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We now have unprecedented capability to generate large data sets on the myriad genes and molecular players that regulate
plant development. Networks of interactions between systems components can be derived from that data in various ways
and can be used to develop mathematical models of various degrees of sophistication. Here, we discuss why, in many cases,
it is productive to focus on small networks. We provide a brief and accessible introduction to relevant mathematical and
computational approaches to model regulatory networks and discuss examples of small network models that have helped
generate new insights into plant biology (where small is beautiful), such as in circadian rhythms, hormone signaling, and
tissue patterning. We conclude by outlining some of the key technical and modeling challenges for the future.

INTRODUCTION: ANALYZING GENE REGULATORY
NETWORKS TO UNDERSTAND
BIOLOGICAL COMPLEXITY

Plants are complex organisms that can adapt their morphology
to suit environmental conditions. As for other organisms, their
development is a continuous and dynamical process, in which
large numbers of components interact at various scales, from
genes and molecules to cells and tissues. Until recently, plant
scientists would study only a handful of these components at
a time, and to make sense of their behavior, they would typically
assume only a simple chain of cause and effect. In many cases,
however, this will provide only a partial representation of the
underlying complexity. In the last 15 years, the analysis of plant
systems (among others) has moved progressively toward moni-
toring these elements in large numbers. This has been fueled in
large part by the advent of -omics technologies, allowing one to
follow thousands of genes or proteins simultaneously. In turn, this
has forced biologists to envisage new ways of elucidating the
underlying biological mechanisms.

Systems biology offers a powerful framework to analyze large,
complex data sets, whereby the organism (or part thereof) is
viewed as a set of entities interacting according to a particular
set of rules, so that the properties of the organism emerge from
these interactions. This vision holds at all scales and in particular
at the genomic scale, with gene regulatory and signaling networks
processing multiple cell-autonomous and non-cell-autonomous
inputs to generate emergent cellular behaviors. These will give

rise to emergent behaviors at the tissue scale. One of the key
challenges then is to assemble the pertinent gene regulatory and
signaling networks and to understand how they process signals
to generate appropriate responses.
The availability of large-scale data sets, however, has not

eliminated the need for complementary smaller scale analyses.
Studies of whole-genome gene networks have led to the sug-
gestion that these are composed of smaller and topologically
distinct subnetworks (Milo et al., 2002) that can be studied sep-
arately from the rest of the network. On the other hand, even with
the traditional reductionist approach, one rapidly finds that
systems approaches are also required to deal with processes
involving just a few genes/proteins that have been identified,
for example, through classical genetics. Indeed, many of the
success stories in systems biology derive from such smaller
scale studies, building up understanding of a process by
working outwards from a key molecule of interest. Examples of
small-scale network studies have flourished in recent years.
The aims of this review are to illustrate the importance of
studying these networks in plants, to provide biologists an
overview of mathematical approaches used for modeling them,
and to illustrate how systems analysis of small networks can
be used to generate biological knowledge, focusing more
specifically on recent studies of gene regulatory and signaling
networks involved in plant growth and development.

DYNAMICAL MODELING OF GENE
REGULATORY NETWORKS

Before focusing on small networks, it is necessary to introduce
mathematical concepts and definitions of dynamical models,
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which allow addressing how a network behaves over time
under various conditions. Simple intuition about a complex
system can indeed often be misleading, and models are es-
sential to facilitate our understanding and clarify our as-
sumptions. Here, a model can be defined as a mathematical
representation of a system, which can be used to test hypoth-
eses, make predictions, and carry out in silico experiments
(“What happens if.?”). Models are always simplifications and,
thus, invariably are incorrect. Ideally, they should be improved in
an iterative loop in association with experimental work, a point
that we will discuss further below. When considering genes and
signals within a complex network, there are methods to infer
their topology. This has been the subject of other reviews (for
example, see De Smet and Marchal, 2010; Bassel et al., 2012;
Kholodenko et al., 2012) and will not be discussed here.

What Do We Study with Dynamical Modeling?

Dynamical models predict how interactions between network
components can lead to changes in the state of a system. The
most basic process is for a system component to respond
positively or negatively to some stimulus. However, develop-
mental processes often require more complex responses,
such as a switch between different cell fates, this being a
common characteristic of developmental systems (for example,
see Middleton et al., 2009). There are many examples of bi-
ological switches for which mathematical modeling has made
a crucial contribution, including the lactose operon-inducible
system (Santillán and Mackey, 2008) and the lysis-lysogeny
decision by phage lambda (Shea and Ackers, 1985; Santillán
and Mackey, 2004). In plants, it has recently been shown that
a spatially distributed switch regulates root epidermis pat-
terning (see below and Figure 4; Savage et al., 2008). Another
typical complex dynamical behavior is an oscillator, such as
the cell cycle (Sha et al., 2003) and the circadian rhythm
(discussed below; Locke et al., 2006). More complex still is
the coordination of these ingredients to make an organism,
which for plants involves graded responses to stimuli and cell
fate decisions (switches), coupled to regulation of the cell
cycle (oscillators) and cell growth. Note that there need not be
a correlation between complex behavior and the complexity
of a network; it is possible for quite simple networks to be-
have in a highly complex manner, while extremely complex
networks can behave, due to their specify topology, in
a regular and tightly controlled way (Csete and Doyle, 2004;
Marr et al., 2007).

Given a dynamical model (of whatever size or complexity), it is
of crucial interest to learn as much as possible about the model
steady states (where all components of the network, for exam-
ple, concentrations of various proteins or mRNAs, are in equi-
librium so that they do not change in time) and their stability
(whether or not the system moves toward the steady state when
given a small perturbation away from it) as determinants of
system dynamics. These ideas can be visualized in terms of how
a ball might move if placed on a smooth landscape (illustrated in
Figure 1A). If carefully balanced at the peak of a hill, the ball will
stay there for all time. Thus, this position can be thought of as
a steady state of the system. However, if given a small

perturbation away from the peak, it will move down the hill and
not return. Thus, this particular steady state is unstable. The
bottom of a valley is also a steady state of the system. How-
ever, in this case, if given a small push away, the ball will roll
back. In this case, we can say the steady state is stable.
Analogously, in a model of a gene network, the system should
return to a stable steady state if given a small perturbation
away from it. This is particularly significant since biological
systems are continually subjected to both internal and external
perturbations. Thus, stable steady states (as opposed to un-
stable ones) are the only type of steady state to be attained in
practice. Other more complex long-term behavior can be ob-
served in dynamical models, such as sustained oscillations
(also known as a limit cycle). Both stable steady states and
stable limit cycles are examples of attractors. Attractors can be
understood, more generally, as a set of states toward which
a system will evolve over time. Each attractor can be reached
by a certain set of initial states, called its basin of attraction
(Figure 1A). In the case where the system can have two stable
steady states (e.g., two distinct valleys, in the case of Figure
1A), it is referred to as bistable. The properties of the system (e.
g., the number, type, and stability of attractors) can depend
crucially on the parameter values of the model. If changing
a particular parameter value results in a change in one of these
properties, then we call this change a bifurcation. Although
initially not termed mathematically, it was suggested quite long
ago (Waddington, 1940; Delbrück, 1949) that cell types cor-
respond to attractors and that developmental processes cor-
respond to different populations of cells entering one attraction
basin or another (so the system has multiple steady states).
This biological interpretation of the dynamics of regulatory
networks is a key concept, independent of the mathematical
formalism used to specify a particular model. The study of
these various system properties (steady states, limit cycles,
etc.) is often referred to as mathematical analysis in the liter-
ature.

Mathematical Frameworks to Build Dynamical Models

The systems mentioned above, along with their associated
behaviors, are usually described in terms of dynamical models.
Here, we introduce the mathematical frameworks that can be
used to build them. The state S of the model at time t is just the
set of all the variables “x1, x2, ., xN” at time t:

SðtÞ ¼ fx1ðtÞ; x2ðtÞ;. ; xNðtÞg; ð1Þ

which can be considered as a point in the (N-dimensional) state
space of the system. In principle, the variables are measurable
quantities, such as mRNA, protein, or hormone concentrations
(although these may be difficult, if not impossible, to obtain in
practice using current experimental techniques). We would like
to be able to understand the past and present and predict the
future, based upon the interactions between the system com-
ponents. If the state is changing with time t, then the model is
dynamical, and the time-varying components of the state are the
variables x1(t), x2(t), . . . , xN(t). The form of model we shall study
is:
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Sðt2Þ ¼ fðSðt2Þ;p1;p2;. ;pMÞ;  t2 > t1 ð2Þ

where f is a function encoding our understanding of how the
system components affect one another, and p1, p2,., pM are
model parameters. Equation 2 simply states that the future state
of the system is some function of its past state (i.e., that the
future is predictable). A trajectory of the system is then the set of
future states given a particular initial state. The parameters are

numerical values that encode information about the system and
do not vary in time, such as the degradation rate of an mRNA.
A particular choice of parameter values can be thought of as
a point in parameter space. The components [xi(t)] and inter-
actions (encoded in f) can be inferred from a wide range of data
sources, such as genetic and RNA interference screens, mRNA
profiling, protein–protein interaction screens, and analysis of
transcription factor binding. Each has strengths and limitations,
and integration of multiple data sources is important for reliably

Figure 1. Introduction to Dynamical Models of Small Networks.

(A) Cartoon illustrating key properties of a dynamical model.
(B) Mass action model for the association and dissociation of two proteins. These can be written in terms of a chemical reaction scheme. The law of
mass action dictates how the rate of formation and dissociation depend on the concentration of the reactants. From this an ODE can be formulated.
(C) A Michaelis-Menten model of gene expression. The model can be formulated by applying the law of mass action to the chemical reaction scheme
depicted. TF, transcription factor.
(D) The mutual inhibition feedback loop. Both Boolean- and ODE-based models (right panel) are bistable (for certain parameter values) and have analogous
steady states. However, in the Boolean model, transitions between the states depend on which update method is used (cf. right panel and bottom panel).
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inferring the interactions in a network (see Bassel et al., 2012 in
this issue).

In gene-regulatory networks, where the state variables typically
correspond to mRNAs, proteins, and other molecules, each
variable should be represented by a discrete quantity, an in-
teger (e.g., the number of molecules), and changes in state are
discrete events (namely, the creation or degradation of a mole-
cule). If the amount of each component is sufficiently large, then
its state can be approximated by a continuous variable that
changes in time (e.g., concentration). This leads naturally to the
use of ordinary differential equations (ODEs), defined by the rates
of change of the system components, interpreted (in words) as:

Rate of change of mRNA concentration
¼ Transcription rate2Decay rate

The use of ODEs is not computationally demanding and is
very common within the plant systems biology literature. An-
other type of model often used is based on Boolean networks, in
which the state variables are either OFF (0) or ON (1), rather than
numbers of molecules or concentrations. These are two types
of models that represent the most common frameworks, and
we describe them in greater detail below (the interested reader
should see also the Conclusion and Future Challenges section
for a discussion on stochastic models).

ODEs

If we represent the network state S(t) as a continuous variable,
then it has a well-defined rate of change. An ODE model gives
the rates of change of the variables xi(t) as functions of the state
at that time:

dxi
dt

ðtÞ ¼ fi
��

xÆiæðtÞ
�
;p1;p2;. ;pM

�
; i ¼ 1; 2;. ;n ð3Þ

where {x<i>(t)} is the set of variables that affect xi(t), and we write
dxi(t)/dt to denote its rate of change. The functions fi encode the
interactions between components (e.g., chemical reactions,
transcriptional regulation, etc.) and are in general hard to deter-
mine. In practice, however, models are often based on a small
set of standard forms for fi (see later for examples), derived from
the laws of physics and chemistry. For chemical reactions, an
important concept for formulating fi is the law of mass action,
which states that the rate of a chemical reaction is proportional to
the product of the concentrations of the reactants. A simple
example of this is illustrated in Figure 1B, showing how an ODE
model for the binding and unbinding of two proteins can be
formulated. Given a set of reactions, it is relatively straightforward
to write down the corresponding ODEs. For processes such as
transcriptional regulation, commonly used forms can be derived
by considering the binding and unbinding of transcription factors
to DNA. For example, Figure 1C illustrates an activating tran-
scription factor binding to DNA to give a complex that leads to
the production of mRNA. By assuming transcription factor
binding and unbinding is relatively fast compared with tran-
scription, one can obtain the following expression for the rate of
mRNA production:

d½P�
dt

¼ Vmax
½TF�

K þ ½TF� ð4Þ

where [P] is the product (mRNA) concentration, [TF] is the
transcription factor concentration, and Vmax and K are parameters
derived from the rates of transcription factor binding and unbinding,
and mRNA formation. This is similar to the Michaelis-Menten
equation for enzyme substrate reactions (Alon, 2006) and is a
natural form to use for transcriptional activation by a single TF.
Functions representing transcriptional repression can be derived in
similar way, as can Hill functions (increasing and decreasing) in the
case where binding to DNA is cooperative. More difficult is the
problem of how to combine multiple transcriptional regulators (e.g.,
an activator and a repressor). Three main approaches have been
considered in the literature: phenomenological, extensions to the
above Michaelis-Menten quasi–steady state approach, and a ther-
modynamic approach (Shea and Ackers, 1985). However, in many
cases, these all lead to the same or similar mathematical ex-
pressions (Bintu et al., 2005a, 2005b).
What we have now are ODE models for gene regulatory net-

works whose variables are mRNA and protein concentrations,
with rates of change given in terms of mass action, functions
representing transcriptional activation and repression, linear
decay, and translation. Model parameters include thresholds for
transcriptional regulation; effective cooperativities; half-lives; rel-
ative contributions of multiple transcriptional regulators; transfer
rates (e.g., cytosol to cell surface); transformation rates (e.g.,
cleavage, phosphorylation); and binding. To illustrate this fur-
ther, below we discuss the construction of an ODE model for the
auxin signaling and response network (Figure 2A).

Boolean Networks

In the case of Boolean networks, variables now represent the
state of a gene and can either be 0 or 1. The rules governing how
the current state relates to the next one are encoded according
to Boolean logic and are intended to reflect the topology of the
gene or signaling network. In these Boolean rules, the activation
of a component (e.g., a gene) is represented by an instanta-
neous switch from 0 to 1. Furthermore, one can choose whether
to update components simultaneously (synchronous update;
Kauffman, 1993) or to update one component at a time (asyn-
chronous update, for which there are different approaches, see
below; Thomas and D’Ari, 1990). In the synchronous case, the
next state is entirely determined by the previous one, so that one
can write, as before:

Sðt2Þ ¼ fðSðt1Þ;p1;p2;. ;pMÞ;  t2 > t1: ð5Þ

Here, S(t) is a Boolean vector, a list of 0s and 1s representing
the state of each gene in the network. Once the system is at an
attractor, the system will cycle between different states, so that
S1→S2 5 f(S1)→ . → Sn 5 f(Sn21)→S1 5 f(Sn) in some repetitive
fashion. Steady states correspond to cycles of length 1,
whereas for oscillations the cycle will consist of two states or
more.
In general, both the transient dynamics (i.e., how it changes

over time before it settles to an attractor) and oscillations are
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different depending whether the updates are synchronous or
asynchronous (and also which rule is chosen for the asynchro-
nous case; see below). However, steady states are identical for
both types of update. It follows that the simpler synchronous
update schemes are often used if one wishes to study only the
steady states of the system, whereas asynchronous is better
suited to study the dynamics of the system. For an asynchro-
nous update, the choice of which gene is updated at each time
step can be made in several ways, which may be defined as
follows: (1) globally, for instance, by specifying an order in which
genes are updated, (2) based on a specific delay for each gene,
which is compared with a global clock and reset after a change

of state, or (3) as a stochastic event: At each time step, one gene
is chosen randomly and updated (Li et al., 2006). In fact, more
general random update functions can be used (Shmulevich et al.
2002). Cases 2 and 3 above require some numeric parameters
to specify the model. More generally, Boolean models may re-
quire (1) no quantitative parameters at all, all regulatory functions
being specified using logical gates (e.g., AND, NOT, OR); (2) time
delay parameters for asynchronous updates (as in points 2 and
3 above); and (3) weights for each input of regulatory function,
together with a threshold (with which the weighted sum of inputs
is compared; this approach being inspired by neural network
models).

Figure 2. Ingredients for a Small Network Model.

(A) Modularity of hormone signaling in plants. The Aux/IAA negative feedback model (Middleton et al., 2010) was formulated using the law of mass
action (see Figures 1B and 1C); illustrative equations are provided. AuxRE, auxin response elements (ARF binding sites).
(B) Top-down approach to small network generation. Cluster analysis performed on the ARF-Aux/IAA interactome. From this the interactions between
repressor and activator ARFs and Aux/IAA were identified (Vernoux et al., 2011; compare with Middleton et al., 2010).
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Example: The Mutual Inhibition Feedback Loop

To illustrate the main ideas mentioned above, we now consider
a well-known example, with two genes inhibiting each other; this
sometimes is called a toggle switch or a mutual inhibition feedback
loop (Figure 1D; Cherry and Adler, 2000; Gardner et al., 2000).
Models of this network can be formulated using either Boolean or
ODE-based approaches. In the case of an ODE model, the vari-
ables are the expression level of the two genes (namely, gene 1
and gene 2). Since there are only two variables, we visualize the
dynamics of the system by plotting the expression level of gene 1
against the expression level of gene 2 (instead of their levels
against time). Example trajectories of the model are illustrated
(Figure 1D). We also plot nullclines; these indicate when the rate of
change of just one gene is zero; steady states are at the inter-
sections of the two nullclines (i.e., so that the rate of change for
both genes is zero). We see from Figure 1D that the system is
bistable: There are two stable steady states (where one of the
genes is expressed at a high level and the other is expressed at
a low level) and an unstable one (where the two genes are ex-
pressed at a comparable level). We also note that the (stable)
steady state to which the system evolves depends crucially on the
initial starting point (i.e., in which basin of attraction we start the
system). In the Boolean case (it being much simpler), we can write
the model in terms of the regulatory rules, namely, gene1(t+1) =
NOT[gene2(t)] and gene2(t+1) = NOT[gene1(t)]. However, we must
choose an update method (see above). For a synchronous update,
the behavior of the network is summarized in Table 1, and a
schematic representation is provided in Figure 1D (where arrows
indicate transitions between states). The stable steady states are
analogous to the ones from the ODE model, these being (in terms
of a Boolean vector) 01 and 10 (i.e., one gene is “on” and the other
one gene is “off”). However, a key difference with the ODE-based
model is that if we started at 00 or 11, the system would cycle
between them; 01 and 10 can only be attained if we start the
system at that state. Thus, synchronous update is not required or
helpful if one wishes to study how the network behaves over time
but does give information on the steady states of the system.

The case of asynchronous update is also illustrated in Figure
1D. States 01 and 10 are again stable steady states of the system.
However, we now find that if started at 00 or 11, the system will
tend to either 01 or 10. Hence, 11 and 00 are in the basins of
attraction of 01 and 10 (Figure 1D). However, the manner in which
this network changes over time (i.e., its dynamics) will depend on
which particular asynchronous update method is used. Thus,
unlike ODE-based models, there is a degree of ambiguity asso-
ciated with the transients of Boolean networks. However, addi-
tional parameters specifying the response time of both genes may
help reduce this ambiguity and give more biological meaning to
the transients of the model.

Parameters and Parameterization of Models

We have seen that both Boolean and ODE-based models con-
tain parameters. The behavior of both types of model can de-
pend strongly on their parameter values. In many cases, estimates
for these parameters are not yet available. For some problems,
however, even qualitative predictions can give new biological

insight. In this case, one can simulate the model for different
parameter values (i.e., explore the parameter space and iden-
tify each of the various behaviors that it can generate). The
predictive capabilities of the model will thus depend on how
much of the parameter space can be explored, and the dif-
ferent behaviors can be treated as different predictions that
subsequently can be tested experimentally. This includes sit-
uations, for example, where one demonstrates the existence of
sustained oscillations or bistability for biologically plausible
parameters (François and Hakim, 2005; Middleton et al., 2010;
Muraro et al., 2011).
In some situations, however, it can be more important that

a model generates quantitative predictions. This may be the
case, for example, when one is interested in the sensitivity of the
network outputs to some stimulus. In this case, parameter
estimates can be obtained by fitting quantitative data to the
relevant model outputs. For example, this was recently done
with a model of gibberellin (GA) signaling network (Middleton
et al., 2012) and with the auxin signal transduction pathway
(Band et al., 2012c) in conjunction with the novel auxin reporter,
DII-Venus (Brunoud et al., 2012). These are both discussed
further below.
A detailed discussion of parameter estimation is beyond the

scope of this review (reviewed in Ashyraliyev et al., 2009). For
our purposes, however, it is important to note that larger models
typically have more parameters and that the more parameters
to be estimated, the more difficult it becomes to generate an
accurate model. Even for small network models, however, it is
often the case that estimates for model parameters are not in
fact well constrained by the data. In other words, it is possible
that from two equally good model fits one obtains two different
parameter sets with significantly different estimates for the in-
dividual parameters (this being referred to as sloppiness in the
fitting problem; Gutenkunst et al., 2007). However, even if this is
the case, one can still use the different parameter sets to identify
qualitatively distinct model behaviors. These in turn can be
treated as predictions to be tested for experimentally (see below
for a further discussion of model-experiment loop). Thus, in sum-
mary, it is not always necessary for good parameter estimates to be
available for a model to be predictive or insightful.

SMALL-SCALE NETWORKS

Why Using Small Scale Networks Makes Sense

Small-scale networks are often generated via bottom-up ap-
proaches of network discovery, where one starts with a gene,

Table 1. Summary of Transitions between Different States for
a Boolean Model of the Mutual Inhibition Feedback Loop
(Illustrated in Figure 1D) for Synchronous Update

(Gene1,Gene2)
t (Gene1,Gene2)

t+1

00 11
01 01
10 10
11 00
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protein, or signaling molecule of interest and works outwards,
finding other components it interacts with. From these small
networks, relatively simple models can be generated (see the
next section for examples) for which it is often possible to
identify all the possible behaviors of the network for plausible
parameter values (see above). The usefulness of such a model
(and indeed of any model) is apparent if there is a discrepancy
between what is predicted by the model and what is observed
experimentally, this suggesting that it might be necessary to
include novel components in the model. In this way, dynamical
models can help in predicting candidate components or in-
teractions whose existence has then to be determined through
experimentation. This is discussed further below.

One limitation of the above strategy is that it relies heavily on
our ability to explore all the possible behaviors of a particular
model. As noted above, experience with even simple networks
shows their behavior can often be highly counterintuitive and
strongly depend on system parameters. For larger networks,
such a comprehensive analysis of the dynamics can be even
more difficult; increasing the number of model components and
parameters can lead to an explosion in the combinatorial com-
plexity of the problem. Thus, for systems with more than a
handful of variables, we rely mostly on computer simulation to
understand their dynamics and hence can rarely be sure that we
have fully explored all the possible system behaviors. This can
significantly impair our ability to make robust or predictive
models for larger-scale networks. Thus, there are two main
conceptual difficulties with large-scale networks: our inability to
parameterize them and our inability, except in special cases, to
fully classify their behavior.

One way to overcome the above is in fact to rely on the analysis
of small networks and furthermore to consider them as modules of
a much larger and complex network. In this way, the dynamics of
each module can be studied individually (see below for examples).
In particular, there is an increasing body of evidence that biological
systems are modular in their organization (Hartwell et al., 1999;
Milo et al., 2002; Spirin and Mirny, 2003; Stuart et al., 2003; Gavin
et al., 2006; Alon, 2007; Peregrín-Alvarez et al., 2009). The isolation
of modules can be based upon a bottom-up approach (described
above) or by a top-down approach, identifying modules based on
the connectivity in large-scale networks. One notable example of
this is through the identification of network motifs, these being
small networks (for which there are only a few nodes) with a sta-
tistically significant topology. Nevertheless, we would like to stress
that the extent to which we can study the dynamics of large-scale
networks by dividing them into smaller-scale ones (i.e., modules)
remains to be fully understood. We discuss this further in the
Conclusion and Future Challenges section.

How to Build and Analyze Small Networks

As we have now discussed, small-scale networks are appealing
because we can build models that are simple enough to analyze
and retain enough mechanistic detail to be insightful for the
biology. Hence, whereas large network models typically involve
phenomenological descriptions for the least known interactions,
it is often possible to build small network models using only the
laws of physics and chemistry. There is no definitive recipe to

build a good model. However, one should keep in mind that
dialogue between experimentalist and modeler is essential to
the success of a modeling approach. While there has been
much in the systems biology literature about the experiment-
model cycle, it is often not emphasized that this cycle can ex-
tend over long period of times and that there are many stages of
modeling. Models of small-scale networks are typically based
on known interactions. For particularly well-characterized path-
ways, a model is initially expected to capture the known ex-
perimental observations (at least qualitatively). In the second
stage of modeling, various perturbations of the model (e.g.,
hormonal, chemical, or genetic) should be simulated. At this
stage, model outputs can be considered to be predictions that
must be validated experimentally. Often, it is only if new data
sets have been generated (based on the model predictions) that
new insight can be obtained. As mentioned in the previous
section, the most useful scenario is when there is in fact a dis-
crepancy between a prediction and the resulting experimental
observation, as it can point to the existence of missing com-
ponents, which subsequently can be identified through further
numerical and wet-lab investigations. This type of multidisci-
plinary exchange has, for instance, led to the discovery of novel
feedback loops involved in the circadian clock of Arabidopsis
thaliana, an illustrative example that will be discussed further
below (Locke et al., 2005a, 2005b, 2006; Zeilinger et al., 2006).
While such exemplar studies exist, it is more often the case that
model-based investigations will stop at the first stage, this being
when existing experimental observations can be accounted for
by the model and new model predictions have been generated
but remain to be validated. This can lead to the perception that
dynamical models have trouble predicting novel components or
providing new insight. However, we argue that this is merely
because subsequent rounds of the model-experiment loop have
not yet been performed.
The modeler-experimentalist dialogue is also crucial in de-

ciding how much detail is available to include in the model and,
hence, which framework (e.g., Boolean or ODE-based) should
be used. This can reflect a number of important factors, including
how well characterized the network is experimentally (i.e., the
level of mechanistic detail available), the biological question to
be answered, and whether quantitative time-resolved data on
the various network components is available.
Since Boolean networks explicitly assume that genes (and

other network components) are either on or off, they typically
require far less mechanistic detail to develop and, hence, often
contain fewer parameters than their ODE-based counterparts.
Thus, one can quickly characterize the overall behavior of the
system. Boolean networks are most likely relevant in situations
where the system has multiple steady states. For example, this
can be the case in developmental processes involving cell dif-
ferentiation, where the different steady states correspond to the
different cell fates (these being characterized by the expression
of specific genes). We discuss this further below with examples
in root epidermis and flower patterning (Mendoza et al., 1999;
Espinosa-Soto et al., 2004; Savage et al., 2008).
Because of the intrinsic state representation used in Boolean

networks, it can sometimes be difficult to relate their outputs to
the real dynamic behavior of the system. ODE-based approaches
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may therefore be more desirable, particularly if the system
outputs of interest are intrinsically continuous. As an example
of an ODE-based model, Figure 2A shows the network diagram
and some of the corresponding equations for a model of auxin
signal transduction (Middleton et al., 2010). The equations for
auxin and its binding to its F-box coreceptor TRANSPORT
INHIBITOR RESISTANT1 (TIR1) are shown in Figure 2A. These
are based on the law of mass action (Figure 1D). The auxin
signaling pathway is one of the best characterized in plants,
extensive knowledge of which has been produced using bio-
chemical, genetic, and genomic approaches (see overview
in Del Bianco and Kepinski, 2011). Taking this information into
account, the model includes various reactions between auxin
and the proteins known to mediate transcriptional responses
to auxin (a single auxin response factor [ARF], an auxin/indole-
3-acetic acid [Aux/IAA], and the coreceptor TIR1 that controls
degradation of the Aux/IAA in response to auxin; Chapman and
Estelle, 2009) and translation and decay rates of the mRNAs. In
the model, transcription of the Aux/IAA is positively regulated
by ARFs (although in reality there are also repressor ARFs), and
this interaction is antagonized by Aux/IAA proteins. This an-
tagonism establishes a negative feedback loop in the network.
The model equations are derived using the law of mass action
together with an Aux/IAA transcription rate that is a complex
function of ARF, ARF dimers, and ARF-Aux/IAA.

It should be noted that while it is not always possible to have
such a precise mechanistic description of the system, one could
instead use more phenomenological approaches by introducing
quantitative concepts. Examples of these include growth rates
(Kennaway et al., 2011), a function describing the size of a stem
cell population (Geier et al., 2008), or the gradient of an unknown
diffusing signal (Jönsson et al., 2005; Kennaway et al., 2011).
These help avoid having to include specific molecular details.

Because ODE-based models can capture a high degree of
biological detail, they can easily become large and overly com-
plicated. Thus, one key aspect of ODE-based model de-
velopment is that of simplification. One common approach
is to retain the quantitative effects of certain molecular players or
processes, without including them explicitly in the model so
there are fewer variables or parameters. Probably the best ex-
ample of this is the quasi–steady state assumption. This as-
sumes that some subset of reactions or processes occur on
a much faster timescale than others (i.e., there is a separation of
timescales), which allows the elimination of certain variables from
the dynamic model (Murray, 2002). For instance, the auxin sig-
naling model by Vernoux et al. (2011) reduces the binding of
TIR1 receptors with auxin and Aux/IAA to a simple Michaelis-
Menten term in the equations (Figure 2A) by assuming this
processes is fast when compared with changes in gene ex-
pression. This type of reduction is also often used to eliminate the
variables describing dimers from a system, assuming protein–
protein binding is much faster than the processes such as tran-
scription or translation (for example, see Savage et al., 2008; van
Mourik et al., 2010; Band et al., 2012c). However, it is worth
stressing that the quasi–steady state assumption can lead to the
wrong dynamics if this assumption is not valid (i.e., if there is not
a clear separation of timescales). Its validity thus needs a careful
evaluation, again requiring the experimentalist-modeler dialogue.

The choice of network components to be modeled can also
allow for simplifications. Organisms such as Arabidopsis typi-
cally have large gene families in their genome (such as the 29
Aux/IAAs and 23 ARFs; Chapman and Estelle, 2009), and it is
common for modelers to try and reduce this complexity by
lumping whole gene families together so that they are repre-
sented by a single variable (for example, see Middleton et al.,
2010; van Mourik et al., 2010). This is a reasonable first step and
is most likely a valid one provided the individual family members
all have similar behavior. However, it is often the case that
individual gene family members have rather distinct functions
(for example, see Bridge et al., 2012) or that subsets of genes
can be grouped together in a more systematic way (for example,
using clustering-based approaches; Vernoux et al., 2011). Fur-
thermore, it may be possible to isolate network components
according to where (i.e., in which tissue) and when (i.e., during
a developmental process) they are active. Examples of this type
of approach include the study of isolated modules from the
auxin signaling pathway, like the pairs Aux/IAA14-ARF7, ARF19,
or Aux/IAA12-ARF5, which have been shown to be active in a
specific temporal sequence (De Smet et al., 2010).

USING SMALL-SCALE NETWORK MODELING TO
UNRAVEL THE BIOLOGICAL LOGIC UNDERLYING
PLANT DEVELOPMENT

Cell-Autonomous Small-Scale Networks

In systems biology, mathematical or computational models are
often used to ascertain whether a particular set of proposed
interactions (e.g., a gene network) can explain the biological
observations. A way to start addressing this is simply to analyze
a model’s behavior (using some of the techniques outlined
above). In particular, the model itself may behave in an unin-
tuitive or unexpected way, and through this process one can
obtain a clearer interpretation of a specific data set and hence
gain a better understanding of the real system.
An excellent example of the use of small-scale models to

enhance biological understanding can be found in the work of
Millar and coworkers on the plant circadian rhythm, already
mentioned earlier (Locke et al., 2005a, 2005b, 2006). A number
of articles (for an overview, see Dalchau, 2012) show how an
iterative cycle of model refinement, validation, and comparison
to new data has led to the discovery of new network compo-
nents and a clearer understanding of how the interlocking
feedback loops regulate the rhythm. The first four stages of
model development are illustrated in Figure 3. This process
started with a single oscillator model (Figure 3A) involving only
LATE ELONGATED HYPOCOTYL/CIRCADIAN CLOCK ASSO-
CIATED1 (LHY/CCA1) and TIMING OF CAB1 (TOC1) (Locke
et al., 2005a). Comparisons between this model and (what was
then) already published data showed that, while the model
could correctly reproduce the phases of LHY and TOC1 os-
cillations, it failed to account for a number of experimental
observations (Locke et al., 2005b). This indicated that addi-
tional components might be missing from the model and led
the authors to consider other possible interactions. The most
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promising of these involved an additional step in the feedback
loop whereby TOC1 activated LHY via a putative gene X (Fig-
ure 3B). This new model could account for the published ex-
perimental observations. We note that this point in the authors’
studies reflects perhaps the first stage in the model-experiment
loop discussed above. However, the authors went further to
compare the model behavior and novel data generated from
cca1 lhy double mutants. Again, the model failed to account for
the new experimental observations. The above process was
therefore repeated again and a new component proposed (initially

referred to as gene Y), this forming a second loop in the network
(Figure 3C). The gene GIGANTEA (GI) was initially proposed to be
a candidate for gene Y (Locke et al., 2005b, 2006). More recently,
further interplay between model and experiment has indicated that
GI only fulfills part of this function (Pokhilko et al., 2010). Further-
more, the component originally proposed to be gene X could
rather be the posttranscriptional modification of TOC1 protein or
its interaction with other complexes. Collectively, these studies
have led to a data-consistent view that circadian rhythms are
driven by at least two oscillators (morning and evening). These are

Figure 3. Unraveling the Circadian Clock.

(A) The initial model for the circadian clock involved interaction between TOC1 and LHY /CCA1.
(B) To account for discrepancies between the model and data, an additional component in the network was proposed (gene X), which mediates LHY/
TOC1 activation.
(C) Further comparison between new experimental data and the model indicated that the circadian clock involves two interlocking feedback loops, this
comprising the original loop and feedback between putative gene Y and TOC1.
(D) While GI was proposed as a candidate for Y, even further experimental validation revealed that this only fulfils part of the role. Furthermore, gene X
has subsequently been proposed to reflect TOC1 modification or protein binding.
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coupled intracellularly and involve nontranscriptional regulations
(Pokhilko et al., 2010) (Figure 3D). Another level of complexity was
recently explored by Guerriero et al. (2012). Here, the authors
investigated how stochasticity (caused by there being small
numbers of molecules) can affect the behavior of the system. It
was found that their stochastic model can provide a better
agreement with experiments than the previous ODE-based
models. In particular, an observed dampening of oscillations in
constant light could be explained by noise-induced desynchro-
nization in a cell population, and a more realistic entrainment to
light under changes of photoperiod was also achieved.

Small-scale network analysis has also been instrumental in
advancing our knowledge on how plant cells process hormonal
signals. In Li et al. (2006), the authors considered the role of
abscisic acid signaling in the control of stomatal closure. After
collecting biochemical, genetic, and pharmacological data, the
authors built an interaction network involving more than 40
elements to model abscisic acid–dependent stomatal closure. In
the absence of quantitative information on the pathway, such as
the relative timings of the activity of these elements, they chose
a Boolean model with asynchronous update (see above) based
on randomly chosen relative timings. Simulations with 10,000
random initial states were performed, from which probabilities of
stomatal closure at a given time were estimated. Similar simu-
lations were also performed in situations mimicking known
mutations. From these, the authors predicted the most crucial
elements of the network, in terms of the effect that the removal
of an element (i.e., an in silico mutation) has on the typical time
to reach steady state or on the sensitivity of the network’s re-
sponse. These predictions were consistent with experimental
observations on the mutants from the literature, thus confirming
the predictive value of the model.

Several groups have also independently built models of auxin
signaling and response. Middleton et al. (2010) developed the
first such model; above we described how it was built (Figure
2A). The model can generate qualitative predictions about how
this network might respond to changes in exogenous auxin and
help explain why the transcriptional response of Aux/IAA genes
to auxin treatment can vary from family member to family member
(Abel et al., 1995). In particular, the data of Abel et al. (1995)
indicate that, depending on the family member, an Aux/IAA gene
will make one of three distinct types of response to treatment
with exogenous auxin. First, over relatively short treatments
(namely 8 h), Aux/IAA transcript levels can rise gradually and
reach a steady state level. Second, transcript levels rise to reach
a peak and then decrease to an upregulated steady state level.
In this case, we say the system overshoots the steady state.
Third, expression levels peak as before but now decrease back
to their initial untreated levels. The model can account for the
first two types of behavior, which reflect different parameter
regimes of the model. However, the third type of Aux/IAA tran-
scription behavior in response to auxin could not be observed in
the model. This indicates that (in this case) additional regulatory
mechanisms must be at work. Biologically, such parameter re-
gimes could result from interactions of different Aux/IAAs and
ARFs, for which a significant diversity of biochemical properties
(i.e., association and dissociation rates) are expected. Notably,
Aux/IAA proteins can have quite distinct half-lives and binding

affinities (Dreher et al., 2006; Calderón Villalobos et al., 2012). It
is important to note that these changes in Aux/IAA mRNA are
observed in the model even though intracellular auxin levels
are predicted to rapidly increase and reach equilibrium. In other
words, just because the gene expression levels are changing
in time, it does not mean that auxin levels are. Furthermore, it
was also found that the network could generate oscillations in
Aux/IAA mRNA levels, even though free auxin levels are pre-
dicted to be more or less constant. Interestingly, oscillations of
the DR5 auxin-inducible reporter have been observed in the
root basal meristem and are thought to regulate the initiation of
lateral roots (De Smet et al., 2007). Although it was proposed that
the DR5 oscillations might be under the control of an auxin-in-
dependent clock mechanism (Moreno-Risueno et al., 2010), these
simulations also open the possibility that they might result in
part from the Aux/IAA feedback loop itself.
Vernoux et al. (2011) explored this pathway further by first

obtaining a near-complete Aux/IAA-ARF interactome (there are
29 Aux/IAAs and 23 ARFs). In particular, unlike Middleton et al.
(2010), the authors included repressor ARFs in their model.
Using a graph clustering technique (illustrated in Figure 2B), they
show that the Aux/IAA, activator ARF, and repressor ARF
correspond to three classes having a specific structure of in-
teraction profiles: Aux/IAA interact with themselves and with
activator ARF; activator ARF interacts with Aux/IAA; and re-
pressor ARFs have very limited interactions. This analysis of the
topology of the Aux/IAA-ARF network can be viewed as a top-
down approach for generating a small network. The authors
incorporated this information into their ODE model. In particular,
it should be noted that the repressor ARF do not interact with
the other proteins (as suggested by the interactome; Figure 2B)
but rather compete with the activator ARF for the ARF binding
sites in the promoter of the auxin-inducible gene. In contrast
with the model of Middleton et al. (2010), the model by Vernoux
et al. (2011) can only reproduce the first type of behavior de-
scribed above, an Aux/IAA transcriptional response rising
gradually to steady state with no overshoot. However, as already
noted, a key difference between the models is that the latter
implicitly assumes that the auxin perception pathway is quasi-
steady, which could explain the discrepancy. The work of
Vernoux et al. (2011) is discussed further below.
The GA signaling network is similar to that of auxin, in that

bioactive GAs act by targeting the degradation of a repressor
protein (namely, members of the DELLA family). DELLA proteins
mediate the transcriptional regulation of genes encoding GA
biosynthesis enzymes (GA20-oxidase and GA3-oxidase) and
the GA receptors (GA INSENSITIVE DWARF1 (GID1); among
others). This naturally leads to a rather complex gene network,
comprising several negative feedback loops. In Middleton et al.
(2012), the authors took the approach of parameterizing the
model using both published and new data sets. In particular,
they used quantitative time-course data on almost every as-
pect of the network, including the signal transduction pathway
(whereby GA binds to its receptor, GID1), the biosynthesis
pathway (GA precursors are converted into the bioactive form
via multiple enzyme-substrate reactions), and transcriptional
responses to GA treatment. By doing so, they were able to
constrain the model parameters according to the data. This
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can be thought of as a form of model calibration: It can ensure
that the model can quantitatively reproduce the behavior of the
system that has already been observed experimentally. How-
ever, as noted before, the fitting process does not necessarily
lead to a unique estimate for a parameter. In the case of the
GA-signaling network, Middleton et al. found that the param-
eter sets obtained from each of their best fits generated similar
qualitative predictions. In this way, the authors were able to
explore how the different feedback loops modulated the sen-
sitivity of a cell to changes in GA.

Small-Scale Networks Underlying Cell Autonomous
Tissue Patterning

The models discussed above are all single-cell ones, in that spatial
aspects are ignored. Nevertheless, in certain circumstances, sin-
gle cell models can also be used to bring insight to the spatial
patterns observed.

The first scenario is where the model has multiple stable steady
states corresponding to different cell fates. This has been applied
to the regulation of flower morphogenesis in Arabidopsis (Mendoza
et al., 1998, 1999; Espinosa-Soto et al., 2004; Alvarez-Buylla et al.,
2008; Sánchez-Corrales et al., 2010). Here, Boolean network–
based models were developed based on published data. In the
models, good agreement was obtained between the steady states
of the models and the experimentally observed gene expression
patterns (this being the case for both wild-type and mutant plants).
In doing so, they were led to hypothesize new regulations, which
thus improved the knowledge of this system. Since a Boolean
approach was used, a relatively high number of genes (around 15)
could be studied. However, more recently, an ODE-based model
(van Mourik et al., 2010) of floral specification has been developed.
The model reproduced known mutant behaviors for several mu-
tations but also predicted new phenotypic effects of mutations yet
to be tested.

Along similar ideas, La Rota et al. (2011) collected data on the
genes known to be important for floral development, including
known interactions and experimentally observed expression
patterns. These data were used to build a model for the speci-
fication of sepal polarity, where cells differentiate into abaxial
and adaxial tissue types. Starting with 48 genes, they were
able to reduce the system to 21 variables. Using a Boolean
model, they were able to estimate the parameter values for
which the steady states of their model were in good agreement
with gene expression patterns in emerging sepals. This esti-
mation led to the prediction of three novel pathways involving
HOMEODOMAIN LEUCINE ZIPPER II, ARGONAUTE, and cytokinin-
related genes, which can serve as a guide for future experimental
investigations.

Another type of scenario where single-cell models can be
used in the study of spatial patterning is where the expression
patterns of particular network components are hard-coded into
the model (rather than being emergent properties of it). This can
be achieved by choosing model parameters to depend on
space. An example of this can be found in Vernoux et al. (2011),
already discussed above. Here, the authors used in situ hy-
bridization to show a differential expression pattern of the ARF
genes between the center and the periphery of the shoot apical

meristem (SAM). Parameters representing ARF production were
chosen to capture this observation in the model, namely, by
considering low and high production of ARFs as representative
of the SAM center and periphery, respectively. Mathematical
analysis and numerical simulations indicated that differential
expression of activator and repressor ARFs cause variations in
the sensitivity of a cell’s transcriptional responses to auxin. In
particular, it was found that there is low sensitivity to auxin in the
center, while a high sensitivity is expected at the periphery. Their
results further suggested that in these two domains, the coex-
pression of activator and repressor ARFs provide cells with the
ability to buffer gene expression against fluctuations in auxin.
This view was confirmed after comparing the spatio-temporal
patterns of the DII-Venus auxin sensor (Brunoud et al., 2012) in
the SAM with that of the DR5 auxin-inducible reporter (which
gives information on the transcriptional response to auxin; Sabatini
et al., 1999). This indicated that the ARF prepattern might explain
(at least in part) why auxin can only induce organ formation at
the periphery of the SAM. Another example of using small scale
networks to understand cell-autonomous patterning is provided
by Band et al. (2012b), wherein the GA signaling network model
of Middleton et al. (2012) was embedded in a multicellular model
of the root. This allowed the authors to explore how the various
components are affected as the cells in the root elongate and
hormone concentration levels dilute; this is discussed further by
Band et al. (2012a).

Small-Scale Networks to Understand Intercellular
Signaling and Signal Distribution in Tissues

In the previous section, we discussed how gene network models
can be used to explore tissue patterning problems, even if the
spatial aspect of the problem is not explicitly included in the
model. This type of approach is particularly relevant when in-
tercellular communication does not greatly affect the behavior of
the networks (so that, in effect, cells respond autonomously).
However, intercellular communication can be essential in plant
patterning and can sometimes strongly influence the behavior of
a given network. We discuss examples of this below.
In Savage et al. (2008), the authors used a Boolean frame-

work to explore the regulatory mechanisms underlying tricho-
blast and atrichoblast patterning in Arabidopsis root epidermis.
To do this, they developed two competing network models in
which CAPRICE (CPC ), WEREWOLF (WER), and GLABRA3
(GL3) interact to regulate the patterning process. The first
proposed mechanism involves a self-activation feedback loop
for activation of WER, whereas the second corresponds to
a mutual support mechanism where CPC inhibits WER and
only intercellular movement of CPC can relieve this inhibition.
Since intercellular communication was a crucial aspect of the
biology, both network models were embedded in a multicellu-
lar geometry. These two networks and how their behaviors are
impacted by the inclusion of intercellular communication are
illustrated in Figure 4. From their simulations, the authors were
able to design an experiment that could distinguish between
the two mechanisms. Based on this, they were able to rule out
the existence of WER self-activation in favor of the mutual
support mechanism.
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Another example can be found in the study of the maintenance
of the stem cell niche in the SAM. A negative feedback loop
between the WUSCHEL (WUS) transcription factor and the
CLAVATA3 (CLV3) peptide regulates the size of the stem cell
niche. Several groups have described the dynamics of this sys-
tem by means of ODE-based models, both in wild-type and
mutant plants. In the first such model, Jönsson et al. (2005)
showed that a simple ODE-based model was able to robustly
reproduce the sharp WUS expression domain. Here, the authors
included a purely hypothetical repressing signal diffusing from
the L1 layer, and a reaction-diffusion mechanism could activate
the WUS gene. Models of this process have since increased in
sophistication as new biological data have become available. In
particular, the interplay between experimental approaches and
modeling has provided strong support for the idea that cytokinin
signaling is crucial for the positioning and regulation of the size of
the WUS and CLV3 domains in the SAM (Gordon et al., 2009;
Hohm et al., 2010; Yadav et al., 2011; Chickarmane et al., 2012).
Here, cytokinin signaling is involved in the activation of WUS
expression (Gordon et al., 2009). Furthermore, movement of
WUS and repression of cytokinin biosynthesis by WUS could
establish a cytokinin gradient that in turn determines the position
of WUS domain (Yadav et al., 2011). The repressing signal dif-
fusing from the L1 predicted by Jönsson et al. (2005) would
thus rather be a gradient of an activator resulting from WUS
movement.

Auxin also functions as a key intercellular signal and is actively
transported between cells. Modeling has been used mainly to
explore possible mechanisms explaining the dynamic properties
of polar auxin transport in tissues. This has been covered in
several reviews already (Garnett et al., 2010; Santos et al., 2010),
and we will not discuss it here in detail. One of the major limi-
tations in testing the predictions of the auxin transport models
has been the absence of reliable tools to follow the spatio-
temporal dynamics of auxin distribution in tissues. Recently,
Band et al. (2012c) were able combine the use of a novel auxin
sensor, DII-Venus, with a mathematical model to quantify auxin
levels in tissues. DII-Venus is composed of the auxin binding
domain of the Aux/IAA28 protein fused to a fast-maturing variant
of yellow fluorescent protein, Venus. To quantify this, the au-
thors simplified the model by Middleton et al. (2010), taking into
account the fact that the protein is expressed under a constitu-
tively active promoter and not acting as a repressor of gene
transcription. Excellent agreement between the model and
high-resolution, time-resolved, auxin dose–response data were
obtained. Using the model, the authors were able to infer relative
levels of endogenous auxin from the level of DII florescence. The
authors next applied this model to study the role of auxin in
gravitropism. Here, auxin is thought to be redistributed to the
lower half of the root. By taking this into account, the authors
were able to infer from the dynamics that roots use a tipping point
mechanism that operates to reverse the asymmetric auxin flow at

Figure 4. Intercellular Signaling and Its Impact on Network Dynamics.

Two competing models for root epidermal patterning considered in Savage et al. (2008): (A) The WER self-activation model and (B) The mutual support
mechanism. Interactions and components that are not active in a cell appear faded. Key differences between the two models appear in red.
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the midpoint of root bending (Band et al., 2012a). It is likely that
this combination of modeling and experimental approaches can
be extended to study auxin transport in other organs and will
provide further key insight into the mechanisms regulating auxin
distribution during developmental processes.

CONCLUSIONS AND FUTURE CHALLENGES

We discussed why, in many cases, it is productive to focus on
small networks and outlined a number of examples where this
approach has given significant biological insight (where small is
beautiful). However, these successes inevitably lead to a drive
to include further complexity in the modeling framework, the
number of system components, both in terms of genes, pro-
teins, and their interactions, but also in different cell types and
spatial contexts.

Moving beyond deterministic models, such as those we have
discussed, will be one of the challenges faced by the systems
biology field. It can be done notably using stochastic models
taking into account the inherent noise occurring in biological
systems. Increasing evidence suggests that transcriptional noise
can have a major impact on gene network behavior, in particular
at the single-cell level (Raj and van Oudenaarden, 2008; Eldar
and Elowitz, 2010). As stochastic models are of a quantitative
essence, their development requires advanced knowledge of
systems under consideration and their study incurs a significant
computational overhead. A notable recent example showed that
stochasticity is a plausible explanation for several experimental
observations on circadian oscillations at the cell population level
(Guerriero et al., 2012). As the understanding of other regulatory
systems in plants increases, the constant evolution in compu-
tational capacities should allow more in-depth exploration of
how much additional knowledge can be gained from stochastic
models.

In parallel, a long-term trend to ever larger networks is evident
and is raising the question of the number of network compo-
nents that need to be considered. The answer to this is context
dependent, but it is important to recall that simply increasing the
number of components in a network does not automatically
produce models that yield more information on the system dy-
namics. As discussed earlier, in some cases, sets of genes and
gene families can be subdivided into subsets with similar func-
tionality to derive simplified models that still capture the system
dynamics with sufficient accuracy.

Constructing models for larger networks will likely rely on
coupling several small gene network models corresponding to
specific modules, such as the auxin, cytokinin, and GA signaling
pathways. This modularity offers the possibility to parameterize
submodels in isolation (which reduces the complexity of param-
eter estimation), before combining models together. A challenge
for the community is to effectively share parameterized models in
a way that allows them to be connected together. Considerable
progress in this regard is being made for nonspatial models via
tools such as SBML (Hucka et al., 2003), CellML (Cuellar et al.,
2003), and the BioModels database (Li et al., 2010), but there is an
ongoing challenge to do this in a spatial context. Another major
challenge for the systems biology community is indeed to develop
efficient multiscale modeling approaches that allow integrating

these models. This should help us understand the emergent
properties of the biological system at the different scales. This
requires building models that allow realistic simulations of growth
and development. The foundations of such approaches are
being established in plants, thanks to recent image analysis
techniques that allow building realistic computer representa-
tions of three-dimensional plant tissues (Fernandez et al., 2010).
For further details, we refer the reader to the review by Band
et al. (2012a) in this issue.
However, it is important to stress that at present the extent to

which large-scale networks can be studied by dividing them into
modules and reassembling them remains to be fully understood,
in plants or, in fact, any organism. Even in traditional biology,
understanding a system by studying its parts independently is
a hypothesis upon which many studies are based. Gene regu-
latory networks for the processes we have discussed have all
been studied in a modular fashion. In reality there will be a de-
gree of crosstalk between them. For example, the circadian
clock and auxin signaling are traditionally studied independently,
even though there is known to be interplay between the two
(Covington and Harmer, 2007). Very few examples of small-
scale plant networks have been studied beyond the initial stages
of modeling, and subjected to experimental validation, with the
most notable exception of the circadian network we have dis-
cussed. Despite the obvious success obtained using small-
network modeling, a full evaluation of this approach for gene
network analysis will not be possible until a number of such
small modules have been studied in depth and coupled to test
their predictive value.
Testing model prediction requires the continuous production

of relevant quantitative biological data. This is a major challenge
for biologists, but constant innovations (Ehrhardt and Frommer,
2012) are opening fantastic opportunities for plant scientists. In
particular, these will likely make it possible (in the near future) to
follow in vivo a variety of variables at different scales, from the
subcellular scale to entire plants. For gene regulatory networks,
progress in live imaging techniques should make it feasible to
follow dynamically a significant number of the variables in small
networks. Models will be essential in highlighting which are the
most important variables to focus on, at least in the first steps of
an analysis.
The spatial organization of plants presents additional chal-

lenges in the use of small-scale networks. As we have seen,
cells in different locations may have different functional net-
works (due to expression of different network components). To
date, much of the work on model parameterization has relied on
data from whole plants, or at least whole tissues, but the an-
ticipated progress in experimental innovations means that in the
future we should consider that parameters or the networks
themselves differ in different cells.
Even for small-scale networks, it is likely that not all the inter-

actions will be known. In this case, one approach is to generate
a selection of mechanisms that account for existing experi-
mental observations. Mathematical models can then be used
to generate predictions based on the different mechanisms and
therefore suggest further experiments that help to distinguish
between them. The simplest case is where an experiment can
be designed so that two competing mechanisms generate
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qualitatively distinct outputs (this being the case in Savage et al.
[2008], as discussed above). However, competing mechanisms
may only generate quantitatively (but not qualitatively) different
outputs. In this case, more sophisticated techniques are re-
quired to distinguish between the models based on the data. At
present, statistical tools exist or are in development to address
this (see Toni and Stumpf, 2010; Toni et al., 2012). In turn,
however, these will challenge the experimental community to
produce additional data that help justify model extensions on
rigorous grounds. Such statistical approaches should also allow
prior knowledge (not necessarily quantitative) to be built in.

Finally, we draw attention to what was, and still is, a major
challenge for the future of systems biology (that we hope this
review helps to address), namely, that of training plant scientists
with the skills to engage with mathematical model development
and analysis. The scope of small-scale networks is ideal in this
context; the models presented here, and others of similar
complexity, represent exemplars of modeling and model anal-
ysis that are possible to study without the use of heavy math-
ematics or intensive computation. Furthermore, they illustrate
the kinds of phenomena (like steady states, stability, and bifur-
cations) that should become familiar to the plant science com-
munity, so that when, inevitably, larger scale models are used,
we do not simply simulate them in a blind fashion. In addition,
the plant science community has been particularly active in
promoting training in mathematical modeling for life scientists,
and funding bodies are increasingly demanding that postgraduate
training in life sciences include some element of mathematical
modeling and systems approaches. Ultimately, it is hoped that
systems approaches become strongly embedded in our funda-
mental approach to practicing plant science.
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