009), seed germination (Bassel et al., 2011b), and plant growth
(Mutwil et al., 2010). The conservation of coexpression networks
has been investigated across diverse plant species within a con-
sensus network named PlaNet (Mutwil et al., 2011). This work
demonstrated that the net transcriptional output of plant cells is at
least partially conserved across model and crop species.

Integrating multiple data types can enhance the confidence by
which cofunctional relationships are inferred (Figure 1B). A draw-
back of cofunction networks utilizing coexpression alone is that
not all biological processes are transcriptionally coordinated. In
addition, the guilt-by-association principle has been reported to
have limited applicability in the inference of gene function (Gillis
and Pavlidis, 2012). This conclusion was reached based on the
observation that functional information is not encoded throughout
coexpression networks, but rather within a subset of key inter-
actions. These observations limit the general applicability of pre-
dicting cofunctional relationships based solely on coexpression
analysis.

A genome-wide cofunction network of Arabidopsis called AraNet
has been constructed using a number of omics data sets from
Arabidopsis in addition to functional linkage data from homolo-
gous gene pairs in other model organisms (Lee et al., 2010). These
data were vetted against experimentally characterized genes in
Arabidopsis through standardized GO annotations available from
The Arabidopsis Information Resource (Lamesch et al., 2010,

2012) using a Bayesian probabilistic model. Several previously
uncharacterized genes have been assigned a function based on
the functions of their neighboring genes in AraNet and subsequent
experimental validation. These genes include genes associated
with lateral root formation (Lee et al., 2010) and drought sensing
(Lee et al., 2010).
Another cofunction network named RiceNet has been gen-

erated by combining gene coexpression data from this species
with diverse proteomic data sets (Lee et al., 2011). A subset of
predicted cofunctional interactions was found to interact phys-
ically at the protein level, and three novel regulators were re-
ported to function in planta as components of the biotic stress
response in this key crop species. These examples show that
combining multiple data types can enhance predictive capacity
of cofunctional relationships. Web-based tools to generate co-
functional networks of genes of interest using multiple data
types are described later in this review.
Many studies predicting cofunctional relationships have focused

on using the greatest quantity of gene expression data available,
generally coming from diverse plant tissues and cell types. While
more data increase the statistical power of the analysis, a lack of
context specificity within data sets will only capture processes that
are common in the samples used. Examples of this are the iden-
tification of photosynthesis and flavonoid synthesis pathways
conserved across PlaNet (Mutwil et al., 2011). However, different
tissues are defined by distinct regulatory networks, as are the
discrete cell types that comprise them. A condition-dependent
approach using data from a single tissue (Bassel et al., 2011b) or
from single cell types (Birnbaum et al., 2003; Brady et al., 2007;
Dinneny et al., 2008) can increase the context specificity by which
gene cofunctional interactions can be inferred. An example of this
is SeedNet, which was inferred using data generated exclusively
from whole Arabidopsis seeds. A core module of seed dormancy–
related coexpressed genes was identified within a dormancy
subdomain of the network. Characterizing this module led to the
identification of 10 novel regulators controlling seed dormancy
(Bassel et al., 2011b). These predicted gene interactions were
absent in other condition-independent cofunctional networks,
while the overall network topology was found to be conserved in
seeds of the monocot crop species wheat (Triticum aestivum)
when equivalent data sets were compared.
When using condition-independent data sets, strategies have

been developed to uncover biologically significant cofunctional
interactions. One approach to enrich for causal interactions is to
remove from the network all edges that are conditionally de-
pendent (i.e., those that cannot be explained by other variables).
Such a selection of conditionally independent edges has been
used successfully for small metabolic and developmental net-
works by Gaussian Graphical Modeling (Wille et al., 2004).
However, computational complexity prevents genome-wide
applications at this time.
The spatial and temporal modulation of gene networks during

cellular development may be limited by the availability of a sufficient
number of data sets capturing cell type–specific processes over
time. AraNet is capable of detecting genes preferentially coex-
pressed within specific root cell types with greater accuracy
than randomly generated networks, despite using diverse whole
tissue data sets as input. This predictive capacity may be
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increased through the generation of condition-dependent co-
functional networks.

A novel computational approach to construct a cofunctional
network using gene expression data has recently been presented
(Bassel et al., 2011a), wherein a rule-based machine learning al-
gorithm called BioHEL was used to associate genes functionally.
This algorithm generates rules that predict the developmental fate
of a biological system through the automated exploration of sub-
sets of annotated gene expression data. This cofunctional asso-
ciation metric, termed “coprediction,” relies on the hypothesis that
groups of genes that collectively are able to predict a de-
velopmental output have a greater probability of being functionally
related. This approach was used to generate a seed coprediction
network (SCoPNet), which was functionally validated with the
identification of four novel regulators of seed germination. A key
feature of coprediction using gene expression data is that it does
not rely on establishing cofunctional relationships using common
gene expression patterns. Additional computational approaches
beyond correlation-based methods may therefore be used to as-
sociate genes functionally using large-scale datasets.

LARGE-SCALE TRANSCRIPTIONAL
REGULATORY NETWORKS

Mapping and systems analysis of large scale regulatory networks
allow for the discovery of emergent properties (Long et al., 2008).
A GRN describes the interaction of regulatory factors and their
targets; here, we focus on TFs and their regulation of target gene
expression (Figure 1C). There are two complementary ways to
map GRNs: TF centered and target centered (Figures 1D and 1E).

Chromatin immunoprecipitation (ChIP) coupled with micro-
arrays (ChIP-chip) or next generation sequencing (ChIP-seq) is
a TF-centered approach to map GRNs. This technique involves
immunoprecipitation of a TF and its bound target DNA with
subsequent identification of downstream targets. The ChIP ap-
proach results in a network that describes the in vivo binding
targets of a single TF (Table 1). Yeast one-hybrid (Y1H) assays
are a target-centered approach that identifies upstream TFs
binding to a promoter or motif of interest. This assay requires the
initial development of a TF collection or cDNA library of prey
TFs, which are assayed against bait promoters of interest in
yeast (Deplancke et al., 2004).

ChIP studies have focused on TFs that are well characterized
and typically abundant. In plants, ChIP studies have been per-
formed primarily in Arabidopsis, but occasionally also in rice (Oryza
sativa) and maize (Zea mays) (Fornalé et al., 2010; Moreno-Risueno
et al., 2010) (Table 1). A protein expressed in few cell types or
developmental stages can be difficult to precipitate due to lack of
abundance. Traditionally this has been overcome using over-
expression and conditional induction of the gene of interest by
fusion to the glucocorticoid receptor or to a hormone inducible
promoter, such as the estrogen-inducible promoter. Although this
provides the researcher with potential binding targets, it obscures
the developmental or tissue/cell type–specific context of the
transcriptional regulation identified. Additionally, high-quality
antibodies against the TFs are needed to achieve specific and
sufficient immunoprecipitation. Using epitope-tagged TFs or
fusion with a protein to which high-quality antibodies have been

developed (i.e., green fluorescent protein) has been a way to
circumvent the development of protein-specific antibodies.
However, the tagged protein must be verified to ensure that its
expression reflects the wild type and that it can functionally
complement a loss-of-function phenotype.
ChIP studies provide evidence for in vivo DNA binding but do

not show the regulatory effect of the TF on its targets. Similarly,
Y1H does not show the regulatory effect of the binding. Addi-
tionally, Y1H is limited by the heterologous nature of the assay
and does not provide direct in planta evidence for TF-DNA
binding. For example, a plant TF may not be able to form obli-
gate heterodimers or higher order protein complexes to bind
to promoter sequences. This will produce false negatives that
cannot be detected in the yeast system. Therefore, this ap-
proach requires biological validation to be confident of the in
vivo physical interactions through independent validation tech-
niques, including directed ChIP experiments. However, Y1H can
be adapted to high-throughput techniques to screen the pro-
moters of multiple genes of interest simultaneously, leading to
a typically larger and more comprehensive network (Brady et al.,
2011; Gaudinier et al., 2011). The assay can be tailored to screen
specific biologically relevant promoter sequences of interest,
focusing the experimental approach and enriching for the
identification of relevant targets when mapping GRNs.
Although previously only 1 to 10% of interactions identified by

ChIP have been determined to be regulatory in nature (Farnham,
2009; Moreno-Risueno et al., 2010), more recently biological
validation rates have been increasing (Kaufmann et al., 2011).
Using Y1H assays to determine TF-DNA interactions, two of
three interactions tested were reported to be regulatory in planta
by ChIP and genetic analysis. Thirty-two of 66 additional inter-
actions were confirmed through genetic approaches with the
supposition that the same proportion above (two out of three)
would bind in planta (Brady et al., 2011). Comprehensive bi-
ological validation of GRNs predicted by either of the above
methods is a challenge. The ChIP approach provides in planta
binding data and the Y1H assays show binding, at least in yeast,
but neither method is sufficient to probe the regulatory nature of
the interactions. Perturbing the network using loss-of-function
and/or conditional induction lines of the TF (such as using glu-
cocorticoid receptor fusions or estrogen-inducible promoters) and
analyzing expression of the TF’s targets relative to the control will
show if the TF acts as an activator, repressor, or has no effect. In
vivo confirmation can also be performed using a transient ex-
pression system in protoplasts in which a TF is induced to see its
effect on target gene expression (Pruneda-Paz et al., 2009; Lau
et al., 2011), although the developmental and tissue-specific
context of the interactions can be missed using this approach.
Both ChIP and Y1H led to genome-wide understanding of

transcriptional regulatory networks. For example, ChIP-chip and
ChIP-seq technologies have been used to identify binding targets
of the general floral regulator SEPALLATA3 (SEP3) (Kaufmann
et al., 2009) and of the A-function floral identity regulator APE-
TALA1 (AP1). As many as 2298 genes were found as AP1 targets,
with 10.8% of these genes as high-confidence targets that show
binding and a moderate change in gene regulation by AP1 as
determined by induction of AP1 and ChIP-seq analysis. AP1
bound to the SEP3 promoter and activated SEP3 expression. A
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Table 1. List of ChIP-Chip and ChIP-Seq Studies in Plants: The General Topic, Gene(s) of Focus, Tissue Isolated, and Experimental Validation
Technique to Generate GRNs and Test Their in Vivo Relevance

Targets of Listed TFs Technique Tissue Topic

Method for
Experimental
Validation

No. of
Interactions
Experimentally
Confirmed Reference

AT1G24260 (SEPALLATA3) ChIP-Seq
and
ChIP-chip

Inflorescence Floral development Induction
quantitative RT-PCR

16 Kaufmann et al.
(2009)

Mutant analysis 1
At1g69120 (APETALA1) ChIP-Seq

and
ChIP-chip

Inflorescence Floral development Binding motif
complimentation

1 Kaufmann et al.
(2010)

Induction
quantitative RT-PCR

9

AT5G41315 (GLABRA3), ChIP-chip Seedlings Trichome
development

Semiquantitive RT-PCR 12 Morohashi and
Grotewold (2009)AT3G27950 (GLABRA1)

Inducible GL3 and
GL1 lines

14

Mutant analysis 1
AT1G14350 (FOUR LIPS), ChIP-chip Seedlings Stomatal

development
ChIP-PCR 1 Xie et al. (2010)

AT2G02820 (MYB88)
EMSA 1
ChIP-qPCR 7

AT5G60690 (REVOLUTA) ChIP-Seq Seedlings Leaf development Induction
quantitative RT-PCR

9 Brandt et al. (2012)

Mutant and
overexpression
analysis

6

Binding motif analysis n/a
ChIP-qPCR 5

AT5G13790 (AGAMOUS-
LIKE15)

ChIP-chip Embryonic
culture

Embryogenesis Quantitative
RT-PCR

3 Zheng et al. (2009)

Binding motif analysis n/a
AT2G20180 (PHYTOCHROME

INTERACTING FACTOR3-
LIKE5)

ChIP-chip Seeds Seed germination Quantitative
RT-PCR

21 Oh et al. (2009)

Binding motif analysis n/a
ChIP-qPCR 3

AT1G75080
(BRASSINAZOLE-
RESISTANT1)

ChIP-chip Seedlings Brassinosteroid
signaling

Semiquantitative
RT-PCR

1 Sun et al. (2010)

EMSA 2
Binding motif analysis n/a
Quantitative RT-PCR 22

AT1G19350 (BRI1 EMS
SUPRESSOR1)

ChIP-chip Seedlings Brassinosteroid
signaling

EMSA 1 Yu et al. (2011)

Mutant analysis 4
AT3G47640 (POPEYE) ChIP-chip Roots Iron deficiency

response
Quantitative RT-PCR 3 Long et al. (2010)

AT2G32780 (UPBEAT1) ChIP-chip Roots Reactive oxygen
species

Mutant analysis 1 Tsukagoshi
et al. (2010)

AT4G37650 (SHORTROOT), ChIP-chip Root ground
tissue

Root development Quantitative
RT-PCR

14 Sozzani et al. (2010)
AT3G54220 (SCARECROW)

ChIP-qPCR 1
Semiquantitative

RT-PCR
11

AT5G11260
(ELONGATED
HYPOCOTYL5)

ChIP-chip Seedlings Light regulation ChIP-qPCR 4 Lee et al. (2007)

Binding motif analysis n/a
ChIP-qPCR 8 Huang et al. (2012)

(Continued)
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comparison of AP1 and SEP3 targets (Kaufmann et al., 2010)
showed overlap, suggesting that these proteins may function as
a heterodimer to activate genes involved in early flower organ
development. Using a combination of ChIP and network pre-
dictions, an opposing relationship between two proteins involved
in the response to iron deprivation, POPEYE (PYE), a basic helix-
loop-helix TF, and BRUTUS (BTS), a putative E3 ligase, has been
described (Long et al., 2010). Using ChIP-chip of PYE, 70 targets
were identified. Using the ATTED-II coexpression network tool
with PYE as bait, BTS, which is involved in iron homeostasis, was
identified. The pye-1 mutant plants are small and chlorotic when
grown on iron-deficient media, while BTS plays an antagonistic
role in negatively regulating the iron deprivation response as bts-1
plants are green and have an increased tolerance to iron de-
ficiency. Y1H assays have been used at various scales to identify
upstream transcriptional regulators. A directed Y1H screen, with
a library of 186 Arabidopsis TFs that are circadian regulated,
against the CCA1 promoter was used to identify CCA1 HIKING
EXPEDITION (CHE), a TCP TF. Using tiled promoter fragments,
the binding region was narrowed down to 171 bp (Pruneda-Paz
et al., 2009). A transient expression assay in protoplasts de-
termined that CHE acts as a repressor of CCA1, and in planta
binding was confirmed by ChIP–quantitative PCR (qPCR). Yeast

two-hybrid (Y2H) and coimmunopurification experiments addi-
tionally demonstrated a protein–protein interaction between CHE
and TOC1 as well as between TOC1 and CCA1, indicating further
putative combinatorial action between these TFs (Pruneda-Paz
et al., 2009).
Finally, combining approaches will lead to more compre-

hensive networks. For example, the combination of Y1H and
Y2H assays between 167 TFs and 93 TF and microRNA pro-
moters as well as computationally and experimentally derived
microRNA–mRNA interactions resulted in a more holistic
Arabidopsis root stele–enriched GRN (Brady et al., 2011). A
network of 103 interactions was mapped and interactions were
tested in planta with a variety of biological validation techniques,
including ChIP, mutant and conditional induction analyses to
confirm 59% of the interactions. Only 16% of the GRN TF mu-
tants screened showed a root phenotype but 65% showed
a molecular phenotype. This demonstrates the robustness of the
stele-enriched network as TFs regulating the same gene can
compensate for a mutation in one of the regulators. Increasing
this TF collection from 24% to 92% of stele-expressed TFs
(Gaudinier et al., 2011) provides the ability to generate a more
comprehensive network of transcriptional regulation across the
root stele.

Table 1. (continued).

Targets of Listed TFs Technique Tissue Topic

Method for
Experimental
Validation

No. of
Interactions
Experimentally
Confirmed Reference

AT5G61380 (TIMING OF
CAB EXPRESSION1)

ChIP-Seq Seedlings Circadian clock Induction quantitative
RT-PCR

2

Mutant and
overexpression
analysis

4

Binding motif analysis n/a
Quantitative RT-PCR 1
Mutant analysis 1

AT3G22170 (FAR-RED
ELONGATED HYPOCOTYL3)

ChIP-Seq
and
ChIP-chip

Seedlings Phytochrome
signaling

Mutated
promoter (Y1H)

1 Ouyang et al. (2011)

Inducible FHY3 line 1
Binding motif analysis n/a

AT5G06950 (TGA2) ChIP-chip Leaves Salicylic acid
response

ChIP-qPCR 3 Thibaud-Nissen
et al. (2006)

Binding motif analysis n/a
AT3G54610 (GENERAL

CONTROL
NON-REPRESSIBLE5)

ChIP-chip Seedlings Histone
acetyltransferase

Semiquantitative
RT-PCR

7 Benhamed
et al. (2008)

GRMZM2G017087
(Zm KNOTTED1)

ChIP-Seq Ears, tassels, and
leaves

Meristem
development

ChIP-qPCR 34 Bolduc et al. (2012)

EMSA 4
Binding motif analysis n/a

GRMZM2G084799
(Zm PERICARP COLOR1)

ChIP-Seq Pericarps
and silks

ChIP-qPCR 19 Morohashi et al.
(2012)

Transient
expression assay

4

EMSA 2
Binding motif analysis n/a

EMSA, Electrophoretic Mobility Shift Assay; n/a, not applicable.
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LARGE-SCALE PROTEIN–PROTEIN INTERACTIONS:
THE INTERACTOME

To understand fully genotype-to-phenotype relationships at the
systems level, comprehensive knowledge about the complex
and dynamic protein–protein interactions that exist within an
organism is required. Identifying binary protein–protein inter-
actions and components of protein complexes is a crucial step
toward elucidating associated biological activities (Figure 1F).
Several assays have been developed to identify and predict
protein interactions in yeast, in cell suspension, in planta, and in
silico, and various public databases have compiled these in-
teractions (Table 2).

As there is still a long way to full coverage of in planta protein–
protein interaction networks, computational approaches, including
coexpression, have been used to infer protein–interactions.
Protein interactions can be inferred by homology to known
interactions in other organisms (interaction ortholog or inter-
log) (Geisler-Lee et al., 2007), using indirect evidence or lit-
erature (Cui et al., 2008) or integrated methods (Xu et al.,
2010). Interlogs can be filtered using functional association
data to improve prediction reliability (De Bodt et al., 2009).
Several databases of inferred protein interactions have been
established (Geisler-Lee et al., 2007; Cui et al., 2008; Brandão
et al., 2009; De Bodt et al., 2009; Lin et al., 2009, 2011a,
2011b) (Table 2). The predicted Arabidopsis interactome re-
source provides an interactome inferred from multiple indirect
lines of evidence, including coexpression, colocalization, co-
evolution, annotation similarity, domain interaction, and ho-
mologous interactions in other species. The BAR Arabidopsis
Interactions Viewer also provides similar functionality (Geis-
ler-Lee et al., 2007). These computational approaches can
guide the identification of potential in vivo and in planta pro-
tein–protein interactions. In this respect, coexpression is rel-
evant because proteins generally should be expressed in the
same cell at the same time for in vivo interaction. Care must
be used when inferring protein expression from transcriptome
data as transcript and protein abundance do not always
correlate (Boruc et al., 2010; Van Leene et al., 2010; Arabi-
dopsis Interactome Mapping Consortium, 2011; Petricka et al.,
2012).

While inferring interactions using computational approaches
can be useful, validation in a biological system is required to
draw more meaningful conclusions. This is limited by only a few
available in planta high-throughput assays. To gain insight into
protein–protein interactions and to obtain interactome networks,
one can identify binary interactions using Y2H, bimolecular
fluorescence complementation (BiFC), split ubiquitin or split lu-
ciferase, or alternatively isolate components of a protein com-
plex in planta using coimmunopurification or tandem affinity
purification (TAP) (Van Leene et al., 2011). Uses of these dif-
ferent approaches are described below.
On a small, protein family scale, a Y2H approach was used to

identify binary protein–protein interactions, such as AUXIN/
INDOLE-3-ACETIC ACID (AUX/IAA)–AUXIN RESPONSE FACTOR
(ARF) interactions (De Rybel et al., 2010; Vernoux et al., 2011), to
map the dimerization network of MADS domain TFs (de Folter
et al., 2005) and, in combination with BiFC assays, to reveal
functional modules in core cell cycle binary protein–protein in-
teractions (Boruc et al., 2010). To obtain a more global inter-
actome network, a high-throughput Y2H approach has been
used to map binary interactions between soluble proteins in
plants (Arabidopsis Interactome Mapping Consortium, 2011).
This represents the first large-scale experimentally validated
protein interactome in plants and has also been used to de-
termine a plant-pathogen immune network (Mukhtar et al.,
2011).
However, Y2H is mainly suitable for soluble proteins that can

traffic to the nucleus, ignoring membrane proteins, which often
play essential roles in fundamental biological processes, in-
cluding signaling, homeostasis, nutrient acquisition, and me-
tabolism. Despite their importance, we know little about the
functions of most membrane proteins. To systematically eluci-
date a map of membrane protein interactions, a mating-based
split ubiquitin system (mbSUS) was developed (Obrdlik et al.,
2004; Miller et al., 2005). The split ubiquitin system is similar to
the classical Y2H as it uses yeast as a heterologous system and
has a similar readout, but it specifically allows the detection of
interactions of full-length membrane proteins. The concept of
mbSUS relies on the release of a TF from a membrane protein if
it interacts with another membrane (or soluble) protein. Similar to

Table 2. Freely Accessible Databases and Tools for Network Analyses

Application Tools

Databases and warehouses
Gene expression BAR, Genevestigator, ATTED, AT-TAX, TileViz
Protein expression Pep2pro
Protein–protein interactions ANAP, BAR, PAIR, IntAct, AtPIN, AtPID, AthPPI, Associomics, PRIN (rice), BioGRID
Protein localization SUBA, PREDOTAR, TargetP

Gene set analysis BAR, AMIGO, DAVID, FuncAssociate, BiNGO, ATCOECIS, MapMan, AraNet, AgriGO
Comparative genomics Plaza, OrthologID, DoOP
Gene regulation and promoter architecture

Motif detection BAR, ATCOECIS, TAIR patmatch, DoOP, STAMP, Weeder
Binding site analysis PLACE, AthaMap, AGRIS

Data integration and network inference LeMoNe, ENIGMA, CORNET, Ondex, AraNet, GeneMania
Generic computation and modeling environments R, MatLab, Systems Biology Workbench
Data visualization AraCyc, PlantCyc, Cytoscape, MapMan, REACTOME
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other detection systems based on the reconstitution of two
halves of a protein, mbSUS uses an ubiquitin molecule split into
two halves. The use of a mutated N-terminal domain of ubiquitin
(Nub) and C-terminal half (Cub) fused to a TF to test for physical
interaction between two fused proteins is the basis of mbSUS,
whereby a functional ubiquitin is reconstituted only when brought
into vicinity via interaction between two fusion partners (Johnsson
and Varshavsky, 1994). Cleaving the reunited ubiquitin molecule
by an endogenous ubiquitin-specific protease releases the TF to
move into the nucleus and activate reporter genes. The mbSUS
was used to test for interactions of the translocon complex at the
outer chloroplast membrane (Rahim et al., 2009) and to screen
for potential interactions among 490 Arabidopsis membrane
and signaling proteins (Lalonde et al., 2010). However, the
currently available membrane interaction networks for Arabi-
dopsis cover only a small portion of the membrane-bound
proteome. A recent study used a computational classification
system to predict putative membrane protein interactions and
decrease the sample space of interactions to be proved (Chen
et al., 2012). These predictions were validated through the
verification of 541 interactions between 239 membrane pro-
teins, enriched in transporters.

The above-described yeast-based systems are informative,
though high-throughput proteome-wide in planta interaction data
are more biologically relevant. An alternative approach is TAP,
which allows investigation of protein interactions through in situ
purification of protein complexes. In a purification experiment,
complexes that are associated with a protein of interest at the
time of extraction can be isolated. The TAP approach is based on
the expression of a bait protein fused to a double affinity tag and
a two-step purification process followed by mass spectrometry of
protein complex members (Van Leene et al., 2008). A targeted
mapping of the cell cycle interactome, using TAP, provided a first
draft of the basic cell cycle complex machinery in Arabidopsis
(Van Leene et al., 2010). The TAP approach has also been em-
ployed to isolate the core jasmonate signaling module and to find
new interactors of JASMONATE ZIM-DOMAIN repressor proteins
(Pauwels et al., 2010; Fernández-Calvo et al., 2011) to determine
whether PROHIBITINS are present within a multimeric complex
(Van Aken et al., 2007), to purify 14-3-3 complexes (Chang et al.,
2009), and to identify components of complexes, including the
COP9 signalosome 3 complex (Rubio et al., 2005), novel WPP2-
interacting proteins (Zhao et al., 2008), the BRASSINAZOLE-
RESISTANT1–dephosphorylating phosphatase (Tang et al., 2011),
and E2F TARGET GENE1–associated proteins (Takahashi et al.,
2008). However, current studies using TAP rely on the use of
cell suspension cultures. Implementing this technology in planta
within the context of multicellular tissues will provide further
biological insights. Furthermore, improving the methodology to
identify membrane-associated complexes awaits development.

For the cell cycle interactome study, interaction between 17
protein pairs was validated using split luciferase assays. Here, the
firefly luciferase (LUC) protein is split into two halves and fused to
two different proteins. LUC activity is only reconstituted when the
N- and C-terminal LUC moieties are brought together by the two
interacting proteins. The validation rate was 41%, which is a great
improvement over a similar type of split protein reconstitution
performed following TAP tagging in yeast (Yu et al., 2008a; Van

Leene et al., 2010). The actual false positive rate is expected to be
much smaller because in a TAP tagging experiment proteins may
interact with each other indirectly and therefore may not be
confirmed when validated by other assays. Furthermore, these
interactions likely occur in specific cell types that may require
additional temporal cues not present in transient systems. The
LUC-based approach was also used to detect SNARE–SNARE
interactions in Arabidopsis protoplasts (Kato et al., 2010). BiFC,
which uses a similar strategy of bringing together two parts of
a protein, in this case yellow fluorescent protein, was also recently
used to validate 78 G-protein interactions in planta that were
previously identified by Y2H analysis. Here, the validation rate
was a striking 95%, which is the highest validation rate reported
for any organism (Klopffleisch et al., 2011). However, this bait set
of proteins was biased in their original selection by their common
participation in a biological process, which may partially explain
the high rate of validation relative to other studies. In addition, the
high sensitivity of the stable reconstituted fluorescent protein can
lead to unspecific reconstitution, especially upon overexpression
of the fusion proteins of interest (Lalonde et al., 2008).
Another approach to probe protein interactions over a large

scale is to use protein microarrays (Popescu et al., 2007, 2009).
This involves the generation of recombinant proteins in planta
through transient expression and spotting the purified proteins
onto microchips. These chips may then be hybridized with flu-
orescently tagged proteins of interest or subjected to enzymatic
modification with a labeled substrate. Imaging of the arrays
following incubation can identify protein–protein interactions
and substrates of posttranslational modification. Using this ap-
proach, large-scale calmodulin interaction (Popescu et al., 2007)
and mitogen-activated protein kinase phosphorylation networks
have been indentified (Popescu et al., 2009).
In addition to these approaches, direct in planta immunopre-

cipitation of tagged proteins of interest, followed by mass spec-
trometry of coimmunoprecipitated proteins has been successful
in identifying protein complex members for several individual
proteins in Arabidopsis, such as SOMATIC EMBRYOGENESIS
RECEPTOR-LIKE KINASE1 (Karlova et al., 2006), CELLULOSE
SYNTHASE CATALYTIC SUBUNITs (Desprez et al., 2007), MADS
domain TFs (Smaczniak et al., 2012), and the ESCRT-III compo-
nent VPS2.2 (Ibl et al., 2012). While this is a powerful approach,
uncovering rare, dynamic complexes in specific plant cells and
tissues remains challenging.
A combination of the above approaches led to the description

of a number of interactomes in Arabidopsis, not only for the cell
cycle (Boruc et al., 2010; Van Leene et al., 2010, 2011), but also
for the chloroplast (Yu et al., 2008b) and for ESCRT, TOPLESS
(TPL), TPL-related (TPR), and G-proteins (Klopffleisch et al., 2011;
Shahriari et al., 2011; Causier et al., 2012; Ibl et al., 2012). For
example, the TPL and TPR interactomes revealed that TPL pro-
teins have been co-opted multiple times in evolution to cause
transcriptional repression. In any systems-level analysis of protein–
protein interactions, in planta validation of the entire spectrum
of interactions that were observed or predicted is unlikely, but
the tools above can be used to confirm a subset of these in-
teractions. In addition, the cell cycle interactome showed that
various techniques may be complementary as the overlap was
rather small between Y2H and BiFC (Boruc et al., 2010).
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Genetic analysis is an additional method of in planta validation.
In an experiment mapping transcriptional regulatory interactions
in the Arabidopsis stele, physically interacting TFs were identified
using Y2H. TFs that interact with each other previously have been
shown to influence each other’s expression, either directly or in-
directly (Cui et al., 2007). For each TF of an interacting pair, ex-
pression of the interactor was measured in each respective TF
loss-of-function background. The majority of interacting TFs was
found to have a regulatory influence on each other’s expression
(Brady et al., 2011). In the Y2H interactome study to determine
a plant-pathogen immune network, interaction between Pseudo-
monas syringae and Hyaloperonspora arabidopsidis effectors with
Arabidopsis proteins was determined (Mukhtar et al., 2011). A
prediction was that Arabidopsis proteins that were targeted by
effectors from both pathogens could display pathogen resistance
or susceptibility. Fifteen of the 17 proteins targeted by effectors
from both pathogens showed mutant phenotypes consistent with
immune system functions (Mukhtar et al., 2011).

METABOLIC NETWORKS

Genome-scale metabolic network models have been built and
applied to study a wide variety of topics, including adaptive evo-
lution, network properties, and metabolic engineering (Figure 1G)
(Feist and Palsson, 2008). Genome-scale metabolic models in
metabolic engineering have been used to couple growth rate with
overproduction of lactate (Fong et al., 2005) and L-Val (Park et al.,
2011) in Escherichia coli and prioritization of alternative engineer-
ing strategies for overproducing ethanol in yeast (Bro et al., 2006).
Although most of the work in metabolic network reconstruction
and application has been performed in microbes, several ad-
vances in plant metabolic network reconstruction and modeling
have been made recently, paving the way for rational plant
metabolic engineering.

Two types of plant metabolic networks have been developed:
descriptive and predictive. Genome-wide descriptive metabolic
networks have been predicted from metabolic pathway data-
bases that have been curated from experimental data in the
literature (Caspi et al., 2012; Kanehisa et al., 2012). These genome-
wide metabolic network representations are now available for
several plant species, such as Arabidopsis (Mueller et al., 2003;
Zhang et al., 2010), Populus trichocarpa (Zhang et al., 2010),
Chlamydomonas reinhardtii (May et al., 2009), Medicago trun-
catula (Urbanczyk-Wochniak and Sumner, 2007), grasses
(Youens-Clark et al., 2011), and shade plants (Bombarely et al.,
2011). Recently, the plant metabolic network group published
genome-wide metabolic networks for maize, soybean (Glycine
max), cassava (Manihot esculenta), and wine grape (Vitis vinifera)
online (www.plantcyc.org; Zhang et al., 2010). Most of these
networks (except for Arabidopsis) are not associated with ex-
tensive validation and curation with experimental data from the
literature, and caution should be taken when interpreting the
data. These networks have been used for a variety of studies,
including identification of novel genes in glucosinolate metabo-
lism (Chan et al., 2011), the role of duplicated enzymes (Hanada
et al., 2011), and metabolomic responses to UV-B (Kusano et al.,
2011). While the descriptive, qualitative networks have been

useful in many studies, they are not predictive and are therefore
limited in facilitating metabolic engineering.
Predictive metabolic modeling approaches can be broadly

grouped into kinetic and stoichiometric modeling (Sweetlove
et al., 2008). Kinetic modeling uses enzyme kinetics numerically
to simulate and test metabolic fluxes and can explain mecha-
nism of flux changes. However, the difficulty of determining in
vivo enzyme kinetics has limited this modeling to a small number
of pathways. The most widely adapted modeling approach used
for genome-wide metabolism is constraints-based modeling
that includes stoichiometric, thermodynamic, and flux capacity
constraints to model the fluxes of metabolites (Thiele and
Palsson, 2010). This approach has been used to build predictive
models of metabolism for Arabidopsis (Poolman et al., 2009; de
Oliveira Dal’Molin et al., 2010), maize (Saha et al., 2011), and C.
reinhardtii (Chang et al., 2011). Most of these models have not
been validated extensively using flux measurements, though
advances in metabolic flux analysis using 13C-labeling and
metabolomics approaches hold promise (Schwender, 2008;
Sweetlove et al., 2008; Allen et al., 2009).These predictive
models have been applied in studies in many fields, such as
metabolic engineering, drug discovery, drug target discovery,
identification of novel gene function, evolutionary processes,
network behaviors, and interpretations of mutant phenotypes
(Feist and Palsson, 2008). The most common algorithm used in
such studies has been flux balance analysis (FBA), which at-
tempts to balance the stoichiometry of the metabolites within
the metabolic network system with a goal (objective function) of
maximal growth or maximal biomass accumulation. While pre-
diction of fluxes using FBA matches well with experimental data
(Burgard and Maranas, 2003), its assumptions may not always
hold true, especially for engineered mutant lines. Several algo-
rithms that have the goal of minimizing the change in the
metabolic network upon perturbation have been developed and
appear to perform better than FBA in explaining fluxes of mutants
(Segrè et al., 2002; Shlomi et al., 2005; Herrgård et al., 2006).
The field of metabolic network analysis in plants is still young,

and there are several challenges ahead. First, the process of
generating high-quality networks is still time consuming and
requires much manual input. More advances in automating these
steps, such as the Model SEED system, are needed (Henry et al.,
2010). Second, compartmentalization at the subcellular and tissue
level must be considered for more accurate modeling of plant
metabolic networks. Recent advances, such as the large-scale C4
photosynthesis model that incorporates mesophyll and bundle
sheath–specific reactions (Dal’Molin et al., 2010) and Arabidopsis
tissue-specific network models (Mintz-Oron et al., 2012), are early
examples of the next-generation metabolic network models. Third,
metabolic network models need to be integrated with regulatory
and signaling models to allow more accurate and comprehensive
understanding of plant metabolism. For example, large-scale ex-
perimental validations showed that the metabolic network in E. coli
can explain fluxes in ;50% of the conditions (Covert et al., 2004).
Adding transcriptional regulatory constraints increased pre-
dictability to ;70%. Transcriptional regulatory constraints have
been incorporated into FBA analysis using the steady state regu-
latory FBA approach (Shlomi et al., 2007). More recently, an at-
tempt has been made to develop a system to integrate signaling,
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Figure 2. Network Examples for Protein–Protein and Regulatory Transcriptional Interactions.



metabolic, and regulatory networks into a common framework
(Lee et al., 2008). Finally, metabolomics (comprehensive mea-
surement of small molecules) in plants promises to be a useful
source for validating the structure of, identifying missing links in,
and understanding the dynamics and evolution of, metabolic
networks (Fiehn et al., 2000; Kliebenstein, 2009; Nakabayashi
et al., 2010; Tohge et al., 2011). However, several issues remain
before these data can be integrated into metabolic network anal-
ysis, the biggest of which may be the high portion of unnamed
metabolites in these studies. In addition, the mechanistic rela-
tionships among the levels of metabolites, transcripts, proteins,
and enzyme activities are as yet unclear. An elegant study ex-
amining diurnal cycles of Arabidopsis suggests that metabolites
regulate transcripts and not vice versa (Gibon et al., 2006). Despite
these challenges, the advances in the omics and visualization
technologies will help move this field forward in both expected and
unexpected ways.

TOOLS AND TOYS FOR NETWORK ANALYSES

Any systems biology study depends on suitable software and
data access, and Table 2 provides a selection of some useful
tools. Much can be learned from available information, and
online databases and data warehouses provide access to this
body of prior knowledge. Repository databases focus on data
storage and retrieval, while data warehouses contain extensively
curated data and often include analysis tools. Many of the
popular data warehouses in plant biology provide access to
transcriptome data. Tools such as Genevestigator, the Bio-Array
Resource for Plant Biology, and ATTED II are useful to search for
genes or proteins with particular expression profiles or coex-
pression with bait genes (Toufighi et al., 2005; Hruz et al., 2008;
Obayashi et al., 2011). Functional modules in biological net-
works are often composed of coexpressed and colocalized
proteins that are highly connected in protein interaction graphs.
A large set of databases is dedicated to protein–protein in-
teraction data, some of which include information on coex-
pression. Several initiatives, such as IntAct (Kerrien et al., 2006),
the Molecular Interaction database (Chatr-aryamontri et al.,
2007), the Database of Interacting Proteins (Salwinski et al.,
2004), the Biomolecular Interaction Network Database (Bader
et al., 2001, 2003; Alfarano et al., 2005), and BioGRID (Stark
et al., 2006), have been established to systematically collect and
organize the interaction data reported by proteome-scale high
throughput experiments and low-throughput studies focusing
on individual proteins and pathways. In this context, the Arabi-
dopsis network analysis pipeline is a useful tool because it
integrates 11 Arabidopsis protein interaction databases (Wang
et al., 2012). One of the most comprehensive resources for

protein localization is the subcellular location database for
Arabidopsis proteins, which collects both experimental and
predicted subcellular protein localizations in Arabidopsis
(Heazlewood et al., 2007).
Gene set analysis helps characterizing user-defined gene

lists. Gene set analysis searches for distinguishing properties of
gene lists, for instance, the overrepresentation of certain GO
categories or functional bins for metabolic and regulatory pro-
cesses, such as those defined in the MapMan software (Usadel
et al., 2005). Gene set analysis should be supported by statis-
tical evidence that frequencies of called categories are different
from what is expected by chance. The hypergeometric test is an
appropriate statistical framework to evaluate overrepresentation
in small gene lists. Note that testing of multiple categories
requires control of type I (false positive) error rates (e.g., the
Bonferroni correction) (Dudoit and VanderLaan, 2008). The ref-
erence population used to construct the test’s null hypothesis
must be chosen carefully to include only elements from the
sampled space and not from the entire genome. Gene set
analysis together with cofunction networks can be used to infer
gene function. Gene associations solely based on coexpression
are not always informative, but predictive power increases when
associations include other type of data, such as cocitation or
protein interactions. AraNet, GeneMania, and STRING are three
such tools that are user friendly (Warde-Farley et al., 2010;
Hwang et al., 2011; Szklarczyk et al., 2011).
Traditionally, systems biology often focuses on single-model

species. Nevertheless, much can be learned by exploiting com-
parative genomics tools, which can help assign functions to
multigene family members by defining ortholog sets, identify rel-
evant gene regulatory motifs, or study how evolution or breeding
shaped biological systems. The Plaza database, for instance,
makes genomic data from 25 plant species available (Van Bel
et al., 2012). Deciphering transcriptional regulation involves iden-
tification of both cis-regulatory elements, for instance, by motif
samplers, and of regulatory trans-acting TFs. Several algorithms
and tools are available for such analyses (Ladunga, 2010), but the
currently fragmented knowledge about plant TF binding sites
makes reverse engineering of promoter functions a nontrivial task.
Data integration and network inference are two major needs in

systems biology. LeMoNe and ENIGMA, for instance, are software
packages to extract module networks from gene expression data
(Michoel et al., 2007; Maere et al., 2008). Coexpression-based
correlation networks can also be constructed with TMEV (Saeed
et al., 2006). Similarly, CORNET constructs coexpression networks
but also provides workflows to integrate such networks with protein–
protein interaction and localization data (De Bodt et al., 2010)
(Figure 2). Network inference is an active field in machine learning
and statistics communities, and powerful new algorithms are

Figure 2. (continued).

Examples of networks starting from a few lateral root initiation components with proven protein–DNA and protein–protein interactions. We selected
ARF7/NPH4 (AT5G20730), ARF19 (AT1G19220), SLR (AT4G14550), LBD18 (AT2G45420), LBD33 (AT5G06080), E2FA (AT2G36010), and DPA
(AT5G02470) to illustrate the complexity of the networks at various levels. A coexpression network was tested for protein–protein interactions (A) and
for regulatory interactions (B). We used standard settings (0.6 to 1.0) for the Pearson’s correlation coefficient, and all the available data sets in the
CORNET database (https://cornet.psb.ugent.be/) (with at least meeting the conditions in three data sets) were used.
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continuously being developed. To unleash the full potential of
available algorithms, software environments with more open access
are needed. Here, the general computation environments R (www.
R-project.org/) and MatLab (www.mathworks.co.uk/products/
matlab/index.html), with their large package libraries for specialized
tasks, and the Systems Biology Workbench, with its rich model li-
brary (Sauro et al., 2003), are powerful alternatives. These environ-
ments lack much of the convenient graphical user interfaces
characteristic of most of the previously mentioned tools, but their
inherent scripting design standardizes reproducing and transferring
analysis workflows within or between laboratories. In particular, the
Systems Biology Workbench offers great modeling options for bi-
ological systems with minimal scripting needs and is well suited to
analyze biochemical reaction models (Sauro et al., 2003).

For identification of protein–DNA interactions, ChIP-chip and
ChIP-seq data analysis is a multistep procedure. In the case of
ChIP-seq, reads first need to be aligned to a reference genome
with a read-aligner, such as bowtie (Langmead et al., 2009), to
generate genome coverage data. Then, peaks must be detected
from coverage data or microarray signals. Finally, results should
be visualized as an important validation step to test whether pa-
rameters and program settings were adequate. The experienced
user will perform many of these tasks in R using packages such
as CSAR (Muiño et al., 2011b). Others can choose from a number
of software suites and analysis pipelines, such as the stand-alone
program CisGenome (Ji et al., 2008), the Web tool PRI-CAT
(Muiño et al., 2011a), or the commercial CLC Genomics Work-
bench (www.clcbio.com). More thorough descriptions of proce-
dures to analyze ChIP-chip and ChIP-seq data can be found
elsewhere (Pepke et al., 2009; Wilbanks and Facciotti, 2010). For
visualization, various genome browsers are available. We found
the integrated genome browser (Nicol et al., 2009) user friendly
and robust. Like other such browsers, it allows sharing of results
via network access. Researchers need only to upload their results
to a server and make the URL publicly available to allow the
community to browse through their findings.

CONCLUSION AND FUTURE PERSPECTIVES

Network science provides crucial information and the ability both to
develop hypotheses and to address specific biological questions.
Nevertheless, the above-described interactions, either metabolic,
protein–protein interaction, or protein-DNA, need to be integrated
and fine-tuned to provide a realistic view of the biological process
(es). Networks can be generated through many complementary
platforms. The integration of various approaches and data sets
adds depth (and, therefore, confidence) and breadth to a network
and leads to the identification of general network properties, such
as the location of hubs and their roles at particular times and under
varying conditions.

A major challenge will be to validate the interactions generated
by the various screens and predictions and incorporate these
interactions and their functional consequences in a spatiotemporal
manner. Protein–protein interaction screens are performed mostly
in systems that do not provide the spatiotemporal context of
complex formation and with protein levels exceeding the native
levels. Insights into these networks are needed at the cellular,

tissue, and whole-plant levels. It is also important to decipher how
these networks are interwoven to generate an organism that can
develop, grow, and reproduce. Cell- and tissue-specific transcript
profiling and ChIP-chip studies have been applied successfully to
explore gene regulation in developmental processes and cell-type/
tissue functions to understand transcriptional dynamics (Birnbaum
et al., 2003; Brady et al., 2007; Dinneny et al., 2008; Deal and
Henikoff, 2010; Weinhofer et al., 2010). By contrast, protein–
protein interactions have yet to be explored at this resolution. While
we are indeed making progress in understanding regulatory net-
works and protein–protein interactions, it will be important to
implement structural features and posttranslational modifications.
For example, reversible phosphorylation mediated by kinases and
phosphatases has hardly been addressed to date (Kline-Jonakin
et al., 2011), and high-throughput cell- and tissue-specific re-
search is limited and challenging.
Discovery and inference of molecular networks has made

great progress, and the time is ripe to combine networks with
phenotype data. Although mathematical modeling can help by
prescreening predictions in silico and thus limiting the extent of
experimentation, high-throughput approaches to assay the im-
pact of network perturbations on phenotypes (phenomics) must
now be developed and employed.
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