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Abstract
We describe an Ewald-summation method to incorporate long-range electrostatic interactions into
fragment-based electronic structure methods for periodic systems. The present method is an
extension of the particle-mesh Ewald technique for combined quantum mechanical and molecular
mechanical (QM/MM) calculations, and it has been implemented into the explicit polarization (X-
Pol) potential to illustrate the computational details. As in the QM/MM-Ewald method, the X-Pol-
Ewald approach is a linear-scaling electrostatic method, in which the short-range electrostatic
interactions are determined explicitly in real space and the long-range Ewald pair potential is
incorporated into the Fock matrix as a correction. To avoid the time-consuming Fock matrix
update during the self-consistent field procedure, a mean image charge (MIC) approximation is
introduced, in which the running average with a user-chosen correlation time is used to represent
the long-range electrostatic correction as an average effect. Test simulations on liquid water show
that the present X-Pol-Ewald method takes about 25% more CPU time than the usual X-Pol
method using spherical cutoff, whereas the use of the MIC approximation reduces the extra costs
for long-range electrostatic interactions by 15%. The present X-Pol-Ewald method provides a
general procedure for incorporating long-range electrostatic effects into fragment-based electronic
structure methods for treating biomolecular and condensed-phase systems under periodic
boundary conditions.

1. Introduction
The explicit polarization (X-Pol) theory1–6 is a fragment-based quantum mechanical method
using block localization of molecular orbitals (BLMO) in wave function theory7–9 or block
localization of Kohn–Sham (BLKS) orbitals in density function theory.10,11 X-Pol can be
used as a next-generation force field for statistical mechanical Monte Carlo and molecular
dynamics simulations of condensed-phase and biomolecular systems with electronic
structure theory as the fundamental framework.1–6 In X-Pol, a biopolymer is divided into
molecular blocks that are also called fragments; each fragment can be a single solvent
molecule, an amino acid unit, a nucleotide, or a group of these entities. The electron density
or electronic wave function of each molecular fragment is optimized in the presence of the
instantaneous electric field of the rest of the system.1,4 Many-body polarization effects are
treated explicitly by electronic structure calculations that couple all the fragments of the
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system. The feasibility of using such a quantum mechanical force field has been
demonstrated for computer simulations of liquids2,12 and solvated proteins.5

A crucial component in dynamics simulation of polar solutions such as biopolymers in
aqueous solution is the treatment of long-range electrostatic interactions,13–16 and this has
been facilitated by the development of efficient linear-scaling particle-mesh Ewald (PME)
techniques,17–22 which greatly enhanced the stability of long-time dynamics trajectories and
the accuracy of computational results.23–26 The importance of including long-range
electrostatic interactions in dynamics simulations has been demonstrated in numerous
applications, and interested readers are directed to some of the original studies.18,19,27–32

The original PME method of Darden and coworkers,17–19 designed for molecular mechanics
force fields, has been incorporated into combined quantum mechanical and molecular
mechanical (QM/MM) potentials.33 In this article, we describe a further extension of the
QM/MM-PME technique to the fully quantum mechanical X-Pol potential for condensed-
phase simulations.

In the past decade, a number of fragment-based methods have been developed,34 and we
will comment on only a few of them. Zhang and coworkers developed a molecular
fractionation with conjugated caps (MFCC) approach to treat proteins and protein–ligand
interactions.35,36 In this method, the individual fragments are capped with a structure
representative of the local functional group of the original system, and the total energy is
obtained by subtracting the energies of the common fragments used in the “caps”. The
method provides a way to evaluate interfragment interactions and a straightforward
procedure to incorporate the local electronic structure into a fragment-based molecular
orbital approach.37,38 Another way of separating the total energy into fragmental
contributions is the general interaction energy expansion approach described by Stoll and
Preuss.39 The key to achieving fast convergence in this method, in contrast to early
schemes,40 is to optimize the monomer, dimer, and many-body fragment molecular orbitals
in the presence of all other fragments, rather than using gas-phase fragments. There are a
number of similar strategies, including the fragment molecular orbital (FMO) method41,42

and the electrostatically embedded many-body (EE-MB) expansion method.43–46 The
double SCF procedure used in the FMO model41,42 is identical to that developed in the
earlier X-Pol method,1–3 whereas two-body or three-body exchange and charge transfer
corrections are added in the FMO2 or FMO3 implementation.39 Although fragment-based
methods have been applied to large systems, it appears that none of the previous biological
applications have included long-range electrostatic effects.

The present paper describes an efficient linear-scaling Ewald method for incorporating long-
range electrostatic interactions into the X-Pol theory. The present model is an extension of a
method developed for combined QM/MM-Ewald simulations,33 and it can be applied to any
fragment-based model to treat long-range electrostatic effects in condensed-phase and
biomolecular systems. As the original QM/MM-Ewald method,33 the present X-Pol-Ewald
approach is not restricted to using a specific QM method in the fragment model, and the QM
method can be ab initio or semiempirical molecular orbital theory or density functional
theory. Electronic structure methods that incorporate the Ewald potential in integral
evaluations are available,47,48 and embedding schemes based on multipole expansions or the
use of Madelung constant have been reported.49–54 The present approach avoids the direct
calculation of electronic integrals with the Ewald potential. The aim of this article is to
present the theoretical and computational algorithm for including long-range electrostatic
forces into fragment-based quantum mechanical methods, and studies of the properties of
liquids and biomacromolecular systems will be reported in future publications.
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In the following we first introduce the theoretical background for the QM/MM-Ewald
method. Then, we present the theory and computational details for the present X-Pol-Ewald
approach. Next, we illustrate the performance of the X-Pol-Ewald method and discuss ways
of achieving efficiency. Finally, the paper concludes with a summary of the main findings
and highlights directions of future research.

2. Method
We first briefly summarize the Ewald summation techniques used with classical force fields.
Then, we present the X-Pol Hamiltonian as a general fragment-based quantum mechanical
approach for periodic systems including long-range electrostatic interactions. Next, we
describe the procedure used in combined QM/MM-Ewald calculations, presented in the
context of the X-Pol method. Finally, we highlight the extension of the QM/MM-Ewald
method to the X-Pol potential. Throughout this paper, we use the same notations as used ref.
33 for convenience of the reader.

2.1. The Ewald summation method
The electrostatic energy for a periodic system, consisting of N particles with point charges
{qi; i = 1, ⋯, N} at positions {ri; i = 1, ⋯, N} in a unit cell, can be evaluated using the
Ewald lattice sum technique:13,14,17

(1)

where rij = ri − rj, and ΦE(rij) is the Ewald pair potential, which is split into short-range and
long-range sums, both rapidly converging:

(2)

The long-range Ewald (LE) pair potential (also called reciprocal or “k-space” pair potential)
can be determined using the Fourier series:

(3)

where k = 2πn with n summing over all integer translations, (n1, n2, n3), of the reciprocal
lattice n = n1b1 + n2b2 + n3b3. The reciprocal space vectors are related to the real space
vectors {a1, a2, a3} by {bi·aj = δij;i,j = 1,2,3}, and V is the volume of the unit cell.

The short-range Ewald (SE) pair potential (or real-space potential) is given by

(4)

where the prime on the summation indicates that self-interaction in the primary unit cell, i.e.,
the rii term with n = 0, is ignored, erfc(r) is the complementary error function defined as
erfc(r) = 1 − erf(r),55 which rapidly decays to zero as r increases, and the second term 
is the self-interaction energy.13,14 In eqn (3) and (4), the parameter κ is introduced to adjust
the relative rates of convergence of the two summations; it is typically chosen in such a way
that only the primary unit cell (n = 0 term) is retained in the real-space sum (eqn (4)).17 The
total energy is independent of the choice of κ as long as both summations are converged.

Zhang et al. Page 3

Phys Chem Chem Phys. Author manuscript; available in PMC 2012 December 10.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Efficient Ewald sum algorithms have been designed such that the Ewald pair potential is
pre-computed on a grid,16,17,19,56 which allows for rapid evaluation through
multidimensional interpolation procedures.

A surface energy term, which arises from the |k| = 0 term in the reciprocal sum, should be
included if the unit cell has a non-vanishing dipole moment.14 In practice, the surface energy
has little effect on dynamics trajectories57 and is neglected in most simulations employing
the so-called tin-foil boundary conditions.13,14,26

2.2. The X-Pol Hamiltonian for periodic systems
The X-Pol method for systems with the nearest image convention in which the interactions
between different fragments are treated using spherical truncation at a cutoff distance has
been described previously.2,5,12 Here, we consider interfragment interactions that extend to
the entire periodic system over all lattice vectors. Let M be the number of molecular
fragments, and ρI(r) be the charge distribution of fragment I, including both the smooth
electron density and the core nuclear charges, where I = 1, ⋯, M (Fig. 1). The effective X-
Pol Hamiltonian per unit cell for the periodic system is

(5)

where ĤI is the electronic Hamiltonian of fragment I which includes the interactions with its
own periodic images, ĤIJ represents the interactions between fragments I and J and their
images, and EXD is the sum of the exchange-dispersion (XD) interaction energies of all
fragments; EXD is computed empirically in the present implementation.1–3,6 (Methods for
computing long-range EXD have been well-established2 and will not be further discussed in
this paper.) The interaction Hamiltonian between fragment I and the rest of the periodic
system depends on both electronic and nuclear degrees of freedom, and it can be expressed
as follows:

(6)

where NI and AI are, respectively, the number of electrons and nuclei of fragment I,  is the

nuclear charge of atom α at , and ΦE[rJx] is the Ewald pair potential.

The total X-Pol energy for the periodic system can be written as follows:

(7)

where ΨXPol is the total X-Pol wave function of the periodic system in the unit cell,

 is the energy of fragment I plus the interactions with its own images (emphasized

by the superscript Ew for including the corresponding Ewald potential), and  is
the interaction between fragments I and J under periodic boundary conditions. In eqn (7), we
have used the notation introduced by Nam et al.,33 in which E[A,B] denotes the electrostatic
interaction energy between two generalized charge distributions evaluated either directly in
real space or under periodic boundary conditions with the Ewald sum.
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In X-Pol, the Coulomb interactions between two quantum mechanical fragments I and J are
not directly computed by evaluating the corresponding two-electron integrals (except when
the nearest buffer residues are used in a polypeptide chain),58,59 but they are determined by
one-electron integrals using the electrostatic potential due to atomic partial charges on the
second fragment (J).1,2,4,6 This corresponds to the Level 2 approximation in the X-Pol
theory.6 The atomic partial charges, QJ(ρJ), are obtained to best represent the electrostatic
potential of the instantaneous charge density (wave function) of fragment J.1,2 This
approximation greatly reduces the computational costs without sacrificing accuracy.
Therefore, the X-Pol energy in eqn (7) is given as follows, replacing the smooth densities by
partial atomic charges for interfragment interactions:

(8)

where QJ = QJ(ρJ) is a column vector of atomic partial charges on fragment J, derived from

the instantaneous electron density ρJ. In eqn (8),  is defined as follows, which
is a one-electron integral in electronic structure theory:

(9)

Notice that the expression in parentheses is the electrostatic potential at ri due to the rest of
the periodic system;2 this corresponds to the standard set of QM/MM interactions in that
approach.33,60,61

Although the electronic structure of each fragment can be determined by the double self-
consistent field (DSCF) method,1–5 eqn (8) is not computationally efficient because one has
to evaluate the electronic integrals involving the Ewald pair potential in the effective
Hamiltonian (eqn (6)). On the other hand, the calculation of the X-Pol energy in “real space”
without the image potentials is straightforward and has already been implemented and
shown to be computationally efficient.2,4–6,12 The same observation was also made in the
development of the combined QM/MM-Ewald method.33 Following this strategy,33 we re-
write eqn (8) as

(10)

where the superscript RS is used to emphasize that the corresponding energy is computed in

“real space” using the Coulomb potential in the primary unit cell,  is the
electronic energy of fragment I as determined by using the fully polarized fragment wave

function (ΨI), including long-range electrostatic effects, and  is the X-Pol
interaction energy between fragments I and J in the primary unit cell. Notice that the

quantities  and  are different from those computed using the short-range
part of the Ewald pair potential ΦSE(rij) in eqn (4) because Coulomb interactions in the RS
calculation are not scaled by the complementary error function. We denote the sum of these
two energy terms as the real-space X-Pol energy, and it has a formal expression that is
identical to that of the X-Pol energy determined with a spherical cutoff2,5 (but the energies
are different here because the wave function used in eqn (11) is polarized with the inclusion
of long-range electrostatic contributions):
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(11)

The two energy differences in eqn (10) represent the long-range electrostatic energy
correction (LEC) to the real-space X-Pol energy (eqn (10)).33 They include the interactions
between the smooth electron distribution of fragment I, (I = 1, ⋯, M), and the partial atomic
charges on its own images and on all other fragments; these mimic the electrostatic
potentials of the corresponding “QM” charge distributions. For such a long-range type of
potential correction, accounting for fragment pairs separated by distances of the order of, or
longer than, a full unit cell, a fully classical charge representation of all fragments, rather
than the smooth electron densities, would be sufficient (Fig. 1). Consequently, the Ewald-
LEC terms can be approximated as follows:

(12)

(13)

With these discussions, we can now write the total X-Pol energy of eqn (10) with the full
long-range electrostatic contributions as

(14)

where we have used E[{ρ}] to emphasize that the X-Pol energy is a functional of the
electron densities of all fragments. In eqn (14), we have also decomposed the LEC
contributions to each fragment into a term due to its own images and a term originating from
interactions with the images of all other fragments. This makes it convenient for comparison
with the combined QM/MM-Ewald method.33

2.3. Long-range electrostatic corrections to the Fock matrix
The elements of the effective Hamiltonian (Fock) matrix of fragment I in the X-Pol method
incorporating long-range electrostatic effects are defined by eqn (15)

(15)

where the first term, , has an expression identical to that of the Fock matrix of the X-
Pol method in the primary unit cell without including long-range electrostatic effects.4,6

The correction term in eqn (15) consists of two components (from eqn (12) and (13), see
also eqn (14)), which can be grouped together (see below), but it is informative to discuss
them separately. The first component is the interaction between fragment I and its own
periodic images, and it is given by33

(16)
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The long-range correction of the Ewald pair-potential, ΔΦE, has been derived previously in
the combined QM/MM-Ewald method,33 and is

(17)

and we have the Fock matrix correction due to self-images:

(18)

In general, it is convenient to use a charge model that depends linearly on the one-particle
density matrix to avoid complications in the charge derivatives and Fock matrix update.

As in the QM/MM-Ewald method,33 the correction to the Fock matrix must be updated at
every SCF iteration as the charge density ρI is being optimized. However, the computational
cost is rather small since the potential can be precomputed and stored as an AI × AI matrix
and the Fock matrix update involves simply a multiplication of the correction matrix of the
Ewald correction potential with the charge vector QI. In the QM/MM method with a single
QM fragment, this only needs to be done for the one QM fragment,33 but in X-Pol, all
fragments need to be updated. In practice, this suggests designing a parallel algorithm that
distributes the fragments over processors.

The second correction term involves interactions among all “QM” fragments in X-Pol

(19)

and the Fock matrix correction for fragment I is given as

(20)

Note that the main difference between the present X-Pol-Ewald method and the combined
QM/MM-Ewald33 approach is in the variation of all surrounding charges for a given “QM”

fragment. In QM/MM, the classical charges are fixed (i.e., ), thereby the quantity
in parentheses in eqn (20) is invariant during the SCF procedure. Since the charge densities,
and therefore the partial atomic charges, of all fragments in X-Pol are mutually polarized
and change during the SCF procedure, it is necessary to update the LEC term for each
fragment based on the changes in all other fragments. As a result, in contrast to the
combined QM/MM-Ewald method, there is no distinction between QM-QM (eqn (18)) and
QM-MM (eqn (20)) interactions in the X-Pol-Ewald method. Consequently, eqn (18) can be
included in eqn (20) with the restriction J ≠ I removed in the second summation:

(21)
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Here, the Fock matrix update requires a matrix multiplication of the Ewald correction
potential (ΔΦE) of dimensions N × N(i.e., all atoms, N = ∑AI, in the unit cell) by the charge
vector (Q). This would be a computational bottleneck for large systems, and in the next
section, we discuss approximations to circumvent this high computation cost.

2.4. The mean image charge (MIC) approximation
Although the X-Pol-Ewald method of eqn (15) based on a Fock matrix correction for the
long-range electrostatic contributions (LEC), is fast due to employing the PME method, it
nevertheless is an order N2 algorithm. As noted above, in the combined QM/MM-Ewald
method,33 the update of the LEC correction to the Fock matrix at each SCF iteration is
needed for the QM fragment, but this does not pose computational difficulty because the
matrix work is small in comparison to that involved in treating the rest of the MM system.
The LEC corrections due to all MM charges just needs to be computed once at each
dynamics step, and it is not required to update them during the SCF cycle. Consequently, the
computational scaling for the QM/MM-Ewald method is essentially the same as the standard
PME method for classical force fields. In X-Pol, however, all charges in the system vary
during the SCF procedure, and hence an update of eqn (21) is required for all fragments, and
this would be limiting for large systems.

Recall that “short-range” interactions within the primary unit cell, which have the dominant

effects, are already explicitly and fully accounted for in the RS term, , of eqn (15). The

correction term, , although important, represents a secondary effect on the
polarization of the Ith fragment. Furthermore, since long-range electrostatic effects are at
distances on the order of the length of a unit cell and beyond, the LEC correction on the
polarization of the molecular wave function due to fluctuations of the atomic charges
between MD steps is expected to be very small. This suggests that it is reasonable to use the
fully converged partial atomic charges from the previous MD step to approximate the

 correction without updating during the SCF cycle. A generalization is to employ a
running average of the partial atomic charges from the previous T simulation steps for this
correction:

(22)

where q̄αI(t;τ) is the running average of atomic charge on atom α of fragment I at time t
over a period of τ, τ = T × τ0 with τ0 being the time step of the MD integration, which is 1
fs in the present study.

If the mean image charges (MIC), q̄(t;τ), are used to replace the instantaneous image
charges in eqn (21) for the periodic system, which is equivalent to neglecting the very small
variations of the average partial atomic charges from one step to the next during an MD

simulation, i.e., , we obtain the following expression for the Ewald-LEC
contribution to the Fock matrix at time t:

(23)

Here, the corresponding Ewald correction for long-range electrostatic effects to the Fock
matrix does not need to be updated during the SCF procedure, as in the QM/MM-Ewald
method.33 The physical interpretation of eqn (23) is that the long-range electrostatic
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correction (LEC) acts as a mean field that varies slowly with a correlation time of τ, which
affects and polarizes the wave function of each quantum fragment. In this case, eqn (23)
needs to be computed only once as an N × 1 vector at the first iteration of the SCF cycle in
each MD step, which is part of the standard operation in PME for classical force fields. The
memory requirements are storage of T copies of partial atomic charges.

It is interesting to note that most molecular dynamics simulations of biological systems are
concerned with non-crystalline environments. Although the Ewald summation provides the
electrostatic energy for a perfectly periodic system, in reality, the instantaneous charge
variations due to microscopic dynamic fluctuations in a crystal or a solution are not
synchronously propagated over to the macroscopic scale. However, the inclusion of the
mean field effect of long-range electrostatic interactions is important for the polarization of
the molecular wave function for polar liquids and electrolyte solutions.16,23,25,62 It is
important to emphasize again that short-range electrostatic interactions are evaluated
explicitly (not scaled by the erfc function as in the Ewald short-range potential) in the
primary unit cell in the present X-Pol-Ewald procedure. Consequently, the present X-Pol-
Ewald method provides an accurate and efficient linear-scaling electrostatic approach
employing the PME algorithm17 for periodic systems.

3. Computational details
The X-Pol-Ewald method has been incorporated into a developmental version of
CHARMM,63 in which the original X-Pol method utilizing semiempirical NDDO
Hamiltonians has been implemented.3,5 To illustrate the procedure, we carried out test
simulations of liquid water with and without long-range electrostatic effects using Ewald
summation. The main purpose of this test is to show that the X-Pol-Ewald method is an
efficient and practical approach for including long-range electrostatic effects into a full
quantum mechanical force field in condensed phase simulations. In the present study, a
spherical cutoff scheme was used to evaluate the van der Waals potential to account for the
exchange-repulsion and dispersion interactions and to determine the real-space X-Pol
energy. In all calculations, a group-based cutoff at 9 Å between the oxygen atoms of two
water molecules was used; each water is one interaction group. The non-bonded list and
crystal images were updated in every 25 steps during the dynamics simulation.

For the Ewald summation, a κ value of 0.340 Å−1 was employed, and the smooth particle
mesh Ewald (PME) method of Darden et al.,17–20 which has been implemented into
CHARMM, was used for the long-range (reciprocal) part of the summation. An approximate
grid size of 0.945 Å was used on a 20 × 20 × 20 FFT grid in one case, and a grid size of ca.
~0.756 Å was adopted on 50 × 50 × 50 FFT grid in a second case.

All simulations were performed with the leapfrog Verlet integration algorithm and a time
step of 1 fs in the constant volume and constant temperature (NVT) ensemble at a
temperature of 298 K that is maintained by a Hoover thermostat. The simulations were
carried out for two cubic boxes of 18.9 × 18.9 × 18.9 Å3 and 37.8 × 37.8 × 37.8 Å3,
consisting of 216 and 1728 water molecules, respectively, modeled by the MODEL2 water
potential with the semiempirical AM1 Hamiltonian.64 The partial atomic charges used to
represent the electrostatic interactions of other fragments with the currently considered
fragment are obtained by Mulliken population analysis of the NDDO-based AM1 wave
function (see the Appendix for details).

4. Results and discussion
The main goal of this study is to present the theory and implementation of long-range
electrostatic interactions into the explicit polarization (X-Pol) method, employing the
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particle-mesh Ewald method. The importance of including long-range electrostatic
interactions in biomolecular simulations such as nucleic acids and electrolyte solutions with
PME is well known. Here, we illustrate the performance of the present X-Pol-Ewald method
on simulations of liquid water. Table 1 shows the computed numerical and analytic forces
(negative gradients) on two water molecules (atom numbers 100 through 105) in the
simulation with 216 molecules under periodic boundary conditions. The differences are
typically below 10−4 kcal mol−1 Å−1; this is slightly greater than that (10−5 kcal mol−1 Å−1)
using the standard spherical cutoff scheme, but the small error is consistent with the
numerical uncertainties in the PME algorithm.17

Using the analytic forces from the X-Pol-Ewald method, we carried out three separate
simulations for each of two liquid water systems; one consists of 216 water molecules, and
another 1728 water molecules; the latter was generated by doubling the size of the edges of
the cubic box of the first system. The first simulation was performed using the standard
spherical cutoff scheme that has been used in the initial implementation of the X-Pol method
(we use a group-based cutoff of 9 Å), while the second and third simulations were executed
with the use of the Ewald correction for long-range electrostatic effects by using,
respectively, a full update of partial atomic charges during each SCF iteration and the mean-
image-charge (MIC) approximation with a correlation time of τ = 1 ps. The single core CPU
(central processing unit) time is recorded in Table 2 for running 100 ps (100 000 integration
steps) in each simulation. The computer consists of a Sun Fire X4600 Linux cluster, which
has six nodes and 32 cores per node with 2.3 GH AMD Opteron processors; the total
memory of the system is 800 GB. The most significant result of Table 2 is that the
incorporation of the PME method into X-Pol only increases the computational costs slightly,
in particular by about 25–27% relative to using the spherical cutoff. The increase in CPU
time is about 9 times in going from the small system (216 water molecules) to the larger
system (1728 water molecules) using the X-Pol-Ewald method, slightly greater than the
increase in system size. If one only considers the PME part of the computational costs, the
scaling is about 8.7 between the small and large systems, and this is well within the
performance of the N·log(N) algorithm of the PME method. In both systems, the MIC
approximation saves about 15% of CPU time relative to that employing the full SCF update
for the Ewald pair-potentials. Thus, the present X-Pol-Ewald is an efficient approach for
incorporating long-range electrostatic effects into an electronic structure-based force field
for molecular dynamics simulations.

Table 3 compares the results obtained using spherical cut-off approximation and the X-Pol-
Ewald approach averaged over 500 ps molecular dynamics trajectories. In X-Pol-Ewald
calculations, the “Full” pair-potential update and the “MIC” approximation were considered.
Inclusion of long-range electrostatic interactions using the full SCF update with the X-Pol-
Ewald method, the average potential energy is about 1.5% lower than that obtained with the
spherical cutoff scheme. When using the mean-image charge (MIC) approximation, the
average energy is about 0.3% within that of the full SCF update, but it is 15% more efficient
computationally. Consequently, we recommend the use of the MIC approximation in the X-
Pol-Ewald method for computations of average quantities. If time-dependent properties are
evaluated, it is advised to first test the effect of the correlation time of the running average
used in the MIC approximation. Both methods have been implemented and are available in
CHARMM.

5. Summary
We have presented an efficient extension of the Ewald summation method to the explicit
polarization (X-Pol) method, which is a quantum mechanical force field based on block
localization of molecular orbitals for condensed-phase simulations. The present approach
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follows the ideas developed for the combined QM/MM-Ewald method,33 in which the short-
range electrostatic interactions are determined in exactly the same way as standard QM/MM
calculations in real space, and the long-range Ewald pair potential is incorporated into the
Fock matrix as a correction. The separation of electrostatic interactions into an explicit,
short-range term and a reciprocal-space, long-range correction makes it possible to
conveniently use the existing algorithm and implementation of a combined QM/MM method
for the former, and to incorporate the computationally efficient particle-mesh Ewald (PME)
technique developed for empirical force fields into the electronic structure calculation.
While the long-range electrostatic correction in the QM/MM-Ewald method is extremely
efficient since the number of QM atoms is small compared to the remaining static MM
charges, the X-Pol-Ewald method is complicated by the instantaneous charge variation of all
fragments of the system, and in principle, the Fock matrix must be updated over all atomic
charges during the self-consistent field procedure.

A mean image charge (MIC) approximation was proposed, in which the running average
with a user-chosen correlation time is used to represent to the long-range electrostatic
correction (LEC) as an average effect. Consequently, the time-consuming Fock matrix
update during the SCF cycles is no longer needed, which greatly enhances computational
efficiency.

Test simulations on liquid water indicate that the present X-Pol-Ewald method takes about
25% more CPU time than that using a spherical cutoff truncation for electrostatic
interactions (with a group-based cutoff distance of 9 Å), whereas the use of the MIC
approximation reduces the extra costs by 15%. The present X-Pol-Ewald method provides a
general procedure for incorporating long-range electrostatic effects into fragment-based
electronic structure methods for treating biomolecular and condensed-phase systems under
periodic boundary conditions.
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Appendix
The partial atomic charges used in eqn (12) and (13) can be obtained with a number of
approaches, including population analysis, charge mapping, or charge fitting schemes. Here,
we outline the use of three charge models for obtaining the external charges, namely
Mulliken population analysis,65 Mulliken population analysis with the neglect diatomic
differential overlap (NDDO) approximation,66 and the recent dipole preserving and
polarization consistent (DPPC) charge model.67 If Mulliken population is used, the atomic
charges are given by

(24)

where S is the overlap matrix. Then, the charge derivative prefactor in eqn (21) and (23) is

(25)

where δμ ∈ α = 1 if the basis function μ is centered on atom α, and it is zero if the basis
function is located on a different atom. If the NDDO approximation is applied in the
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Mulliken population analysis, then the overlap matrix for a minimum basis set is assumed to
be unity, and the charge derivative is simplified to

(24)

The dipole preserving and polarization consistent (DPPC) charges consist of two parts, the
Mulliken population charges and the hybridization dipole contributions that preserve the
total and local hybridization dipole moments:

(25)

where  is the Mulliken population charge on atom α, χ = x,y,z,  is a 3×1 vector for

atom β,67 depending on the geometry of the molecule, and  with Rspχ = 〈s|χ|
pχ〉, which is an atomic hybridization contribution to the molecular dipole moment,68 which
depends on the sp density matrix elements on atom β. The charge derivative becomes

(26)
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Fig. 1.
Schematic depiction of the X-Pol-Ewald method. Fragments in the primary unit cell are
explicitly treated by a quantum mechanical model specified with a smooth charge density ρi,
whereas their periodic images are represented by the partial atomic charges derived from the
corresponding charge density. In the present study, Mulliken population charges are used to
approximate the image charges. Each fragment is specified by a circle or box and all
fragments (molecules) in the system are treated by electronic structure theory.
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Table 1

Analytic and numerical forces (kcal mol−1 Å−1) calculated by the X-Pol-Ewald method for two water
molecules (water number 34 and 35) in a cubic box consisting of 216 water molecules. Numerical forces are
determined by finite difference from displacements of atomic positions and differences specify the deviation
of analytic forces from the numerical ones

Atom number dimension analytic numerical difference

100 X (O34) −0.96117 −0.96109   0.00008

100 Y (O34) −2.14231 −2.14238 −0.00006

100 Z (O34)   0.40245   0.40233 −0.00012

101 X (H34)   1.41450   1.41454   0.00004

101 Y (H34) −1.15551 −1.15545   0.00006

101 Z (H34) −1.24614 −1.24613   0.00001

102 X (H34)   1.07218   1.07211 −0.00008

102 Y (H34) −1.27491 −1.27476   0.00016

102 Z (H34) −1.01582 −1.01575   0.00006

103 X (O35)   4.73798   4.73802   0.00004

103 Y (O35)   0.96007   0.96017   0.00010

103 Z (O35) −3.78347 −3.78341   0.00007

104 X (H35)   0.78805   0.78800 −0.00005

104 Y (H35) −1.64549 −1.64555 −0.00007

104 Z (H35) −1.01468 −1.01458   0.00010

105 X (H35) −0.24715 −0.24712   0.00003

105 Y (H35) −1.55094 −1.55094   0.00000

105 Z (H35) −0.17444 −0.17460 −0.00017

Phys Chem Chem Phys. Author manuscript; available in PMC 2012 December 10.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Zhang et al. Page 17

Table 2

CPU time (hour) needed to run 100 ps molecular dynamics simulations (1 fs integration time step) for cubic
boxes of water, consisting of 216 and 1728 water molecules, using the spherical cutoff scheme for column 2
and the X-Pol-Ewald method for electrostatics beyond the nearest neighbor in columns 2 and 3. A real-space
Ewald cutoff distance of 9 angstroms was used in all simulations for comparison. The column under Full lists
the time using the full update of Ewald long-range electrostatic correction to the Fock matrix at every SCF
iteration (eqn (21)), and MIC denotes calculations using the mean-field image-potential correction
approximation (eqn (23)). All calculations were performed using the AM1 method and full computation. All
calculations were performed using the AM1 method and full computation details can be found in the text

system
X-Pol
cutoff

X-Pol-Ewald

Full MIC

216   6.4   8.1   7.0

1728 58.5 73.3 65.0
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Table 3

Average total interaction energy and binding energy (Ei), which is defined as the interaction energy of one
monomer with the rest of the system, of water in the liquid consisting of 216 molecules over 500 ps molecular
dynamics simulations of liquid water with the conventional spherical cutoff approach for treating
intermolecular interactions and the X-Pol-Ewald method for including long-range electrostatic contributions.
A real-space cutoff distance of 9 angstroms was used in all simulations for comparison. The column under
Full lists the results obtained with full update of Ewald long-range electrostatic correction to the Fock matrix
at every SCF iteration (eqn (21)), and MIC denotes calculations using the mean-field image-potential
correction approximation (eqn (23)). All energies are given in kcal mol−1. Additional computational details
can be found in the text

system
X-Pol
cutoff

X-Pol-Ewald

Full MIC

average −2179.4 −2211.8 −2205.4

Ei −10.07 −10.24 −10.21
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