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Abstract
Studies of adaptation to patterns of deterministic forces have revealed the ability of the motor
control system to form and use predictive representations of the environment. These studies have
also pointed out that adaptation to novel dynamics is aimed at preserving the trajectories of a
controlled endpoint, either the hand of a subject or a transported object. We review some of these
experiments and present more recent studies aimed at understanding how the motor system forms
representations of the physical space in which actions take place. An extensive line of
investigations in visual information processing has dealt with the issue of how the Euclidean
properties of space are recovered from visual signals that do not appear to possess these
properties. The same question is addressed here in the context of motor behavior and motor
learning by observing how people remap hand gestures and body motions that control the state of
an external device. We present some theoretical considerations and experimental evidence about
the ability of the nervous system to create novel patterns of coordination that are consistent with
the representation of extrapersonal space. We also discuss the perspective of endowing human–
machine interfaces with learning algorithms that, combined with human learning, may facilitate
the control of powered wheelchairs and other assistive devices.
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Introduction
Human–machine interfaces (HMIs) come in several different forms. Sensory interfaces
transform sounds into cochlear stimuli (Loeb, 1990), images into phosphenene-inducing
stimuli to the visual cortex (Zrenner, 2002), or into electrical stimuli to the tongue (Bach-y-
Rita, 1999). Various attempts, old and recent, have aimed at the artificial generation of
proprioceptive sensation by stimulating the somatosensory cortex (Houweling and Brecht,
2007; Libet et al., 1964; Romo et al., 2000). Motor interfaces may transform
electromyographic (EMG) signals into commands for a prosthetic limb (Kuiken et al.,
2009), electroencephalogram (EEG) signals into characters on a computer screen, multi-unit
recordings from cortical areas into a moving cursor (Wolpaw and McFarland, 2004), or
upper body movements into commands for a wheelchair (Casadio et al., 2010).

Sensory and motor interfaces both implement novel transformations between the external
physical world and internal neural representations. In a sensory interface, neural
representations result in perceptions. In a motor interface, the neural representations reflect
movement goals, plans, and commands. In a motor HMI, the problem of forming a
functional map between neural signals and external environment is similar to remapping
problems studied in earlier works, focused on the adaptation to force fields (Lackner and
Dizio, 1994; Shadmehr and Mussa-Ivaldi, 1994) and dynamical loads. There, the
environment imposed a transformation upon the relationship between the state of motion of
the arm and forces experienced at the hand. The neural representation that formed through
learning was an image in the brain of this new external relation in the environment. This
image allows the brain to recover a desired movement of the hand by counteracting the
disturbing force. Here, we take a step toward a more fundamental understanding of how
space, “ordinary” space, is remapped through motor learning.

Motor learning
Recently, a simple and powerful idea has changed our view of motor learning. Motor
learning is not only a process in which one improves performance in a particular act. Rather,
it is a process through which the brain acquires knowledge about the environment. However,
this is not the ordinary kind of knowledge (explicit knowledge) such as when we learn an
equation or a historical fact. It is implicit knowledge that may not reach our consciousness,
and yet it informs and influences our behaviors, especially those expressed in the presence
of a novel situation. The current focus of most motor learning studies is on “generalization”;
that is, on how experience determines behavior beyond what one has been exposed to. The
mathematical framework for the concept of generalization comes from statistical theory
(Poggio and Smale, 2003), where data points and some a priori knowledge determine the
value of a function at new locations. If the new location is within the domain of the data, we
have the problem of interpolation, whose solutions are generally more reliable than those of
extrapolation problems, that is, when the predictions are made outside the domain of the
data.

In the early 1980s, Morasso (1981) and Soechting and Lacquaniti (1981) independently
made the deceivingly simple observation that when we reach to a target, our hands tend to
move along quasi-rectilinear pathways, following bell-shaped speed profiles. This simplicity
or “regularity” of movement is evident only when one considers motion of the hand: In
contrast, the shoulder and elbow joints engage in coordinated patterns of rotations that may
or may not include reversals in the sign of angular velocities depending on the direction of
movement. These observations gave rise to an intense debate between two views. One view
suggested that the brain deliberately plans the shape of hand trajectories and coordinates
muscle activities and joint motions accordingly (Flash and Hogan, 1985; Morasso, 1981).
The opposing view suggested that the shape of the observed kinematics is a side effect of
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dynamic optimization (Uno et al., 1989), such as the minimization of the rate of change of
torque.

By considering how the brain learns to perform reaching movements in the presence of
perturbing forces (Lackner and Dizio, 1994; Shadmehr and Mussa-Ivaldi, 1994), studies of
motor adaptation to force fields provided a means to address, if not completely resolve, this
debate. Such studies have two key features in common. First, perturbing forces were not
applied randomly but instead followed some strict deterministic rule. This rule established a
force field wherein the amount and direction of the external force depended upon the state of
motion of the hand (i.e., its position and velocity). The second important element is that
subjects were typically instructed to move their hand to some target locations but were not
instructed on what path the hand should have followed. If the trajectory followed by the
hand to reach a target were the side effect of a process that seeks to optimize a dynamic
quantity such as the muscle force or the change in joint torque rate, then moving against a
force field would lead to systematically different trajectories than if hand path kinematics
were deliberately planned. Contrary to the dynamic optimization prediction, many force-
field adaptation experiments have shown that after an initial disturbance to the trajectory, the
hand returns to its original straight motion (Fig. 1). Moreover, if the field is suddenly
removed, an aftereffect is transiently observed demonstrating that at least a portion of the
response is a preplanned (feedforward) compensatory response.

Importantly, Dingwell et al. (2002, 2004) observed similar adaptations when subjects
controlled the movement of a virtual mass connected to the hand via a simulated spring. In
this case, adaptation led to rectilinear motions of the virtual mass and more complex
movements of the hand. These findings demonstrate that the trajectory of the controlled
“endpoint”—whether the hand or a hand-held object—is not a side effect of some dynamic
optimization. Instead, endpoint trajectories reflect explicit kinematic goals. As we discuss
next, these goals reflect the geometrical properties of the space in which we move.

What is “ordinary space”?
We form an intuitive understanding of the environment in which we move through our
sensory and motor experiences. But what does it mean to have knowledge of something as
fundamental as space itself? Scientists and engineers have developed general mathematical
notions of space. They refer to “signal space” or “configuration space.” These are all
generalizations of the more ordinary concept of space. If we have three signals, for example,
the surface EMG activities measured over three muscles, we can form a three-dimensional
(3D) Cartesian space with three axes, each representing the magnitude of EMG activity
measured over one muscle. Together, the measured EMG signals map onto a single point
moving in time along a trajectory through this 3D space. While this mapping provides us
with an intuitive data visualization technique, signal spaces are not typically equivalent to
the physical space around us, the so-called ordinary space. In particular, ordinary space has a
special property not shared by all signal spaces. In the ordinary space, the rules of Euclidean
geometry and, among these Pythagoras’ theorem, support a rigorous and meaningful
definition of both the minimum distance between two points (the definition of vector length)
and the angle between two such vectors. Although we can draw a line joining two points in
the EMG space described above, the distance between EMG points will carry little meaning.
Moreover, what it means to “rotate” EMG signals by a given angle in this space is even less
clear.1

1Sometimes we carry out operations on signal spaces, like principal component analysis (PCA), which imply a notion of distance and
angle. But in such cases, angles and distances are mere artifacts carrying no clear geometrical meaning.
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Euclidean properties of ordinary space
The ordinary space within which we move is Euclidean (a special kind of inner product
space). The defining feature of a Euclidean space is that basic operations performed on
vectors in one region of space (e.g., addition, multiplication by a scalar) yield identical
results in all other regions of space. That is, Euclidean space is flat, not curved like
Riemannian spaces: if a stick measures 1 m in one region of Euclidean space, then it
measures 1 m in all other regions of space. Although length and distance can be calculated
in many ways, there is only one distance measure—the “Euclidean norm”—that satisfies
Pythagoras’ theorem (a necessary condition for the norm to arise from the application of an
inner product). The Euclidean norm is the distance measure we obtain by adding the squares
of the projections of the line joining the two points over orthogonal axes. So, if we represent
a point A in an N-dimensional space as a vector a=[a1, a2,. . .,aN]T and a point B as a vector
b=[b1, b2,. . .,bN]T, then the Euclidean distance between a and b is

(1)

We are familiar with this distance in 2D and 3D space. But the definition of Euclidean
distance is readily extended to N dimensions. The crucial feature of this metric, and this
metric only, is that distances are conserved when the points in space are subject to any
transformation of the Euclidean group, including rotations, reflections, and translations. The
invariance by translations of the origin is immediately seen. Rotations and reflections are
represented by orthogonal matrices that satisfy the condition

(2)

(i.e., the inverse of an orthogonal matrix is its transpose). For example, if we rotate a line
segment by R, the new distance in Euclidean space is equal to the old distance, since

(3)

In summary, in the ordinary Euclidean space:

1. Distances between points obey Pythagoras’ theorem and are calculated by a sum of
squares.

2. Distances (and therefore the size of objects) do not change with translations,
rotations, and reflections. Or, stated otherwise, vector direction and magnitude are
mutually independent entities.

Intrinsic geometry of sensorimotor signals in the central nervous system
Sensory and motor signals in the nervous system appear to be endowed with neither of the
above two properties with respect to the space within which we move. For example, the
EMG activities giving rise to movement of our hand would generally change if we execute
another movement in the same direction and with the same amplitude starting from a new
location. Likewise, the firing rates of limb proprioceptors undoubtedly change if we make a
movement with the same amplitude from the same starting location, but now oriented in a
different direction. Nevertheless, we easily move our hand any desired distance along any
desired direction from any starting point inside the reachable workspace. It therefore seems
safe to conclude that our brains are competent to understand and represent the Euclidean
properties of space and that our motor systems are able to organize coordination according

Mussa-Ivaldi et al. Page 4

Prog Brain Res. Author manuscript; available in PMC 2012 December 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



to these properties. From this perspective, the observation of rectilinear and smooth hand
trajectories has a simple interpretation. Straight segments are natural geometrical primitives
of Euclidean spaces: they are geodesics (i.e., paths of minimum length). The essential
hypothesis, then, is that the brain constructs and preserves patterns of coordination that are
consistent with the geometrical features of the environment in which it operates.

Encoding the metric properties of Euclidean space
Early studies of adaptation of reaching movements to force fields demonstrated the stability
of planned kinematics in the face of dynamical perturbations (Shadmehr and Mussa-Ivaldi,
1994), suggesting that the brain develops an internal representation of the dynamics of the
limb and its environment, which it uses to plan upcoming movements. The observation that
subjects preferentially generate straight-line endpoint motions (Dingwell et al., 2002, 2004)
further suggests that the nervous system also develops an internal representation of the
environment within which movement occurs. Both representations are necessary to support
the kind of learning involved in the operation of HMIs: Different HMIs require their users to
learn the geometrical transformation from a set of internal signals endowed with specific
metric properties (EEGs, multiunit activities, residual body motions, etc.) into control
variables that drive a physical system with potentially significant dynamics (the orientation
of a robotic arm, the position of a cursor, the speed and direction of a wheelchair, etc.). We
next describe experiments that sought to test whether the brain constructs and preserves
patterns of coordination consistent with the geometrical features of the environment using a
noninvasive experimental approach with immediate relevance to the application of adaptive
control in HMIs.

Mosier et al. (2005) and colleagues (Liu and Scheidt, 2008; Liu et al., 2011) studied how
subjects learn to remap hand gestures for controlling the motion of a cursor on a computer
screen. In their experiments, subjects wore a data glove and sat in front of a computer
monitor. A linear transformation A mapped 19 sensor signals from the data glove into two
coordinates of a cursor on a computer screen:

(4)

Subjects were required to smoothly transition between hand gestures so as to reach a set of
targets on the monitor. This task had some relevant features, namely:

1. It was an unusual task. It was practically impossible that a subject had previous
exposure to the transformation from hand gestures to cursor positions.

2. The hand and the cursor were physically uncoupled. Vision was therefore the only
source of feedback information about the movement of the cursor available to the
subjects.

3. There was a dimensional imbalance between the degrees of freedom of the
controlled cursor (2) and the degrees of freedom of the hand gestures measured by
the data glove (19).

4. Most importantly, there was a mismatch between the metric properties of the space
in which the cursor moves and the space of the hand gestures. Specifically, the
computer monitor defines a 2D Euclidean space with a well-defined concept of
distance between points, whereas there is no clear metric structure for hand
gestures.
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These features are shared by brain–machine interfaces that map neural signals into the
screen coordinates of a computer cursor or the 3D position of a robotic arm. The hand-
shaping task provides a simple noninvasive paradigm wherein one can understand and
address the computational and learning challenges of brain–machine interfaces.

Learning an inverse geometrical model of space
A linear mapping A from data-glove “control” signals to the two coordinates of the cursor
creates a natural partition of the glove-signal space into two complementary subspaces. One
is the 2D (x, y) task-space within which the cursor moves, HT=A+AH [where A+ = AT·
(A·AT)–1 is the Moore–Penrose (MP) pseudoinverse of A]. The second is its 17D null-space,
HN = (I19 – AþA)H (where I19 is the 19D identity matrix), which is everywhere orthogonal
to the task-space (Fig. 2). Note that both task- and null-spaces are embedded in 19
dimensions. Given a point on the screen, the null-space of that point contains all glove-
signal configurations that project onto that point under the mapping A (i.e., the null-space of
a cursor position is the inverse image of that position under the hand-to-cursor linear map).
Consider a hand gesture that generates a glove-signal vector B and suppose that this vector
maps onto cursor position P. Because of the mismatch in dimensionality between the data-
glove signal and cursor vectors (often referred to as “redundancy of control”), one can reach
a new position Q in an infinite number of ways.

In Fig. 2, the glove-signal space is depicted as a simplified 3D space. In this case, the null-
space at q is a line (because 3 signal dimensions –2 monitor dimensions = 1 null-space
dimension). Thus, one can reach Q with any configuration (C, D, E, F, etc.) on this line.
However, the configuration C is special because it lies within the task-space including B and
thus, the movement BC is the movement with the smallest Euclidean norm (in the glove-
signal space). In this simplified representation, the hand-to-cursor linear map partitions the
signal space into a family of parallel planes orthogonal at each point to the corresponding
null-space. While visualizing this in more than three dimensions is impossible, the
geometrical representation remains generally correct and insightful.

Consider now the problem facing the subjects in the experiments of Mosier et al. (2005).
Subjects were presented with a target on the screen and were required to shape their hand so
that the cursor could reach the target as quickly and accurately as possible. A number of
investigators have proposed that in natural movements, the brain exploits kinematic
redundancy for achieving its goal with the highest possible precision in task-relevant
dimensions. Redundancy would allow disregarding performance variability in degrees of
freedom that do not affect performance in task-space. This is a venerable theory, first
published by Bernstein (1967) and more recently formalized as the “uncontrolled manifold”
theory (Latash et al., 2001, 2002; Scholz and Schoner, 1999) and as “optimal feedback
control” (Todorov and Jordan, 2002). These different formulations share the prediction that
the motor system will transfers motor variability (or motor noise) to glove-signal degrees of
freedom that do not affect the goal, so that performance variability at the goal—that is, at the
target—is kept at a minimum. This is not a mere speculation; in a number of empirical cases
the prediction matches observed behavior, as in Bernstein's example of hitting a nail with a
hammer. However, in the experiments of Mosier et al. (2005) things turned out differently.
As subjects became expert in the task of moving the cursor by shaping their hand, they
displayed three significant trends with practice that were spontaneous and not explicitly
instructed:

1. They executed increasingly straighter trajectories in task-space (Fig. 3a).

2. They reduced the amount of motion in the null-space of the hand-to-cursor map
(Fig. 3b).
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3. They reduced variability of motion in both the null-space and the task-space (Fig.
3c).

Taken together, these three observations suggest that during training, subjects were learning
an inverse geometric model of task-space. Consider that among all the possible right
inverses of A, the MP pseudoinverse

(5)

selects the glove-signal solution with minimum Euclidean norm. This is the norm calculated
as a sum of squares:

(6)

Passing through each point B in the signal space (Fig. 2), there is one and only one 2D plane
that contains all inverse images of the points in the screen that are at a minimum Euclidean
distance from B. The subjects in the experiment of Mosier et al. (2005) demonstrated a
learning trend to move over these planes and to reduce the variance orthogonal to them—
both at the targets and along the movement trajectory. We consider this to be evidence that
the learning process is not only driven by the explicit goal of reaching the targets but also by
the goal of forming an inverse model of the target space and its metric properties. This
internal representation of space is essential to generalize learning beyond the training set.

In a second set of experiments, Liu and Scheidt (2008) controlled the type and amount of
task-related visual feedback available to different groups of subjects as they learned to move
the cursor using finger motions. Subjects rapidly learned to associate certain screen locations
with desired hand shapes when cued by small pictures of hand postures at screen locations
defined by the mapping A. Although these subjects were also competent to form the gestures
with minimal error when cued by simple spatial targets (small discs at the same locations as
the pictures), they failed to generalize this learning to untrained target locations (pictorial
cue group; Fig. 4). Subjects in a second group also learned to reduce task-space errors when
provided with knowledge of results in the form of a static display of final cursor position at
the end of each movement; however, this learning also failed to generalize beyond the
training target set (terminal feedback group; Fig. 4). Only subjects provided with continuous
visual feedback of cursor motion learned to generalize beyond their training set (continuous
feedback group; Fig. 4) and so, visual feedback of endpoint motion appears necessary for
learning an inverse geometrical model of the space of cursor motion. Of all the feedback
conditions tested, only continuous visual feedback provides explicit gradient information
that can facilitate estimation of an inverse model B̂ of the hand-to-screen mapping A.

Liu and colleagues further examined the learning of an inverse geometric representation of
task-space by studying how subjects reorganize finger coordination patterns while adapting
to rotation and scaling distortions of a newly learned hand-to-screen mapping (Liu et al.,
2011). After learning a common hand-to-screen mapping A by practicing a target capture
task on one day and refreshing that learning early on the next day, subjects were then
exposed to either a rotation θ of cursor motion about the origin (TR):

(7)

or a scaling k of cursor motion in task-space (TS):
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(8)

The distortion parameters θ and k were selected such that uncorrected error magnitudes
were identical on initial application of T in both cases. The question Liu and colleagues
asked was whether step-wise application of the two task-space distortions would induce
similar or different reorganization of finger movements. Both distortions required a simple
reweighting of the finger coordination patterns acquired during initial learning of A (Fig.
5a), while neither required reorganization of null-space behavior.

Because A is a rectangular matrix with 2 rows and 19 columns, it does not have a unique
inverse; rather, there are infinite 19 × 2 matrices B such that

(9)

where I2 is the 2 × 2 unit matrix. These are “right inverses” of A, each one generating a
particular glove-signal vector H mapping onto a common screen coordinate P. Liu et al.
(2011) estimated the inverse hand-to-screen transformation B̂ used to solve the target
acquisition task before and after adaptation to TR and TS by a least squares fit to the data:

(10)

They then evaluated how well B̂ obtained after adaptation (BADAPT) was predicted by
rotation (TR) or scaling (TS) of the B̂ obtained just prior to imposing the distortion
(BBEFORE) by computing a difference magnitude ΔBADAPT:

(11)

They compared this to the difference magnitude obtained from data collected in two separate
time intervals during baseline training on the second day (i.e., before imposing the
distortion; BL1 and BL2). Here, T–1 of Eq. (9) is assumed to be the identity matrix:

(12)

Importantly, Liu and colleagues found that adaptation to the rotation induced a significant
change in the subject's inverse geometric model of Euclidean task-space whereas adaptation
to a scaling did not (Fig. 5b). Because the magnitude of initial exposure error was virtually
identical in the two cases, the different behaviors cannot be accounted for by error
magnitude. Instead, the results provide compelling evidence that in the course of practicing
the target capture task, subjects learned to invoke categorically different compensatory
responses to errors of direction and extent. To do so, they must have internalized the inner
product structure imposed by the linear hand-to-screen mapping, which establishes the
independence of vector concepts of movement direction and extent in task-space. Under the
assumption that the brain minimizes energetic costs in addition to kinematic errors (see
Shadmehr and Krakauer, 2008 for a review), subjects in the current study should at all times
have used their baseline inverse map to constrain command updates to only those degrees of
freedom contributing to task performance. This was not the case. The findings were also
inconsistent with the general proposition that once the “structure” of a redundant task is
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learned, such dimensionality reduction is used to improve the efficiency of learning in tasks
sharing a similar structure (Braun et al., 2010).

Instead, the findings of Mosier et al. (2005) and colleagues (Liu and Scheidt, 2008)
demonstrate that as the subjects learned to remap the function of their finger movements for
controlling the motion of the cursor, they also did something that was not prescribed by their
task instructions. They formed a motor representation of the space in which cursor was
moving and, in the process of learning, they imported the Euclidean structure of the
computer monitor into the space of their control signals. This differs sharply from the trend
predicted by the uncontrolled manifold theory, where a reduction in the variance at the target
should have been accompanied by no such decrease in performance variance in redundant
degrees of freedom. The experimental observations of Bernstein, Scholz, Latash, and others
(Bernstein, 1967; Latash et al., 2001; Scholz and Schoner, 1999) can be reconciled with the
observations of Mosier and colleagues if one considers that the glove task is completely
novel, whereas tasks such as hitting a nail with a hammer are performed within the domain
of a well learned control system. Because the purpose of learning is to form a map for
executing a given task over a broad target space in many different situational contexts, it is
possible that once a baseline competency and confidence in the mapping is established, the
abundance of degrees of freedom becomes an available resource to achieve a more flexible
performance, with higher variability in the null-space.

The dual-learning problem
A HMI sets a relation from body-generated signals to control signals or commands for an
external device. This relation does not need to be fixed. Intuition suggests that it should be
possible to modify the map implemented by the interface so as to facilitate the learning
process. In this spirit, Taylor et al. (2002) have employed a coadaptive movement prediction
algorithm in rhesus macaques to improve cortically controlled 3D cursor movements. Using
an extensive set of empirically chosen parameters, they updated the system weights through
a normalized balance between the subject's most successful trials and their most recent
errors, resulting in quick initial error reductions of about 7% daily. After significant training
with exposure to the coadaptive algorithm, subjects performed a series of novel point-to-
point reaching movements. They found that subjects’ performance in the new task was not
appreciably different from the training task. This is evidence of successful generalization.

Danziger et al. (2009) modified the glove-cursor paradigm by introducing a nonlinear
transformation between the hand signals and the cursor (Fig. 6). In their experiment, the 19D
vector of sensor values was mapped to the position of a cursor presented on a computer
monitor. First, the glove signals were multiplied by a 2 × 19 transformation matrix to obtain
a pair of angles. These angles then served as inputs to a forward kinematics equation of a
simulated 2-link planar arm to determine the end-effector location:

(13)

where ŝ = [l1, l2, x0, y0]T is a constant parameter vector that includes the link lengths and the
origin of the shoulder joint. The virtual arm was not displayed except for the arm's endpoint,
which was represented by a 0.5-cm-radius circle. Subjects were given no information about
the underlying mapping of hand movement to cursor position.
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The mapping matrix, A, was initially determined by having the subject generate four preset
hand postures. Each one of these postures was placed in correspondence with a corner of a
rectangle inside the joint angle workspace. The A matrix was then calculated as, A = Θ · H+,
where Θ is a 2 × 4 matrix of angle pairs that represent the corners of the rectangle, and H+ is
the MP pseudoinverse of H (Ben-Israel and Greville, 1980), the 19 × 4 matrix whose
columns are signal vectors corresponding to the calibration postures. Using the MP
pseudoinverse corresponded to minimizing the norm of the A matrix in the Euclidean
metric. As a result of this redundant geometry, each point of the workspace was reachable
by many anatomically attainable hand postures.

Danziger et al. asked subjects to shape their hands so as to move the tip of the simulated arm
into a number of targets. The experiment proceeded in sets of training epochs. In each
epoch, the mapping between the hand joint angles and the arm's free-moving tip (the “end-
effector”) was updated so as to cancel the mean endpoint error in the previous set of
movements. This was done in two ways by two separate subject groups: (a) by a least mean
squares (LMS) gradient descent algorithm which takes steps in the direction of the negative
gradient of the endpoint error function, or (b) by applying the MP pseudoinverse which
offers an analytical solution for error elimination while minimizing the norm of the
mapping. LMS (Widrow and Hoff, 1960) is an iterative procedure, which seeks to minimize
the square of the performance error norm by iteratively modifying the elements of the A
matrix in Eq. (13). The minimization procedure terminated when the difference between the
old and the new matrix exceeded a preset threshold. In contrast, the MP procedure was
merely a recalibration of the A matrix, which canceled the average error after each epoch.
Therefore, both LMS and MP algorithms had identical goals, to abolish the mean error in
each training epoch, and each method found a different solution.

The result was that subjects exposed to the LMS adaptive update outperformed their control
counterparts who had a constant mapping. But, surprisingly, the MP update procedure was a
complete failure, and subjects exposed to this method failed to improve their skill levels at
all (Fig. 7, left). We hypothesize that this was because the LMS procedure finds local
solutions to the error elimination problem (because it is a gradient decent algorithm), while
the MP update may lead to radically different A-matrices across epochs. This finding
highlights a trade-off between maintaining a constant structure of the map and altering the
structure of the map so as to assist subjects in their learning. But perhaps the most important
finding in that study was a negative result. In spite of the more efficient learning over the
training set, subjects in the LMS group did not show any significant improvement over the
control group on a different set of targets, which were not practiced during the training
session (Fig. 7, right). The implication is that the LMS algorithms facilitated subjects’
creation of an associative map from the training targets to a set of corresponding hand
configurations. However, this did not improve learning the geometry of the control space
itself. Had this been the case, we would expect to see greater improvement in generalization.
Finding machine learning methods that facilitate “space learning” as distinct from improving
performance over a training set remains an open and important research goal in human–
machine interfacing.

A clinical perspective: the body–machine interface
The experiments of Mosier et al. (2005) and Danziger et al. (2009) demonstrated the ability
of the motor system to reorganize motor coordination so as to match the low-dimensional
geometrical structure of a novel control space. Subjects learned to redistribute the variance
of the many degrees of freedom in their fingers over a 2D space that was effectively an
inverse image of the computer monitor under the hand-to-cursor map. We now consider in
the same framework the problem of controlling a powered wheelchair by coordinated upper
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body motions. People suffering from paralysis, such as spinal cord injury (SCI) survivors are
offered a variety of devices for operating electrically powered wheelchairs. These include
joysticks, head and neck switches, sip-and-puff devices, and other interfaces. All these
devices are designed to match the motor control functions that are available to their users.
However, they have a fixed structure and ultimately they present the users with challenging
learning problems (Fehr et al., 2000). In general, the lack of customizability of these devices
creates various difficulties across types and levels of disability (Hunt et al., 2004) and
subjects with poor control of the upper body are at a greater risk of incurring accidents.
Decades of research and advances in robotics and machine learning offer now the possibility
to shift the burden of learning from the human user to the device itself. In a simple
metaphor, instead of having the user of the wheelchair learning how to operate a joystick,
we may have the wheelchair interface looking at the user's body as if it were a joystick.

The controller of a powered wheelchair is a 2D device, setting the forward speed and the
rotation about a vertical axis. Most paralyzed SCI survivors have residual mobility much in
excess of 2 degrees of freedom. Therefore, from a computational point of view one can see
the control problem as a problem of embedding a 2D control surface within a higher-
dimensional “residual motor space.” This is analogous to the problem of embedding the
control space of a robotic arm within the signal space associated with a multiunit neural
signal from a cortical area. From a geometrical standpoint, the embedding operation is
facilitated by the ability of the motor control system to learn Euclidean metrics in a
remapping operation, as shown in Mosier et al. (2005). While control variables may have a
non-Euclidean Riemannian structure, a powerful theorem by Nash (1956) states that any
Riemannian surface can be embedded within a Euclidean space of higher dimension. A
simple way to construct a Euclidean space from body motions is by principal component
analysis (PCA; Jolliffe, 2002). This is a standard technique to represent a multidimensional
signal in a Cartesian reference frame, whose axes are ordered by decreasing variance. Using
PCA, Casadio et al. (2010) developed a camera-based system to capture upper body motions
and control the position of a cursor on a computer monitor (Fig. 8). Both SCI injured
subjects—at or above C5—and unimpaired control subjects participated in this study. Four
small cameras monitored the motions of four small infrared active markers that were placed
on the subjects’ upper arms and shoulders. Since each marker had a 2D image on a camera,
the net signal was an 8D vector of marker coordinates. This vector defined the “body space.”
The control space was defined by the two coordinates (x,y) of the cursor on the monitor.
Unlike the hand-to-cursor map of the previous study, the body-to-cursor map was not based
on a set of predefined calibration points. Instead, in the first part of the experiment subjects
performed free upper body motions for 1 min. This was called the “dance” calibration. A
rhythmic music background facilitated the subjects’ performance in this initial phase. The
purpose of the dance was to evaluate how subjects naturally distributed motor variance over
the signal space. The two principal component vectors, generating the highest variance of
the calibration signals, defined two Cartesian axes over the signal space. In the calibration
phase, subjects could scale the axis to compensate for the difference in variance associated
with them. They were also allowed to rotate and/or reflect the axis to match the natural
right-left, front-back directions of body space.

After the calibration, subjects were engaged in a set of reaching movements. Both control
and SCI subjects learned to execute efficiently the required motions of the cursor on the
computer monitor by controlling their upper body movements (Fig. 9). Learning in terms of
error reduction, increase in movement speed, and trajectory smoothness was evident both in
controls and SCI subjects. In particular, all SCI subjects were able to use their shoulder
movements for piloting the cursor for about 1 h. Importantly, subjects did not merely learn
to track the cursor on the monitor. Instead, they acquired the broader skill of organizing their
upper-body motions in “feedforward” motor programs, analogous to the natural reaching by
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hand. No statistically significant effect of vision could be detected, as well as no interaction
between vision and practice when comparing movement executed under continuous visual
feedback of the cursor, with movements where the cursor feedback was suppressed.

Moreover, PCA succeeded in capturing the main characteristics of the upper-body
movements for both control and SCI subjects. During the calibration phase, for all high-level
SCI subjects it was possible to extract at least two principal components with significant
variance from the 8D signals. Their impairment constrained and shaped the movements.
Compared to control, they had on average a bigger variance associated with the first
component and smaller variances associated with the second through fourth components.
Otherwise stated, the SCI subjects had a lower-dimensional upper body motor space.

At the end of training, for all subjects the first three principal components accounted for
more than 95% of the overall variance. Furthermore, the variance accounted for (VAF) by
the two first principal components slightly increased with practice. However, there was a
significant difference between controls and SCI subjects. Controls mainly changed the
movements associated with their degrees of freedom in order to use two balanced principal
movements. They learned to increase the variance associated with the second principal
component (Fig. 10), thus achieving a better balance between the variance explained by the
first two components. This behavior was consistent with the consideration that subjects
practiced a 2D task, with a balanced on-screen excursion in both dimensions. In contrast, at
the end of the training, SCI subjects maintained the predominance of the variance explained
by the first component: they increased the variance explained by the first component and
decreased the fourth. Their impairment effectively constrained their movements during the
execution of the reaching task as well as during the free exploration of the space.

The most relevant findings of Casadio et al. (2010) concerned the distribution of variance
across task-relevant and task-irrelevant dimensions. For control subjects, the VAF by the
task-space with respect to the overall variance significantly increased with practice. In spite
of the reduced number of training movements, the same trend was present in most SCI
subjects. Therefore, as in the hand-cursor glove experiments of Mosier et al. (2005), subjects
learned to reduce the variance that did not contribute to the motion of the cursor and
demonstrated the ability to form an inverse model of the body-to-cursor transformation. As
subjects reduced the dimensionality of their body motions, they also showed a marked
tendency to align their movement subspace with the 2D space established by the body-
cursor map (Fig. 11). It is important to observe that this was by no means an expected result.
In principle, one could be successful at the task while confining one's movements to a 2D
subspace that differs from the 2D subspace defined by the calibration. To see this, consider
the task of drawing on a wall with the shadow of your hand. You can move the hand on any
invisible surface with any orientation (except perpendicular to the wall!). The result of
Casadio and collaborators is analogous to finding that one would prefer to move the hand on
an invisible plane parallel to the wall. Taken together, these results indicate that subjects
were able to capture the structure of the task-space and to align their movements with it.

Conclusions
The concept of motor redundancy has attracted consistent attention since the early studies of
motor control. Bernstein (1967) pioneered the concept of “motor equivalence” at dawn of
the past century by observing the remarkable ability of the motor system to generate a
variety of movements achieving a single well-defined goal. As aptly suggested by Latash
(2000), the very term “redundancy” is a misnomer as it implies an excess of elements to be
controlled instead of a fundamental resource of biological systems. We agree with Latash,
and stick opportunistically with the term redundancy simply because it is commonly
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accepted and well understood. There is a long history of studies that have addressed the
computational tasks associated with kinematic redundancy while others have considered the
advantage of large kinematic spaces in providing ways to improve accuracy in the reduced
space defined by a task. Here, we have reviewed a new point of view on this issue. We
considered how the abundance of degrees of freedom may be a fundamental resource in the
learning and remapping problems that are encountered in human–machine interfacing. We
focused on two distinctive features:

1. The HMI often poses new learning problems and these problems may be
burdensome to users that are already facing the challenges of disability.

2. By creating an abundance of signals—either neural recordings or body motions—
one can cast a wide net over which a lower-dimensional control space can be
optimally adapted.

Work on remapping of finger and body movements over 2D task-spaces have highlighted
the existence of learning mechanisms that capture the structure of a novel map relating
motor commands to their effect on task-relevant variables. Both unim-paired and severely
paralyzed subjects were able with practice not only to perform what they were asked to do
but they also adapted their movements to match the structure of the novel geometrical space
over which they operated. This may be seen as “suboptimal” with respect to a goal of
maximal accuracy. Subjects did not shift their variance from the low-dimensional task to the
null-space (or uncontrolled manifold). Instead, as learning progressed, variance in the null-
space decreased as well as variance in the task-relevant variables. This is consistent with the
hypothesis that through learning, the motor system strives to form an inverse map of the
task. This must be a function from the low-dimensional target space to the high-dimensional
space of control variables. It is only after such a map is formed that a user may begin to
exploit the possibility of achieving the same goals through a multitude of equivalent paths.

Acknowledgments
This work was supported by the NINDS grants 1R21HD053608 and 1R01NS053581-01A2, by Neilsen Foundation,
and Brinson Foundation.

References
Bach-y-Rita P. Theoretical aspects of sensory substitution and of neurotransmission-related

reorganization in spinal cord injury. Spinal Cord. 1999; 37:465–474. [PubMed: 10438112]

Ben-Israel, A.; Greville, TNE. Generalized inverses: Theory and application. John Wiley and Sons;
New York, NY: 1980.

Bernstein, N. The coordination and regulation of movement. Pegammon Press; Oxford: 1967.

Braun D, Mehring C, Wolpert D. Structure learning in action. Behavioural Brain Research. 2010;
206:157–165. [PubMed: 19720086]

Casadio M, Pressman A, Fishbach A, Danziger Z, Acosta S, Chen D, et al. Functional reorganization
of upper-body movement after spinal cord injury. Experimental Brain Research. 2010; 207:233–
247.

Danziger, Z.; Fishbach, A.; Mussa-Ivaldi, F. Adapting Human-Machine Interfaces to User
Performance. IEEE EMBC. Vancouver British Columbia; Canada: 2008.

Danziger Z, Fishbach A, Mussa-Ivaldi FA. Learning algorithms for human–machine interfaces. IEEE
Transactions on Biomedical Engineering. 2009; 56:1502–1511. [PubMed: 19203886]

Dingwell JB, Mah CD, Mussa-Ivaldi FA. Manipulating objects with internal degrees of freedom:
Evidence for model-based control. Journal of Neurophysiology. 2002; 88:222–235. [PubMed:
12091548]

Mussa-Ivaldi et al. Page 13

Prog Brain Res. Author manuscript; available in PMC 2012 December 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Dingwell JB, Mah CD, Mussa-Ivaldi FA. An experimentally confirmed mathematical model for
human control of a non-rigid object. Journal of Neurophysiology. 2004; 91:1158–1170. [PubMed:
14602835]

Fehr L, Langbein WE, Skaar SB. Adequacy of power wheelchair control interfaces for persons with
severe disabilities: A clinical survey. Journal of Rehabilitation Research and Development. 2000;
37:353–360. [PubMed: 10917267]

Flash T, Hogan N. The coordination of arm movements: An experimentally confirmed mathematical
model. The Journal of Neuroscience. 1985; 5:1688–1703. [PubMed: 4020415]

Houweling AR, Brecht M. Behavioural report of single neuron stimulation in somatosensory cortex.
Nature. 2007; 451:65–68. [PubMed: 18094684]

Hunt PC, Boninger ML, Cooper RA, Zafonte RD, Fitzgerald SG, Schmeler MR. Demographic and
socioeconomic factors associated with disparity in wheelchair customizability among people with
traumatic spinal cord injury. Archives of Physical Medicine and Rehabilitation. 2004; 85:1859–
1864. [PubMed: 15520982]

Jolliffe, IT. Principal component analysis. Springer; New York, NY: 2002.

Kuiken TA, Li G, Lock BA, Lipcshutz RD, Miller LA, Subblefield KA, et al. Targeted muscle
reinnervation for real-time myoelectric control of multi-function artificial arms. JAMA. 2009;
301:619–628. [PubMed: 19211469]

Lackner J, Dizio P. Rapid adaptation to Coriolis force perturbations of arm trajectory. Journal of
Neurophysiology. 1994; 72:299–313. [PubMed: 7965013]

Latash M. There is no motor redundancy in human movements. There is motor abundance. Motor
Control. 2000; 4:259–261. [PubMed: 10970151]

Latash ML, Scholz JF, Danion F, Schoner G. Structure of motor variability in marginally redundant
multifinger force production tasks. Experimental Brain Research. 2001; 141:153–165.

Latash ML, Scholz JP, Schoner G. Motor control strategies revealed in the structure of motor
variability. Exercise and Sport Sciences Reviews. 2002; 30:26–31. [PubMed: 11800496]

Libet B, Alberts WW, Wright EW. Production of threshold levels of conscious sensation by electrical
stimulation of human somatosensory cortex. Journal of Neurophysiology. 1964; 27:546. [PubMed:
14194958]

Liu X, Scheidt R. Contributions of online visual feedback to the learning and generalization of novel
finger coordination patterns. Journal of Neurophysiology. 2008; 99:2546–2557. [PubMed:
18353914]

Liu X, Mosier KM, Mussa-Ivaldi FA, Casadio M, Scheidt RA. Reorganization of finger coordination
patterns during adaptation to rotation and scaling of a newly learned sensorimotor transformation.
Journal of Neurophysiology. 2011; 105:454–473. [PubMed: 20980541]

Loeb GE. Cochlear prosthetics. Annual Review of Neuroscience. 1990; 13:357–371.

Morasso P. Spatial control of arm movements. Experimental Brain Research. 1981; 42:223–227.

Mosier KM, Scheidt RA, Acosta S, Mussa-Ivaldi FA. Remapping hand movements in a novel
geometrical environment. Journal of Neurophysiology. 2005; 94:4362–4372. [PubMed: 16148276]

Mussa-Ivaldi FA, Danziger Z. The remapping of space in motor learning and human-machine
interfaces. Journal of Physiology-Paris. 2009; 103(3-5):263–275.

Nash J. The imbedding problem for Riemannian manifolds. Annals of Mathematics. 1956; 63:20–63.

Poggio T, Smale S. The mathematics of learning: Dealing with data. Notices of the American
Mathematical Society. 2003; 50:537–544.

Romo R, Hernandez A, Zainos A, Brody CD, Lemus L. Sensing without touching: Psychophysical
performance based on cortical microstimulation. Neuron. 2000; 26:273–278. [PubMed: 10798410]

Scholz JP, Schoner G. The uncontrolled manifold concept: Identifying control variables for a
functional task. Experimental Brain Research. 1999; 126:289–306.

Shadmehr R, Krakauer J. A computational neuro-anatomy for motor control. Experimental Brain
Research. 2008; 185:359–381.

Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task.
The Journal of Neuroscience. 1994; 14:3208–3224. [PubMed: 8182467]

Mussa-Ivaldi et al. Page 14

Prog Brain Res. Author manuscript; available in PMC 2012 December 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Soechting JF, Lacquaniti F. Invariant characteristics of a pointing movement in man. The Journal of
Neuroscience. 1981; 1:710–720. [PubMed: 7346580]

Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science.
2002; 296:1829–1832. [PubMed: 12052948]

Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nature
Neuroscience. 2002; 5:1226–1235.

Uno Y, Kawato M, Suzuki R. Formation and control of optimal trajectory in human multijoint arm
movement. Biological Cybernetics. 1989; 61:89–101. [PubMed: 2742921]

Widrow B, Hoff M. Adaptive switching circuits. WESCON Conv Rec. 1960; 4:99.

Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain–
computer interface in humans. Proceedings of the National Academy of Sciences of the United
States of America. 2004; 101:17849–17854. [PubMed: 15585584]

Zrenner E. Will retinal implants restore vision? Science. 2002; 295:1022–1025. [PubMed: 11834821]

Mussa-Ivaldi et al. Page 15

Prog Brain Res. Author manuscript; available in PMC 2012 December 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 1.
Adaptation of arm movements to an external force field. Top-left: Experimental apparatus.
The subject holds the handle of a two-joint robot manipulandum. Targets are presented on a
computer monitor, together with a cursor representing the position of the hand. Top-middle:
unperturbed trajectories, observed at the beginning of the experiment, with the motors
turned off. Top-right: velocity-dependent force field. The perturbing force is a linear
function of the instantaneous hand velocity. In this case, the transfer matrix has a negative
(stable) and a positive (unstable) eigenvalue. The force pattern in the space of hand velocity
is shown under the equation. At the center (zero velocity) the force is zero. Bottom-left
panels (A–D): evolution of hand trajectories in four successive epochs, while the subject
practiced moving against the force field. The trajectories are averaged over repeated trials.
The gray shadow is the standard deviation. In the final set, the trajectories are similar to
those executed before the perturbation was turned on. Bottom-right: Aftereffects observed
when the field was unexpectedly turned off at the end of training (modified from Shadmehr
and Mussa-Ivaldi, 1994).
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Fig. 2.
Geometrical representation. (a) The “hand space,” H, is represented in reduced dimension as
a 3D space. The matrix, A, establishes a linear map from three glove signals to a 2D
computer monitor. T(A) and N(A) are the task-space and the null-space of A. The line, LP,
contains all the points in H that map onto the same point P on the screen. This line is the
“null-space” of A at P. A continuous family of parallel planes, all perpendicular to the null-
space and each representing the screen space, fills the entire signal space. (b) The starting
hand configuration, B, lies on a particular plane in H and maps to the cursor position, P. All
the dotted lines in H leading from B to LQ produce the line shown on the monitor. The
“null-space component” of a movement guiding the cursor from P to Q is its projection
along LQ. The “task-space component” is the projection on the plane containing BC.
Bottom: The mathematical derivation of the null-space and task-space components
generated by the transformation matrix A (from Mussa-Ivaldi and Danziger, 2009).
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Fig. 3.
Behavioral results of the hand-to-cursor mapping experiment. (a) Subjects execute
progressively straighter trajectories of the cursor on the screen. This is measured by the
aspect ratio, the maximum perpendicular excursion from the straight-line segment joining
the start and end of the movement divided by the length of that line segment. The aspect
ratio of perfectly straight lines is zero. (b) Length of subject movements in the null-space of
the task, hand motion that does not contribute to cursor movement, decreases through
training. (c) Average variability of hand movements over four consecutive days (D1, D2,
D3, D4). Left: average standard deviation across subjects of the null-space component over
the course of a single movement. Right: average standard deviation across subjects of the
task-space component over a single movement. Standard deviations are in glove-signal units
(G.S.U.), that is, the numerical values generated by the CyberGlove sensors, each ranging
between 0 and 255. The x axes units are normalized time (0: movement start; 1: movement
end). The overall variance decreases with practice both in the task- and in the null-space
(from Mosier et al., 2005).
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Fig. 4.
The ability to generalize beyond the trained target set depends on the type and amount of
task-related visual feedback available during practice in moving the cursor using finger
motions. Subjects performed 33 cycles of six movements, wherein a cycle consisted of one
movement to each of five training targets (performed with visual feedback) plus a movement
to one of three generalization targets (performed entirely without visual feedback). Each
generalization target was visited once every three cycles. Each trace represents the across-
subject average generalization error for subjects provided with continuous visual feedback
of target capture errors (black squares), subjects provided with feedback of terminal target
capture errors only (gray diamonds), and subjects provided with pictorial cues of desired
hand shapes (gray circles). Error bars represent ± 1 SEM. We evaluated whether
performance gains in generalization trials were consistent with the learning of an inverse
hand-to-screen mapping or whether the different training conditions might have promoted
another form of learning, such as the formation of associations between endpoint targets and
hand gestures projecting onto them (i.e., a look-up table). Look-up table performance was
computed as the across-subject average of the mean distance between the three
generalization targets and their nearest training target on the screen. Because each subject's
A matrix was unique, the locations of generalization and training targets varied slightly from
one subject to the next. The gray band indicates the predicted mean ± 1 SD look-up table
performance. Only those subjects provided with continuous visual feedback of cursor
motion demonstrated generalization performance consistent with learning an inverse map of
task-space (adapted from Liu and Scheidt, 2008).
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Fig. 5.
Adaptation to rotation and scaling distortions of task-space 1 day after initially learning the
manual target capture task. (a) Patterns of cursor trajectory errors are similar to those
typically observed in studies of horizontal planar reaching with the arm. Here, we show data
from representative subjects exposed to a ROTATION (top) or SCALING (bottom) of task-
space during baseline (left) adaptation (early and late) as well as washout (early and late)
blocks of trials. Shading indicates the adaptation block of trials. During preadaptation
practice with the baseline map, cursor trajectories were well directed to the target. Imposing
the step-wise counterclockwise (CCW) rotation caused cursor trajectories to deviate CCW
initially but later “hook back” to the desired final position (Fig. 4a, top). With practice under
the altered map, trajectories regained their original rectilinearity. When the baseline map
was suddenly restored, initial trajectories deviated clockwise (CW) relative to trajectories
made at the start of Session 2, indicating that subjects used an adaptive feedforward strategy
to compensate for the rotation. These aftereffects were eliminated by the end of the washout
period. Similarly, initial exposure to a step-wise increase in the gain of the hand-to-screen
map resulted in cursor trajectories that far overshot their goal. Further practice under the
altered map reduced these extent errors. Restoration of the baseline map resulted in initial
cursor movements that undershot their goal. These targeting errors were virtually eliminated
by the end of the washout period. (b) Adaptation to the rotation induced a significant change
in the subject's inverse geometric model of Euclidean task-space whereas adaptation to a
scaling did not. Here, ΔB̂ is our measure of reorganization within the redundant articulation
space, for subjects exposed to a rotation (red) and scaling (black) of task-space, both before
(solid bars) and after (unfilled bars) visuomotor adaptation. For the subjects exposed to the
rotation distortion, B̂ after adaptation could not reasonably be characterized as a rotated
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version of the baseline map because ΔBADAPT far exceeded ΔBNOISE for these subjects.
The within-subject difference between ΔBADAPT and ΔBNOISE was 0.44 ± 0.32 G.S.U./
pixel (red solid bar), from which we conclude that the rotational distortion induced these
subjects to form a new inverse hand-to-screen map during adaptation. In contrast, ΔBADAPT
did not exceed ΔBNOISE, for scaling subjects (black gradient bars; p = 0.942), yielding an
average within-subject difference between ΔBADAPT and ΔBNOISE of 0.03 ± 0.10 G.S.U./
pixel (black solid bar). We, therefore, found no compelling reason to reject the hypothesis
that after adaptation, scaling subjects simply contracted their baseline inverse map to
compensate for the imposed scaling distortion. Taken together, the results demonstrate that
applying a rotational distortion to cursor motion initiated a search within redundant degrees
of freedom for a new solution to the target capture task whereas application of the scaling
distortion did not (adapted from Liu et al., 2010).
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Fig. 6.
Hand posture represented as a point in “hand space,” h, is mapped by a linear transformation
matrix, A, into two-joint angles of a simulated planar revolute-joint kinematic arm on a
monitor. The endpoint of the simulated arm was determined by the nonlinear forward
kinematics, ζ. Subjects placed the arm's endpoint into displayed targets through controlled
finger motions. During training, the elements of the A matrix were updated to eliminate
movement errors and assist subjects in learning the task (from Danziger et al., 2009).
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Fig. 7.
(Left) Average normalized movement errors for three subject groups in the experiment
outlined in Fig. 6. The mapping for MP subjects was updated to minimize prior movement
errors by an analytical method, which resulted in large mapping changes. The mapping for
LMS subjects was also updated to minimize prior error but with a gradient descent
algorithm that resulted in small mapping changes. Control subjects had a constant mapping.
LMS subjects outperformed controls, while MP subjects failed to learn the task at all.
(Right) Movement errors on untrained targets for control and LMS groups show that
adaptive mapping updates does not facilitate spatial generalization (from Danziger et al.,
2008, 2009).
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Fig. 8.
Controlling a cursor by upper-body motion: experimental apparatus. Four infrared cameras
capture the movements of four active markers attached to the subject's arm and shoulder.
Each camera outputs the instantaneous x, y coordinates of a marker. The eight coordinates
from the four cameras are mapped by linear transformation into the coordinates of a cursor,
presented as a small dot on the monitor. The subject is asked to move the upper body so as
to guide the dot inside a target (from Casadio et al., 2010).
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Fig. 9.
Movement trajectories in early (left) and late (right) phases of learning, for a control subject
and four SCI subjects. Calibration lines on bottom right corner of each panel: 1 cm on the
computer screen (from Casadio et al., 2010).
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Fig. 10.
Distribution of motor variance across learning. Left panel: Results of principal component
analysis on the first (gray) and last movement set (black) for control subjects (mean+SE). In
the first movement set (gray) more than 95% of variance was explained by four principal
components. At the end of the training session (black), unimpaired controls mainly tended to
increase the variance associated with the second principal component. Right panel: Control
subjects (mean + SE). Results of the projection of the data of the first (gray) and last
movement set (black) over the 8D space defined by the body-cursor map. This
transformation defines an orthonormal basis, where the “task-space” components a1, a2
determine the cursor position on the screen, and the orthogonal vectors a3,. . .,a8 represent
the “null-space” components that do not change the control vector. For most of the control
subjects, the fraction of movement variance in the null-space decreased with training in
favor of the variance associated in the task-space (from Casadio et al., 2010).
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Fig. 11.
Matching the plane of the task. The limited number of dimensions involved in the task
allowed us to project the body movement signals in a 3D subspace where the vectors a1, a2
define the “task-space” and a3 is the most significant null-space component in terms of
variance accounted for. In the first movement set (early phase of learning, left panel) there
was a relevant movement variance associated with the null-space dimension a3. That
component was strongly reduced in the last target set (late phase of learning, right panel)
where the movement's space became more planar, with the majority of the movement
variance accounted by the task-space components a1, a2 (from Casadio et al., 2010).
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