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Identifying a critical transition and its leading biomolecular network during the initiation and progression
of a complex disease is a challenging task, but holds the key to early diagnosis and further elucidation of the
essential mechanisms of disease deterioration at the network level. In this study, we developed a novel
computational method for identifying early-warning signals of the critical transition and its leading network
during a disease progression, based on high-throughput data using a small number of samples. The leading
network makes the first move from the normal state toward the disease state during a transition, and thus is
causally related with disease-driving genes or networks. Specifically, we first define a state-transition-based
local network entropy (SNE), and prove that SNE can serve as a general early-warning indicator of any
imminent transitions, regardless of specific differences among systems. The effectiveness of this method was
validated by functional analysis and experimental data.

here is usually a sudden health deterioration during gradual progression of many chronic diseases, such as

prostate cancer', asthma attacks’, epileptic seizures’, and others*®. This critical phenomenon generally

results in a drastic or a qualitative transition in the focal system or network from a normal state to a diseased
state, which corresponds to a so-called bifurcation point in dynamical systems theory®'. Clearly, predicting and
further elucidating this critical transition at the network level hold the key to understanding the fundamental
mechanism of disease development and progression.

In general, disease progression can be divided into three states', i.e., a normal state, a pre-disease state (or a
critical state), and a disease state (Figs. 1 a-d). In the normal state, a disease is under control or in an incubation
period, and dynamically it can be considered to have high resilience and robustness to perturbations (Figs. 1 band
g, also Fig. S1 a). The pre-disease state is defined as the limit of the normal state, which occurs before the imminent
phase transition point is reached, but it has low resilience and robustness due to its dynamical structure (Figs. 1 ¢
and g, also Fig. S1 a). At this stage, the system is sensitive to external stimuli but still reversible to the normal state
when appropriately interfered with, but a small change in the parameters of the system may suffice to drive the
system into collapse through bifurcation, which often implies a phase transition to the disease state. The disease
state represents a seriously deteriorated stage possibly with high resilience and robustness (Figs. 1 d and g, also Fig
S1 a), where the system usually finds it difficult to recover or return to the normal state even after treatment, which
contrasts with the pre-disease state. Therefore, it is crucial to detect the pre-disease state to prevent qualitative
deterioration and to further elucidate its molecular mechanism.

For many complex diseases, however, it is a difficult task to predict a pre-disease state because the state of the
system may change little before the bifurcation point or the critical transition is reached, namely, there may be
little difference between the normal and pre-disease states; note that a pre-disease state can be considered as a
limit of the normal state but a disease state is different from the normal state. This is also why diagnosis based on
traditional biomarkers or static measurements may fail to distinguish a pre-disease state from a normal state
(Fig. 1e). Another obstacle that hampers the detection of early-warning signals is the complexity of diseases,
which can involve thousands of genetic factors (e.g., SNPs and CNVs) and epigenetic factors (e.g., methylation
and acetylation). To overcome those problems, a general early-warning indicator was recently developed based on
a new model-free concept, ie., a dynamical subnetwork of biomarkers, or a dynamical network biomarker
(DNB)"', which appears only during a predisease state and satisfies three measurable conditions. A DNB can
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The DNB criterion can be taken as a biomarker, which keeps consistent for respective normal and pre-disease samples.
DNB is the leading network that can characterize pre-disease phenotype, for which traditional biomarkers failed.

Figure 1 | Schematics of disease progression and state-transition-based local network entropy: A schematic illustration of dynamical features for

disease progression from a normal state to a disease state through a pre-disease state. (a) Three states during progression of a disease. (b) The normal
state is a steady state, where the system generally has high resilience and robustness to perturbations. (c) The pre-disease state is defined as a limit of the
normal state and situated before the imminent phase transition point is reached. At this stage, the system is with low resilience and robustness even to
small perturbations but still reversible to the normal state when appropriately interfered. {z;, z,, z;} is the dominant group or the DNB. (d) The disease
state is the other steady state, at which the system is usually irreversible to the normal state due to its high resilience and robustness. (e) Traditional

biomarkers failed to distinguish the pre-disease samples from normal samples. (f) SNE (DNB score) is effective in distinguishing the pre-disease samples.
(g) The SNE is the conditional entropy of the previous state, which does not change significantly during the normal state but it drops sharply during the
pre-disease state. By contrast, the SNE converges to another steady value during a disease state. The SNE drops drastically whenever the system approaches
a critical transition point, so it can provide an effective early-warning signal for identifying the pre-disease state and the leading network that makes the

first move toward a disease state.

distinguish a pre-disease state from other states in any disease at least
fundamentally with dynamical nature (regardless of their differ-
ences) (Figs. 1 ¢, f and g) and it also has a solid theoretical basis
derived from bifurcation theory and center manifold theory'>". In
particular, DNBs have been proven theoretically to be the leading
biomolecular networks (or leading networks) in critical transitions,
which make the first move from a normal state to a disease state. In
other words, the leading network is the first subnetwork that breaks
down the limit of a normal state to move into a disease state, which
means that they are clearly related to the causal (or driving) genesina
disease network, in contrast to the differential gene expression that
results from the disease (as the consequence of the disease). There-
fore, identifying the leading network during a critical transition can
signal the emergence of a pre-disease state so as to make the early
diagnosis on the disease, and also help to elucidate the mechanism of
disease initiation and progression at the network level. As shown in

Fig. S1, a DNB is a dynamical signal to identify the pre-disease state,
rather than the disease state detected by the traditional static bio-
markers.

In general, the reliable identification of DNBs and pre-disease
stages from many thousands of genes and from many stages using
high throughput data is not easy to achieve with noisy data and a
small number of samples'*, which makes the identification of DNBs
and their critical stages inaccurate. Identifying DNBs that satisfy the
three conditions among genome-wide scale variables in high-
throughput datasets is also a computationally intense task. There-
fore, an effective computational method is required to reliably and
efficiently identify DNBs to accurately predict pre-disease states and
further elucidate the mechanism of disease deterioration. In this
study, we used center manifold theory as the basis to develop a novel
computational method for identifying the leading networks before
critical transitions in complex diseases in an efficient and accurate
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manner. To achieve this, we derived a new type of entropy, i.e., state-
transition-based local network entropy (SNE). The SNE is defined as
a state-transition-based Shannon entropy that is conditional on the
previous state of a local dynamical network in a Markov process,
which is also the entropy rate of the state change in a biomolecular
network, where each node represents a gene (or a protein, or a
chemical) and each edge represents a regulatory relation between
two genes, with the assumption that a Markov process governs the
dynamics of each node. Given a biomolecular network, e.g., a pro-
tein-protein interaction (PPI) network or a correlation network, we
can theoretically prove that the SNE is drastically reduced when the
system approaches a pre-disease state, whereas there is no significant
change in the SNE at normal and disease states. Thus, the SNE
provides a clear signal for detecting the critical transition and its
leading network (or DNB) (see Figs. 1 f and g, also Fig. S1). In
particular, only local information is required to evaluate the SNE
for a specific node, so we can design a very efficient algorithm that
avoids the processing of most of the noisy data, which reduces the
computational requirements and also improves the reliability and
accuracy. In addition, this is a model-free method that can be the-
oretically applied to any disease or biological system with sudden
transition events, while it also requires no parameter tuning due to
the nature of the SNE. From a dynamical viewpoint, we show that the
SNE can quantify the robustness of a system during the time evolu-
tion of disease progression, which can be applied directly to the
dynamical and structural analysis of network rewiring during disease
progression for many biomedical problems. The entire network can
also be naturally decomposed into four layers (i.e., a DNB core, a
DNB boundary, a non-DNB boundary, and a non-DNB core) based
on the topological structure of the leading network (see Fig. 2a),
which reveals the dynamical roles of genes (or proteins, or chemicals)
during disease development and progression. To demonstrate the
effectiveness and efficiency of the SNE, we applied our method to a
simulated dataset and two real disease (i.e., lung injury and liver
cancer) datasets, and we successfully identified the critical transitions
and the leading networks. The relevance of the identified leading
networks to the diseases was also validated by functional enrichment
analysis and by using related experimental data. Note that DNB or
the leading network in this paper is not for identifying the critical
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transition phenomenon but for detecting the state just before the
critical transition (i.e., a pre-disease state), and therefore, it is of great
importance for early diagnosis of complex diseases. Without con-
fusion in this paper, identifying the critical transition means iden-
tifying the state just before the critical transition.

Results

The dynamics of the progression of complex diseases is usually very
complicated before and after sudden deterioration, and it may not be
fully expressed even by using a very high-dimensional space. How-
ever, provided that a system is driven by some known or unknown
parameters approaching to a bifurcation point, a system can be gen-
erally guaranteed to be eventually constrained to a one- or two-
dimensional space (i.e., the center manifold), which can be expressed
in a very simple form for any dynamical system regardless of their
differences'’. This is the theoretical basis for developing a general
indicator that detects critical transitions and their leading networks
in this study.

State transitions in biomolecular networks. The network entropy
was originally proposed for the study of demographic stability in
population models'>'® and further extended to analyzing the topo-
logy and robustness of protein interaction networks'. Theoretically,
the network entropy was derived from the entropy rate'®, ie., a
conditional entropy, for measuring network robustness and stabi-
lity based on a random walk process among the nodes (e.g., genes or
proteins) of a network. However, the dynamics of a biological
network cannot generally be described simply by individual moves
from one gene to another via a random walk, because it is dominated
by changes in the system state governed by the dynamical network.
In this study, we define a general network entropy based on the state
transitions of a local network, rather than the special dynamics of a
random walk. This entropy is also a local network-based measure-
ment with state transition variables (not with the original state
variables), so it can be exploited to overcome computational diffi-
culties, such as the computational complexity, noisy data, and accu-
racy, which are encountered during high-throughput data processing.

First, we define the network state (or original variables) and the
transition states for a dynamical network in a Markov process. For an

Available local states
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Figure 2 | Outline of the SNE network and the state transitions of a local network. This outline shows the four types of nodes in a general network and the
stochastic Markov process of the state transitions between two time points ¢t and ¢ + 1 in a local network centered on node i. (a) The four types of nodes are

respectively in four layers. (b) The local network centered on node 7 with its 1 linked first-order neighbor nodes i, %, ..
point % (c) At the next time point ¢ + 1, there are 2" possible transition states {A;,A,, .
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..y Agmer } in this local network.
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n-node network, let Z(f) = (z,(¢), ..., z,(t)) represent the network
state at £, where z,(t) denotes the expression value of node (i.e., a gene
or protein) i. Then, x;(t) € {0, 1} is defined to measure whether or not
node i has a large change at the sampling time point ¢, ie., if
|zi(t) —z,(t—1)| is sufficiently large such as |z,(f) —z,(t—1)| > d,, then
x,(t) = 1, otherwise x,(t) = 0 (see Supplementary Information A for
detailed definition). Thus, X(f) = (x;(¢), ..., x,(t)) is the transition
state for the network at ¢.

Next, we define a local network structure that is centered on each
node, which is the basis for deriving the network entropy, i.e., the
SNE. We assume that node i has m linked first-order neighbor nodes
i1, ..., iy (see Fig. 2b), which form a local network centered on node i
with local transition state X(¢) = (x;,x;,, . . . ,x;, ) at t. Clearly, based
on the current state X'(f) = A, at time ¢, there is a total of 2™*!
possible state transitions (or possible transition states) X'(t+1),
next time point ¢ + 1 (see Supplementary Information B for details).
To simplify the notation, we omit i and denote X'(f) as X(f), while we
also denote the transition state simply as the state.

Based on the network structure, we can derive the Markov matrix
P = (p,,,), where p,,, describes the transition rate from state v to state
u as follows:

Puy(t) =Pr(X(t+1)=A,|X(t)=A,), (1)
where u, v € {1,2,...,2""} and > p,,(t) =1 (see Supplementary

Information A for detailed definition and derivation). Thus, we
derive the following stochastic Markov process for X(t):

(X(t i)}, = {X(O)X(E+1),. 0 X(E+i), ), (2)

with X(t + i) = A, u € {1,2, ..., 2"},

SNE and robustness. We assume a stationary Markov process for
each local network centered on node i with its m linked first-order
neighbor nodes iy, i, ..., iy, and we define the SNE at node i as

Hi(t)=— ZEV(t)Pu,V(t)logpu,V(t)a 3)

where nn(t)=(m(t),...,mm+1(t)) is stationary distribution that
satisfies > m,p,,=m,. We can easily prove that Hi(t) =
14

H(X(#)|X(t — 1)), i.e., it is a conditional entropy. Moreover, we can
prove (see'®"):

Hi(t) = Tli_l}olc%H(X(t),X(t—H),...,X(t+ ),  (4)

where H(X(t), X(t + 1), ..., X(t + T)) is the entropy of {X(¢), ..., X(t
+ T)}. In other words, H,(t) is actually an entropy rate. The detailed
derivation is given in Supplementary Information B.

Thus, for a network with n nodes, the average SNE at ¢ is given by

H)= 1 Hi(), (5)

A significant feature is that the SNE can be proven to be positively
correlated with the robustness or resilience of the network, which is
defined as its capacity to withstand random changes (See
Supplementary Information B for detailed descriptions). Thus, a
higher H(t) is correlated with a more robust local system. At the
critical transition, the system undergoes a qualitative structural
change with the lowest Hy(t) with Hi(tf) — 0. Thus, the SNE can
quantitatively measure the structural stability and robustness of
the system and detect the critical transition. It is worth noting that
the sharp decrease of network robustness coincides with the critical
decline of system resilience***' when the system approaches a tipping
point, a generic dynamical phenomenon known as “critical slowing
down”?>%,

Clearly, the SNE has two major differences from other entropy
definitions. (a) First, it is a state-transition-based entropy, i.e., it
depends on the state transitions of a dynamical network, rather than
the special dynamics of a random walk among nodes. (b) Second, it is
a local-network-based entropy, i.e., it depends on the local structure
of a dynamical network. Based on these two features, we can evaluate
the system robustness in an accurate (a) and efficient (b) manner,
even with noisy data and a small number of samples. We also adopt
the transition state variables in the SNE, rather than the original
variables, which characterize the main differences between normal
and pre-disease states.

Identifying critical transitions and their leading networks using
SNE. Next, we describe our main theoretical results related to the
identification of critical transitions and their leading networks
during disease progression using the SNE. Note that identifying a
critical transition in this paper means identifying the state (or early
signal) just before the critical transition, rather than the critical
transition phenomenon.

It can be proved that there is a group of molecules (i.e., genes or
proteins), known as the dominant group'’, that satisfy all of the
following conditions in terms of state transition variables (see the
proof in Theorem 2 in Supplementary Information A) for any two
samples (i.e., at time ¢ and time ¢ + T).

1. When the system is in the normal state, the following result
holds.

e For any two nodes i and j (including i = j) in the network,
x{(t+T) is statistically independent of x;(%).

2. When the system approaches a critical transition point, the fol-
lowing result holds.

e Ifbothiand jarein the dominant group or the DNB, thereis a
strong correlation between x;(t + T) and x;(t);

e Ifneitherinorj (including i = j) is in the dominant group, x;(¢
+ T) is statistically independent of x;(t).

The network containing this dominant group is known as the
DNB" or the leading network of the critical transition, which makes
the first move from the normal state toward the disease state during
the critical transition.

Based on the DNB, we can decompose all of the genes in a network
into four layers (see Fig. 2a), i.e., DNB core genes, DNB boundary
genes, non-DNB boundary genes, and non-DNB core genes.
Calculating the SNE using Eq.(3), we can show that the following
results hold when a system approaches a critical transition (see
Methods and Supplementary Information C for detailed analysis):

e for DNB core genes (type-1, red nodes in Fig. 2a), the SNE dras-
tically decreases;

e for DNB boundary genes (type-2, orange nodes in Fig. 2a), the
SNE decreases;

e for non-DNB boundary genes (type-3, blue nodes in Fig. 2a), the
SNE decreases;

e for non-DNB core genes (type-4, purple nodes in Fig. 2a), the
SNE remains almost constant.

Note that the DNB or the leading network is composed of DNB
core and DNB boundary genes, whereas non-DNB boundary genes
are first-order neighbors of the DNB. The DNB core, DNB boundary,
and non-DNB boundary genes form an SNE network, although most
genes among the whole biological system are generally expected to be
non-DNB core genes.

Based on the above results, although the average SNE (or the
summed SNE) of the entire network decreases as the system
approaches a critical transition, it is not an efficient strategy for
identifying the critical transition and the leading network because

| 2:813 | DOI: 10.1038/5rep00813

4



of noisy data and measurement errors when using all of the genes. To
obtain a clear early-warning signal, we can intentionally select those
genes with the SNEs that decrease or drastically decrease, and then
calculate the average SNE using Eq.(5). In this manner, we can reduce
the effects of noise and data errors (see Supplementary Information
D), and greatly improve the sensitivity for detecting the early warn-
ing signal. Close to the critical transition, the average SNE of these
genes will decrease drastically, thereby providing a clear early warn-
ing signal. It should be noted that genes with the decreasing SNEs are
DNB genes (DNB core genes and DNB boundary genes) and the
first-order neighbors of the DNB (non-DNB boundary genes), which
form an SNE network that covers the leading network (see Fig. 2a).
The SNE network provides sufficient information for studying the
leading network, but further clustering of these genes based on the
SNEs and the three conditions of the DNB can identify accurate gene
sets for the leading network or the DNB-core network (see
Supplementary Information F). To summarize the above theoretical
result on the early warning signal by SNE, we have the following
statement.

e Drastic decrease of the average SNE is the early warning signal of
the critical transition.

In other words, the drastic decrease of the average SNE on the
DNB implies the emergence of the critical transition or the pre-
disease state. Finally, it should be noted that in this paper we aim
to identify the leading network that first moves into the disease state
driven by known or unknown factors.

Numerical simulation. To demonstrate the effectiveness of the SNE,
we used a six-node gene regulatory network (shown in Fig. 3a) to
show the SNE for each gene and the average SNE. Detailed
descriptions of the network represented by a set of stochastic
differential equations are provided in Supporting Information E,
and numerical simulations are provided in Fig. 3. The numerical
simulation shows that a drastic change (or sharp decrease) in the
SNE indicates the emergence of a critical transition, which validates
that the SNE can serve as a general indicator by detecting an abrupt
catastrophic change in the system and the leading network (z;, 25, z3).

Application to complex diseases. We further analyzed the predic-
tion of two complex diseases using high-throughput experimental
data, ie., microarray data for HCV-induced dysplasia and
hepatocellular carcinoma (HCC)*, and lung injury after carbonyl
chloride inhalation exposure”. Figure 4 shows the identified
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Figure 3 | Numerical validation of theoretical results. (a) A six-gene model with the DNB or the leading network (z;, z,, z3), where z, is the DNB core
gene and (z,, z;) are the DNB boundary genes. z, is the non-DNB boundary or the first-order neighbor of the DNB, and (zs, z5) are the non-DNB core
genes. The network model and detailed background are given in Supporting Information E. The critical transition is at parameter P = 0 in the theoretical
model, where the system undergoes a critical transition driven by z;, z, and z;. (b)—(d) When the system approaches the critical transition (P = 0), z;, z,,
and z; (DNB) become closely correlated with increasingly strong deviations from (b) P = 0.4 (uncorrelated in the normal state) to (c) P = 0.01 (strongly
correlated in the pre-disease state), whereas z,, zs5, and zs (non-DNB) remain statistically independent of each other from P = 0.4 to P = 0.01 (d), where
Az(t) = z(t) — z{t — 1). (e) The SNE for each gene versus P as the system approaches the critical transition, where the SNEs of z;, z, and z; decrease
drastically. (f) The average SNE curve shows the critical tendency of the network near the critical transition, which provides a general indicator for

detecting the imminent transition and the leading network.
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pre-transition states and the leading networks just before the
critical deteriorations by our SNE-based method, which agreed
with the observed biological phenotypes described in the ori-
ginal datasets™*.

Figures 4a-b show the SNE-based prediction results, ie., the
minima of the average SNEs indicate the critical transition points
(i.e., sampling time point 4 for HCC and sampling time point 4 for
lung injury). For HCC, Figs. 4 c-f show the dynamics of the differ-
ence SNE for the whole human molecular network and the leading
network (or DNB) with their functional interactions (protein-pro-
tein interactions and TF-target regulations), which clearly shows that
the sudden deterioration was near the “very early HCC” stage at
which the average SNE of the identified leading network sharply
decreases to the minimum (also see the whole network for other
periods in Supplementary Information Fig. S9). Clearly, the mem-
bers of the DNB (or the leading network) behaved in a significantly
different way from other genes, but only near the “very early HCC”
stage (e), which indicates imminent deterioration (e.g., metastasis).
Interestingly, members of the leading network behaved similarly to
other genes after the system moved to the deteriorated state, i.e., the

HCC
a .
w E
Z .
7 .
[ H
()] '
9 '
] .
<1
9 2 3 4 5 6 7
Sampling time point

early HCC stage (f). Thus, the leading network is not a disease bio-
marker but a pre-disease (or pre-deterioration) biomarker because it
only appeared during the “pre-disease” stage. Figures 4 g-j show the
dynamics of the difference SNE in the whole mouse molecular
network during the evolution of lung injury, which clearly shows
the significance of the leading network (DNB) in terms of expression
variations and network structures near the critical state (8 h), i.e., the
average SNE of the identified leading network sharply decreases to
the minimum at 8 h (also see the whole network for other periods in
Supplementary Information Fig. S10). Prior to the disease state, there
was no significant differences between the DNB (the leading net-
work) members and other genes during all periods (g and h), with
the exception of 8 h when the DNB members behaved very differ-
ently in terms of their SNEs, i.e., they decreased sharply. However,
after the system was driven into the disease state (j), interestingly the
DNB members appeared to behave in a manner similar to other
genes again. This was consistent with our previous results' and
the observed biological phenotypes (see the experimental descrip-
tions provided in Supplementary Information F). The results in the
two diseases show the effectiveness of our method in detecting the
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[
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Figure 4 | Detecting the critical transitions and leading networks for two complex diseases. Detection of critical transitions in diseases using two high-
throughput experimental datasets for (a) HCC with the whole human molecular network (2291 genes and 6134 edges) and the identified leading network
(167 genes), (b) lung injury after carbonyl chloride inhalation exposure with the whole mouse molecular network (1319 genes and 3637 edges) and the
identified leading network (178 genes). (c)—(f) show the dynamical evolution of the difference SNE for the PPI network of HCC, where the leading
network is indicated. (c) A low-grade dysplastic stage. (d) A high-grade dysplastic stage. (e) A very-early HCC stage. (f) An early HCC stage. (g)—(j) show
the dynamical evolution of the difference SNE for the PPI network of acute lung injury, where the leading network is indicated. (g) 0.5 h. (h) 4 h. (i) 8 h.
(j) 12 h. Both cases detected strong and significant early-warning signals before the diseases were critically deteriorated, i.e., the SNEs of the identified
leading networks decreased drastically at the critical transition points for HCC (the very-early HCC stage) and lung injury (8 h), respectively. The
heatmaps of the SNEs for the selected genes in the two diseases are provided in Supplementary Information Fig. S11.
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early-signal of critical transitions and their leading networks on the
basis of small samples.

The detailed algorithm and data description are provided in
Supplementary Information E and F, respectively. To explore the
biological implication of the leading network where the SNEs
decrease sharply, we conducted the functional analysis for these
identified genes (or proteins) in the two datasets respectively (See
Methods and Supplementary Information H). In particular, we used
HCC liver cancer as an concrete example to explain the calculation
procedure in details (see Supplementary Information F).

To verify the biological significance of the identified leading net-
work, we also carried out bootstrap and cross validation analysis of
the two diseases individually (described in Supplementary Infor-
mation G). For phosgene inhalation lung injury (acute lung injury),
and HCV-induced dysplasia and HCC liver cancer, some enriched
gene ontology (GO) functions and dysfunctional pathways under-
lying the leading networks are listed in Table 1. Some of the identified
members of the leading network are also shown in Table 1 (see
Supplementary Table ‘Identified extended leading network’ for com-
plete lists). The detailed descriptions are presented in Supplementary
Information H.

The functional analysis shows that the members of the leading
network are highly relevant to the corresponding complex diseases,
which validates the effectiveness of our method. In the HCC study,

we found that many genes included in the identified leading network
were consistent with the response to HCV infection in vivo, especially
the activation of the immune system and the dysfunctions associated
with basic cell metabolism of hosts***%. The results of GO and path-
way enrichment analyses are provided in Supplementary Table
‘KEGG enrichment analysis’. These results show that the genes of
the leading network played significantly important roles during dis-
ease development. In the enrichment analysis, the most enriched
functions indicate its significant relationship with disease evolution.
At the pathway level, the pathways in cancer and Hepatitis C appear
to be significant, which provides clear evidence that most of the genes
selected by the SNE are directly related to HCC. Some enriched
pathways are related to the dysfunctions in basic cell metabolism,
which implies the reproduction and release of HCV. Some pathways
show the common characteristics of cancer, especially the signaling
pathways involved in cell growth, such as transcriptional misregula-
tion in cancer, purine metabolism, the Wnt signaling pathway, and
the TGF-beta signaling pathway. These dysfunctional pathways indi-
cate the cell status when HCV invades the host cells. HCV readily
uses the host resources to replicate its genetic material (RNA) for
viral replication. At the GO function level, some genes were also
related to important biological processes beyond the pathways men-
tioned above. For example, CLU, ILIB, and TNF lead to an inflam-
matory response”’. The regulations of antiapoptosis and growth are

Table 1 | Functional enrichment of GO biological processes and KEGG pathway enrichment andlysis in the identified leading networks of
two diseases. Parts of the genes of the leading networks are shown in this table (see Supplementary Table ‘Identified extended leading
network’ and Supplementary Information H for complete lists). Note that the identified leading networks are in the respective pre-disease
states, rather than in the disease states
Disease Leading network GO Term P-value Description
HCV-induced HCC {POLRIE; DRD5; SMAD9; CLU; 0051254  5.60E-22  positive regulation of RNA metabolic process
AR; TCERG1; POLRIA; PPARG; 0031328  2.70E21  positive regulation of cellular biosynthetic process
STAT1; SNCA; E2F5; JPH2; 0042127 8.70E-15  regulation of cell proliferation
FGF11; EEF1D; ADSSLT; 0042981 8.80E-14  regulation of apoptosis
CYP2B6; XDH; GYS2; 0051049 3.40E-05  regulation of transport
FGF4; MAPK10; ... } 0002252 1.30E-04  immune effector process
0030217 1.30E-04 T cell differentiation
0009615 1.50E-04  response to virus
0055088 1.80E-04  lipid homeostasis
0043923  2.50E-04  positive regulation by host of viral franscription
Phosgene-induced {JUN; NOTCH2; GPX2; MYC; 0042221 4.30E24  response to chemical stimulus
Lung Injury HMOX1; CDO1; PTGS2; 0042981 7.90E-14  regulation of apoptosis
CCL2; PLA2G7; MYDS8S; 0045935 1.90E-11  positive regulation of nucleobase, nucleoside, nucleotide and
GCLC; SMADT; ARG2; nucleic acid metabolic process
CTPS; ASN; IL1B; 0055114 7.70E-09  oxidation reduction
ALDH4A1; ... } 0019538 1.40E-08  protein metabolic process
0016310  4.20E-08  phosphorylation
0006954  4.60E08 inflammatory response
0009611 6.10E-08  response to wounding
0009064  6.20E-05  glutamine family amino acid metabolic process
0006629  9.50E-05 lipid metabolic process
HCV-induced HCC Phosgene-induced Lung Injury
Pathway ID Pathway ID
(KEGG) Pathway Term P-value (KEGG) Pathway Term P-value
05200 Pathways in cancer 3.65E-17 05200 Pathways in cancer 8.16E-05
04310 Wht signaling pathway 2.61E06 04725 Cholinergic synapse 1.03E-04
05202 Transcriptional misregulation in cancer  9.98E-06 04912 Chemokine signaling pathway 5.16E-04
04350 TGF-beta signaling pathway 7.75E05 04062 GnRH signaling pathway 5.79E04
05160 Hepatitis C 2.25E04 04010 MAPK signaling pathway 1.79E03
04620 Toll-like receptor signaling pathway ~ 6.33E-04 04723 Retrograde endocannabinoid 5.80E-03
signaling
00230 Purine metabolism 2.89E-03 04310 Wht signaling pathway 2.20E-02
04012 ErbB signaling pathway 2.99E-02 04350 TGF-beta signaling pathway 2.59E02
04912 GnRH signaling pathway 3.57E02 04540 Gap junction 3.22E02
04010 MAPK signaling pathway 3.70E-02 00480 Glutathione metabolism 3.49E-02

| 2:813 | DOI: 10.1038/5rep00813



also dysfunctional®®. However, in order to reproduce and release, the
functional interruption of RNA biosynthetic processes and gene
expression are enriched in the genes CD81, POLRIA, POLRIE,
TCERGI, and AR, while transport activities are enriched in DRD2,
PPARG, JPH2, and SNCA. They are often used for releasing new
viruses after their reproduction. We also compared the members
of the identified leading network with those reported in a previous
study?®. We validated that 5 out of the 167 genes (hypergeometric
test, p-value < 0.02) had a close correspondence with HCC induced
by HCV infection during the dysplastic stage and the very early stage
of HCC. A detailed functional analysis of lung injury is given in
Supplementary Information H.

Discussion

In this study, we proposed a new method with the SNE for identifying
critical transitions and their leading networks during disease pro-
gression. From the viewpoints of both theoretical analysis and
numerical computation, we demonstrated that the SNE can be used
to characterize the dynamical behavior of a system and provide a
general indicator for the detection of the DNB when a system reaches
a critical transition point (see Fig. 1 and Fig. 3).

By only choosing the genes with SNEs that decreased drastically,
we identified the leading network during a critical transition that
made the first move toward a disease state, or a deteriorated state
from a nonlinear dynamics perspective. The identification of the
leading network using a small number of samples is vital for the early
diagnosis of diseases and elucidating the essential mechanisms of
disease deterioration at the network level. The leading networks
are also related to causal genes or networks, so they can provide a
new type of biomarkers for the detection of pre-disease states in a
dynamical manner (Figs. 1 c and g), which contrasts with traditional
gene- or protein-based biomarkers that evaluate systems in a gen-
erally static manner. It is notable that SNE networks satisfy the three
conditions of DNBs in the vicinity of a critical point (see reference 11
and their derivation in Supplementary Information B), so these
results are compatible with the DNB theory"'.

The advantages of the SNE are obvious. First, the SNE method is
efficient because its calculation requires only local information for a
local network centered on a specific node. By focusing on the local
structure and listing all of the possible state transitions for each node
in a network, we can obtain its SNE. Second, we ignore nodes where
the SNE increases or changes little, which facilitates a significant
reduction in the effect of noise, data errors, and the computational
complexity. Third, the SNE can detect the early-signal of the critical
transition and identify its leading network, which facilitates the elu-
cidation of the essential mechanisms during disease development
and progression at the network level. Compared with correlation-
based methods that can only describe linear dependency relationship
between any two nodes, our state-transition based SNE describes
nonlinear relationship among nodes and the collective behavioral
dynamics of a group of nodes. Fourth, the SNE algorithm is simple
to implement and it may be viewed as a DNB-free method, although
the theoretical background of the SNE is based on DNB. Finally, the
SNE can be also considered as a measurement of resilience and
robustness for the corresponding local network, which can be
applied directly to the dynamical and structural analysis of network
rewiring during disease progression in many biomedical problems.
We applied our method to two diseases, i.e., lung injury and liver
cancer, which demonstrated its effectiveness and efficiency for iden-
tifying critical transitions and their leading networks.

One potential application of DNB in medicine is the early dia-
gnosis for complex diseases. As demonstrated in our previous work
and also this paper, it is difficult to distinguish the normal and pre-
disease states by one sample (e.g., by only one health examination in
one year) although it is possible to detect the disease state. But with a
number of the consecutive samples (e.g., with several health

examinations in one year), we can clearly detect the pre-disease state
before the drastic deterioration, thus open a new way to predictive
and preventive medicine (and even personalized medicine). Another
potential application is to detect the critical transition of a specific
biological process (e.g., cell differentiation or cell proliferation pro-
cess) in biology since our theoretical result can be essentially applied
to identify the early-state before any drastic change of a biological
system (or state change).

Methods

Identifying critical transitions and their leading networks using SNE. Dynamical

networks. The theoretical results were derived by considering the following equations
with noise perturbations near the equilibrium Z:

Z(t+1)=f(Z(t); P). (6)

We assume that {A;(P), ..., A,(P)} are the eigenvalues of the Jacobian matrix of fat Z
with each |A;| between 0 and 1. Among the eigenvalues, the largest in terms of its
modulus, say A, approaches 1 when parameter P— P.. This eigenvalue characterizes
the system’s rate of change around a fixed point and it is known as the dominant
eigenvalue. In the overall network, nodes that are influenced directly by the dominant
eigenvalue A, are known as the dominant group members, the leading network, or the
DNB (see Supplementary Information B), i.e., a group of nodes that make the first
move toward the disease state thereby indicating the approach of a sudden
deterioration. Thus, in the network shown in Fig. 2a, the nodes or genes can be
categorized into four groups based on the topological structure of the DNB, i.e., DNB
core genes, DNB boundary genes, non-DNB boundary genes, and non-DNB core
genes.

Dynamical evolution of state transitions. We consider the linearized equations of

of(2:P)

Py

Eq.(6) with the Jacobian matrix

which has different real eigenvalues

7=2

(My(P), ..., My(P))*. After introducing new variables Y (k) = (y,(k), ..., y,(k)) and a
transformation matrix S, i.e., AY (t) = S7'(Z(t)—Z(t — 1)) (Supplementary
Information A2), we have

AY(t+1)=A(P)AY(¢) +{(2), (7)

where A(P) is the diagonalized matrix of

of(z; P
(f(@z ) . {(k) = (1 (k) .., Lu(k)) are

Gaussian noises with zero means and covariances r;; = Cov({;, {;), A(P) = diag(A,(P),
...» My(P)), and y; is the eigenvector of the dominant eigenvalue A;.
For any integer T > 0, it holds that
Ay (t+T)=Ap (8) + L (t+T—1) = (t—1)]
Ay;i(t+T)=¢(t), fori=23,...,n

. )

where ¢;(t) is a small white noise (see Supplementary Information A2).

Therefore, given that AZ(t) = SAY (t), we can use Eq.(8) to derive the main results
of the dynamical evolution for the original variable AZ and the local transition state X
(also see the derivations in Supplementary Information A). The detailed derivations
of the dynamics for the four types of nodes at different stages are presented in
Supplementary Information C.

Data preprocessing and functional analysis. Data processing. Two gene expression
profiling datasets were downloaded from the NCBI GEO database (ID: GSE6764,
GSE2565) (www.ncbi.nlm.nih.gov/geo). In these datasets, probe sets without
corresponding gene symbols were not considered during our analysis. The expression
values of probe sets mapped to the same gene were averaged.

In each disease dataset, the expression profiling information was mapped to the
integrated networks individually. For each species, we downloaded the biomolecular
interaction networks from various databases, including BioGrid (www.thebiogri-
d.org), TRED (www.rulai.cshl.edu/cgi-bin/TRED/), KEGG (www.genome.jp/kegg),
and HPRD (www.hprd.org). First, the available functional linkage information for
Mus musculus and Homo sapiens was downloaded from these databases and com-
bined. After removing any redundancy, we obtained 65625 linkages in 11451 human
proteins/genes and 37950 linkages in 6683 mouse proteins/genes. Next, the genes
evaluated in these microarray datasets were mapped individually to these integrated
functional linkage networks. Furthermore, the leading networks (LNs) for two dis-
eases were identified using the proposed SNE algorithm. In total, there were 167
proteins including four transcriptional factors (TFs) in the leading network identified
for HCC, and 182 proteins including 16 TFs in the leading network identified for
acute lung injury. These networks were then visualized using Cytoscape (www.cy-
toscape.org).

Functional analysis of the leading networks. In the high throughput gene expression
profiling datasets for the two diseases, i.e., HCC induced by HCV infection and acute
lung injury induced by phosgene gas, we detected the early-warning signals as well as
the leading networks using our SNE algorithm and the corresponding protein
interaction networks.
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It is reported that TFs with high differential expression of their target genes might
be causal factors. Bearing this in mind, we added TFs if their targets were present in
the leading networks, as well as proteins or genes adjacent to any members of the
leading networks. We treated them as the extended leading networks. In
Supplementary Information H, we describe the data processing method in detail and
present the results of the functional analysis (g:profiler: http://biit.cs.ut.ee/gprofiler/
and NOA: http://app.aporc.org/NOA/)***" of these leading networks for two complex
diseases.

Based on the functional analysis, we found close relationship between the members
of the leading networks and complex diseases. Several genes that had been verified in
other published reports were also identified. Newly identified genes can be treated as
novel biomarker candidates.

We performed a functional analysis of genes in the leading networks identified by
the SNE in HCC and the acute lung injury. We also applied enriched pathways in the
leading networks and the results were validated by bootstrap and cross validation
analysis (See Supplementary Information G for details). Functional enrichment
showed that the leading networks have significantly strong relationship with the
corresponding diseases. Supplementary Table ‘KEGG Enrichment analysis’ shows
the results for the two diseases (see Supplementary Information H).
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