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Abstract

Genetic clustering algorithms require a certain amount of data to produce informative results. In
the common situation that individuals are sampled at several locations, we show how sample
group information can be used to achieve better results when the amount of data is limited. New
models are developed for the sructure program, both for the cases of admixture and no admixture.
These models work by modifying the prior distribution for each individual’s population
assignment. The new prior distributions allow the proportion of individuals assigned to a
particular cluster to vary by location. The models are tested on simulated data, and illustrated
using microsatellite data from the CEPH Human Genome Diversity Panel. We demonstrate that
the new models allow structure to be detected at lower levels of divergence, or with less data, than
the original srructure models or principal components methods, and that they are not biased towards
detecting structure when it is not present. These models are implemented in a new version of
structure Which is freely available online at http://pritch.bsd.uchicago.edu/structure.html.
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Introduction

Clustering algorithms for genetic data have become an important tool in a number of fields
including conservation and population genetics (Dawson & Belkhir 2001; Corander et al.
2003; Purcell & Sham 2004; Corander & Marttinen 2006;Francois et al. 2006; Patterson et
al. 2006).Such methods are often used to understand the structure of populations, as well as
to identify migrant or admixed individuals. They are also used to detect cryptic population
structure, as undetected structure may lead to false positives when searching for disease-
associated markers in case-control studies.
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structure 1S @ Bayesian, model-based algorithm that is widely used for clustering genetic data
(Pritchard et al. 2000; Falush er al. 2003; Falush et al. 2007). Given the number of clusters
(K) and assuming Hardy—Weinberg and linkage equilibrium within clusters, srrucrure
estimates allele frequencies in each cluster and population memberships for every
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individual. In the simplest, ‘no-admixture’ model, it assumes that each individual belongs to
a single cluster, whereas in the more general ‘admixture model’, it estimates admixture
proportions for each individual. It uses Markov chain Monte Carlo (MCMC) to integrate
over the parameter space and make cluster assignments. Although the value of K'must be
provided to the algorithm, a heuristic method for selecting K'is often used, which is based
on comparing penalized log likelihoods over independent runs with differing numbers of
clusters.

When the data contain relatively little information about population structure, srructure
sometimes produces results that are difficult to interpret. For example, the samples may have
come from several distinct populations, and perhaps Fst values calculated between the
samples from some pairs of the labelled populations are significantly different from zero,
and yet the results indicate no evidence of structure. Or, the population assignments made by
the algorithm may hint that there is indeed structure, and yet the highest penalized log
likelihood is provided by the model with just one cluster. When such situations arise, it is
unclear whether one should conclude that the data are homogeneous after all, or that the
amount of data collected is insufficient to make a convincing case for structure.

Although such results may be discouraging, it is worth noting that in a sense, structure a2ims to
solve a rather difficult problem. There is an enormous number of ways that Aindividuals
can be partitioned into K populations. The basic srrucrure models assume that all partitions of
the NVindividuals into K populations are equally likely, a priori. This means that any
particular clustering solution is highly unlikely, a priori, and it takes a considerable amount
of statistical evidence to provide strong support for any particular partition. This explains
why there can be data sets with significant F5t values between samples of individuals
collected at different locations, and yet srructure does not provide a clear indication of
population structure.

In this paper, we extend the basic models to allow sucrure to make use of information about
sampling locations, when the data indicate that this information would be helpful. In effect,
we place much more prior weight on clustering outcomes that are correlated with the
sampling locations. The new models allow much better performance on some data sets
where there are too few loci or individuals, or not enough divergence, for the standard
structure Models to perform well. Our approach could also be used in settings where
individuals can be classified into discrete groups on the basis of a phenotypic characteristic.
The new models have the desirable properties that (i) they do not tend to find structure when
none is present; (ii) they are able to ignore the sampling information when the ancestry of
individuals is uncorrelated with sampling locations; and (iii) the old and new models give
essentially the same answers when the signal of population structure is very strong. Hence,
we recommend using the new models in most situations where the amount of available data
is limited, especially when the standard srrucrure models do not provide a clear signal of
structure.

The idea of using sampling locations to help infer population structure has also been
considered elsewhere. One approach was taken by Corander et a/. (2003), and implemented
in the program saes. ears allows the user to pre-specify a set of sample groups; all individuals
in the same sample group are assumed to have the same ancestry. The authors have shown
that the use of sample group information can greatly improve power to detect structure when
the amount of data is limited (Corander ef a/. 2003; Corander & Marttinen 2006). Once the
allele frequencies are estimated, migrants and admixture events can be detected in an
additional step that does not take the sampling groups into account. By contrast, the methods
that we develop here allow for a more flexible relationship between sample groups and
ancestry, allowing for the possibility that sample group information might be partially (or
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even not at all) informative about genetic population structure, and providing simultaneous
estimation of allele frequencies and ancestry.

A second type of approach to using location information makes use of spatially explicit
models. For example, Wasser et al. (2004) used elephant samples from known locations
across Africa to estimate the geographical origin of poached ivory. Their method,
implemented in scar, assumes that allele frequencies vary smoothly across the region of
study. Another type of approach has been implemented in the program ceneLano (Francois et
al. 2006; Guillot et a/. 2008), and in a recent version of ears (Corander et al. 2008). The
methodologies of the two programs are somewhat different, but they both use a coloured
tessellation to model the distribution of the population clusters across space. These spatially
explicit methods differ from the models discussed here in that we do not consider the
specific geographical coordinates for each individual, but instead simply group together
individuals collected at the same sampling location. This allows us to make fewer
assumptions about the geographical structure of populations, while still offering improved
performance in the common scenario that individuals are sampled at a modest number of
distinct locations.

Our new methods are also substantially different from the 'Model with prior population
information’ introduced in the original structure paper (Pritchard et a/. 2000). That earlier
model was designed for the situation in which there is both strong evidence of population
structure and in which the sampling locations correspond almost exactly to the inferred
clusters. That model allows a user to test whether a small number of individuals might be
migrants from a different location than where they were sampled and is only useful for
highly informative data. In contrast, the new models presented in this paper help to provide
useful inference in settings where the data are not highly informative, and in this case it will
usually not be possible to identify migrants with any confidence.

We present both a no-admixture model and an admixture model that allow the individuals'
sampling locations to inform cluster assignments. In order to understand how these models
work, it is useful first to review the original model. We provide a brief description here, and
Table 1 provides a brief summary of the key model parameters. For the complete details, see
Pritchard et a/. (2000) and Falushet al. (2003).

Overview of the srrucrure algorithm

Consider a data set consisting of genotypes for AVindividuals at L loci. We assume that the
sampled individuals have ancestry in K discrete clusters, where the clusters correspond to
unobserved populations. Kis fixed by the user. Each cluster is characterized by a set of
allele frequencies at each locus. The three-dimensional vector P contains the allele
frequencies in each cluster for each allele at every locus; the allele frequencies are typically
unknown in advance. In the no-admixture model, the algorithm assigns each individual to
one of the K clusters. The vector Z records these cluster assignments. In the admixture
model, each individual is allowed to have partial ancestry in each of the K clusters. The
vector @ describes the proportion of each sampled individual's genome that comes from
each cluster. As detailed in Table 1, we use the convention that elements within the vectors
P, Qand Z are indexed by lower-case p’, “g’, and “z’with appropriate subscripts. The
likelihood of an individual's genotype is determined as the roduct of the relevant frequencies
of the individual's alleles across all loci (the loci are assumed to be independent given
cluster memberships). Our goal is to estimate ~, Qand Z from the data.
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structure USES MCMC to sample from the posterior distribution of the parameters £, Q, and Z.
To estimate the appropriate number of clusters (K), the algorithm is usually run many times
independently, varying the value for K. Although there is some debate as to the best method
for choosing K (e.g. Evanno et al. 2005), here we use the method suggested in the original
structure Paper, which involves comparing mean log likelihoods penalized by one-half of
their variance (Pritchard et a/. 2000). Although a model of linked loci has been developed
(Falush et al. 2003), the methods in this paper are most useful when there is a scarcity of
data. We assume that when only a small number of loci are genotyped, they are likely to be
unlinked, and we will not address the linkage model in this paper.

No-admixture model with sample group information

In the original version of srructure, an individual is & prioriassumed to be equally likely to
come from any of the K clusters. In the no-admixture model, the prior probability that
individual /comes from population & (that is, z;= ) is simply given by:
1
PI‘(Z,':/()ZE.

The idea, then, is to modify this prior to take sampling locations into account. We do this by
saying that the probability that an individual is assigned to each cluster may vary among the
locations:

Pr(zi=kly)=vyi,.

Here -y is the prior probability that an individual from location | will be assigned to cluster
k, and /;denotes the location where individual /was sampled. The -y values are estimated
from the data, and these parameterize the extent to which each sampling location is
informative about ancestry. If the -y are all ~1/K; then the location information is relatively
uninformative, and this model is similar to the original srrucrure model. In contrast if, for each
location, one value of -y is estimated to be ~1 and the rest ~0, then the location information
will strongly influence the estimated ancestry.

Therefore, while the -y , might help us to improve inference, it is important that they do not
overstate the amount of information contained in the location information. To achieve this,
we place the following prior structure on -y:

v1. ~ Dirichlet(nr, a7, . . .1 1),

where

r ~uniform (0, 7y, ),

and

n ~ Dirichlet(1, ... 1).

Here, 1 is a vector of positive real numbers that, roughly speaking, estimates the overall
proportion of individuals from each of the K clusters in the entire data set. Then, r
parameterizes the extent to which the ancestry proportions at individual locations can
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deviate from the overall proportions. fyax is an upper bound for r, preset by the user. If ris
large (>>1), then all the locations have essentially the same prior ancestry proportions (i.e.
approximately equal to ny). In contrast, if ris ~1 or smaller, then the values of -y, may vary
substantially across locations, implying that the location data are informative about ancestry.
These priors are chosen so that if either there is no evidence for population structure, or the
locations are uncorrelated with ancestry, then rwill tend to be large, and we will not be
misled by the location information.

For the analyses presented here, we set fyax = 1000. This choice of fyax puts considerable
prior mass on large values of r, corresponding to the situation where the locations are
uninformative. In some circumstances (e.g. with very small data sets, and good prior
information that the locations are likely to be informative), a smaller value of ryax would
probably be preferable. We also found that the algorithm converged best if we started rat a
small value (rinT = 1 in our simulations). Appendix | gives details about the MCMC
updates for the parameters in this model.

Admixture model with sample group information

The new admixture model works similarly, by modifying the prior distribution for Q. In the
original version of strucrure, the prior distribution for g;, the ancestry of individual / is given
by a Dirichlet distribution with parameters ay,... ,ak. Usually, the a parameters are set
equal to each other (a: =a;=ay=... = ag), and are estimated during the MCMC. Small
values of a (i.e. near 0) indicate that most individuals have little admixture, whereas large
values indicate that most individuals have substantial ancestry from multiple clusters.

In order to modify the prior for Q, we now infer a different vector of a's for each location.
This is similar in spirit to the new no-admixture model, in that it allows the distribution of
cluster assignments to vary by location. If individual /comes from location 1, then:

2emDirichlet( a1, ..., ay).

As for the no-admixture model, it is important to prevent the model from over-fitting the
location data when the locations are not truly informative. For this reason, we place the
following prior structure on the a values, which has the effect of pulling them towards a set
of global values unless the locations are genuinely informative. That is, we define a set of
global a values:

(&

a;”" ~uniform(0, ),

where a§g> denotes the global value of a for the h cluster. Then the local a values for the

£h location are distributed as where

g ~ gamma(r*al(.g), 1/r),

2emuniform( 0, r . ).

In this model, the global values, a(9, can be thought of as estimating the overall distribution
of ancestry. Each is (roughly) proportional to the overall amount of ancestry in cluster 7. As
in the standard srrucrure model, the mean of a.(9) measures the amount of admixture. The
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distribution of the local a values is constructed so that each a/;has mean a(9) and variance

argg)/r. Hence, large values of rimply that the local values of a.j;are very similar to the
global values, and the location information has little impact on the model. Conversely, small
values of rallow the local values of a jto differ substantially from the global values,
implying that the location information is potentially very informative. As in the no-
admixture model, the simulations presented here used ryyax = 1000, although again we note
that smaller values would be appropriate for data sets with strong prior reason to expect
structure.

without admixture

Data were simulated with in-house software using a model of correlated allele frequencies
(Nicholson et al. 2002) with either two or five populations. It was assumed that each
population corresponds perfectly to a sampling location. All simulated data sets were
composed of 100 biallelic loci, to model single nucleotide polymorphisms (SNPs). Each
individual had an equal probability of being assigned to each of the populations, and the data
sets had 100 and 250 diploid individuals for two and five populations, respectively. F5T was
varied in intervals of 0.005, with 50 independent repetitions for each value of Egt. Allele
frequencies Ay for the root population were simulated from a beta distribution with
parameters a = 0.8, p = 0.8. With two populations, the root population was used as
population 1, and otherwise a star-like phylogeny of populations was assumed. The allele
frequencies for non-root populations were simulated as beta random variables with
parameters a = pr(1-Fs1)/ FsT, B=(1-pR)(1-FsT)/ FsT, @S suggested by Balding & Nichols
(1995).

with admixture

Data were simulated using a model of independent allele frequencies for K= 3, with 100
individuals and a varying number of loci. Each individual had an equal chance of being
sampled from each of four locations. The admixture proportions for an individual were
drawn from Dirichlet distributions with parameters (10, 0.5, 0.5), (0.5, 10, 0.5), (0.5, 0.5,10),
(0.5,0.5, 0.5) for locations 1, 2, 3, and 4, respectively. Fst for these simulated data sets was
approximately 0.20. An additional set of simulations was performed to demonstrate the
behaviour of the admixture model with a large number of sampling locations. Data sets were
simulated for K= 5 with 100 individuals and 10 microsatellites, for a range of values of Fsr.
Each individual was assigned to one of 25 sampling locations, and population assignments
for each individual were highly determined by the sampling location. Specifically, each
location was randomly assigned to one of the five clusters, and admixture proportions were
drawn from a Dirichlet distribution with parameter 1 for the main cluster, and 0.01 for each
other cluster. For example, if a location was assigned to cluster 3, then every individual from
that location would have admixture proportions drawn from a Dirichlet distribution with
parameters (0.01, 0.01, 1.0, 0.01, 0.01). The microsatellite data were simulated using the
correlated allele frequencies model of Falush et a/. (2003). We assumed that all
microsatellites had four possible alleles, and the ancestral allele frequencies were simulated
from a Dirichlet distribution with parameters (0.8, 0.8, 0.8, 0.8). For this data set, each
stucture FUN was repeated four times to ensure proper convergence.

Finally, to illustrate how the results depend on the strength of correlation between location
data and population structure, we performed a series of simulations in which we reassigned
locations randomly for a fraction fof individuals and re-analysed the data using the new
models. This was done for each of the 50 data sets simulated without admixture, assuming
five sampling locations, K= 5, and F~=0.03, for values of fin 0,0.04, ... ,1.0.
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For all the above data sets, srrucrure Was run with each value of Kranging from 1 to K7 + 1,
where K7 is the true value of K'used in the simulation. The estimate for K'was then taken as
the K'with the highest penalized log likelihood as reported by srrucrure, Which calculates the
mean log likelihood minus half of its variance. The model of independent allele frequencies
was used for the simulations with admixture in which the number of loci was varied. All
other runs used the model of correlated allele frequencies, and estimated a separate Fst for
each population. For all runs using the original admixture model, a separate value of a was
estimated for each population as well. All runs consisted of 20 000 burn-in steps followed
by 10 000 MCMC steps.

CEPH Human Genome Diversity Panel (HGDP) microsatellite analysis

A microsatellite data set consisting of 377 loci genotyped in 1056 individuals from 52
human populations (Rosenberg et a/. 2002) was downloaded from http://
rosenberglab.bioinformatics.med.umich.edu/data/rosenbergEtAl2002/diversitydata.stru. We
chose one population from each continent for analysis (Surui from South America, Han
from Asia, Basque from Europe, Melanesian from Oceania, and Mandenka from Africa),
resulting in a data set with 126 individuals. /st among populations from different continents
is about 7% in this data set (Rosenberg et al. 2002). All sructure analyses were done using
the model of correlated allele frequencies, and every run was repeated five times to obtain
the run with the highest penalized log-likelihood score. The analysis was repeated 50 times
on random subsets of the data for a range of different numbers of loci. Each random subset
was created by choosing loci without replacement.

Principal components analysis methods

To provide an additional, and rather different, type of algorithm against which to compare
our new methods, we also analysed the simulated data using principal components analysis
(PCA). It has been shown (Patterson et al. 2006) that the resolution of principal components
methods and strucrure are quite similar in many cases. The software package eicensorr Was
downloaded from http://genepath.med.harvard.edu/~reich/Software.htm and the program
smarteca (Patterson et al. 2006) was used to analyse the simulated and real data sets. The
number of clusters inferred by suarteca Was taken as one plus the number of eigenvalues with
p-value < 0.05. To get cluster assignments, the A~means algorithm (Hartigan & Wong 1979)
was applied to the top K-1 eigenvectors.

Similarity score

To measure the similarity between the true and estimated population assignments, we used
an adaptation of the standard Brier similarity score. That is, let g;, be the true fraction of
ancestry of individual 7in population kand let g;, be the corresponding estimate of gjx.
Then, we define a score Sas

1 N K
S=NZZ(%‘1< -G )

i=1 k=1

where Nis the number of individuals. Note that Swill be zero when Q= Q, and can be as
large as 2 if there is a complete mismatch between Qand Q. In practice, the labelling of
clusters identified by swucrure is arbitrary, and thus, we computed S for each of the K1
possible permutations of the cluster labels, and recorded the minimum of Sacross
permutations (call this §7). When the data are completely uninformative, a clustering
solution Q*that places a fraction 1/K of each individual into each cluster would receive a
smaller score (call this S*) than a solution that puts all individuals into a single cluster
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(provided that true ancestry is not highly skewed towards particular clusters). Finally, to
obtain a similarity score which is equal to one when Q= @, and zero for any gthat performs
as poorly as @*, we recorded the similarity score as 1 — min(S’,5*)/S*

To evaluate the performance of the new models, we tested them on simulated and real data
under a variety of conditions. Together, the examples illustrate the performance of the
methods as a function of the amount of divergence among populations and as a function of
the number of loci; as well as under a variety of different conditions: variable numbers of
loci; variable levels of information in the location data; discrete populations and admixture;
and SNPs and microsatellites. The parameter values for the simulations were chosen because
they illustrate the differences between the new and original models; for larger or more
informative data sets, the differences between the new and old models tend to be small, and
in some contexts, we prefer the original srrucrure models (see below for further discussion).

The first set of simulations (Fig. 1) considered a setting in which individuals are sampled
from either two or five different sampling locations, and where each sampling location
consists of a distinct non-admixed population. As expected, all the methods struggle to
assign individuals accurately to populations at low divergence (Fst near 0), and provide
accurate assignments at high divergence. However, there is a range of Fgt values for which
the new models perform much better than the existing methods: both in terms of making
more accurate cluster assignments (similarity coefficient), and in choosing the correct value
of Kat lower divergence levels. Importantly, all of the models predict just one cluster when
Fs1 = 0.0, suggesting that the new models do not bias the algorithm towards finding
structure when it is not present.

Figure 1 also plots values of the tuning parameter, r, which measures the amount of
information contained in the location information. Recall that />>1 implies that the location
labels are uninformative about ancestry, while small values of rallow the ancestry
proportions to vary substantially among locations. Notice that when At is near 0, the mean
estimate of ris considerably larger than 1, consistent with the estimates of K'near 1. As the
amount of information in the data increases the estimate of rquickly decreases, indicating
that the sampling groups are contributing information. At Fst = 0, one might have expected
that the posterior mean of rshould be approximately ryax/2, since in this case fyax was set
to be very large. The fact that ris much smaller than ryax/2 suggests that rhas not fully
explored its posterior range during the course of the MCMC run length used here (recall that
rwas initialized at 1). However this should not be a serious concern as the model is
relatively insensitive to the precise value of rwhen ris considerably larger than 1, and in
practice, we would recommend a smaller value of ryax for most applications.

A second set of simulations was performed with admixture (Fig. 2). In this case, we set K=
3 and simulated four sampling locations with different mixtures of ancestry coefficients. We
set /st =0.20 and varied the number of genotyped loci. The plot of similarity coefficients
shows that again the new models substantially improve the ancestry estimates when the data
sets are small, even providing some information with just one genotyped locus. The old and
new models become more similar as the number of genotyped loci increases. We have
observed that these new methods tend to improve estimation of admixture coefficients for all
the individuals in these data sets, including individuals who are outliers within their
sampling group. This indicates that the new methods are not simply working by grouping
the individuals in the same location together; instead, the location information also improves
the estimation of allele frequencies, leading to more accurate parameter estimation.

Mol Ecol Resour. Author manuscript; available in PMC 2012 December 10.
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To assess the behaviour of the new model when there are many sampling locations, we also
simulated data with 100 individuals sampled from across 25 sampling locations, with K= 5.
The simulations were set up so that individuals from the same sampling location generally
drew most of their ancestry from the same cluster. Figure 3 shows the performance over a
range of values of Fst. Even with a relatively small number of individuals per group, the
new models still benefit from using the location information, compared to the original
models, although the advantage appears to be smaller than when larger numbers of
individuals are sampled in each location. We also found that for these data sets, the
estimation of K'was a little erratic for small values of Fst. In particular, both models
frequently estimated K> 1 even when Fst = 0 (implying that there is no real population
structure, so that we would want to estimate K= 1). We believe that srrucrure may be
struggling with the relatively small data sets simulated in this case (100 individuals with 10
microsatellites; for example, compare this to Fig. 1A, which includes 100 individuals
genotyped at 100 SNPs). In the plot shown in Fig. 3, the new model seems to perform better
than the original model at estimating small Kwhen Fg = 0, but this does not seem to be a
general property of the new model. For example, when we analysed the same data using the
ONEFST model in srructure, both models overestimated K'in the case where Fst = 0.

We also investigated the performance of the new models as the correlation between
locations and clusters changes. The left plot in Fig. 4 shows the effect of similarity
coefficients as the fraction of individuals with randomly assigned locations is increased. The
horizontal lines show the average performance of the original srrucrure models on the same
data. As expected, the performance of the new models is best when the locations correspond
perfectly to the underlying structure. However, even when the locations are completely
random, the new models perform almost identically to the old models. This implies that
there is little cost to using the new models, even when the location data are potentially
uninformative. The right plot in Fig. 4 shows that the value of restimated by srucrure SeEMS
to be a good indicator of the usefulness of the location data.

Finally, we illustrate the new methods with a simple application to microsatellite data from
the Human Genome Diversity Panel (Rosenberg et al. 2002). We selected a set of 126
individuals representing five populations on five different continents. Figure 5A shows the
average results of choosing subsets of the microsatellites at random. We see that the new
models almost always estimate K= 5 with as few as 6 random loci, whereas 16 or more loci
are required to make the same estimate when the sampling location data are not used. Also,
the new models substantially improve the accuracy of the estimated admixture proportions,
when the 'true' ancestry proportions are estimated using all 377 microsatellites. Figure 5B
shows some example results, using the first 2,6, and 10 microsatellites, respectively, from
the data set (in a single random order), compared to the complete data set. It is clear that
with 2 and 6 microsatellites, the new models have much more success at separating the
continental groups than do the original models.

Once the data set increases to 10 microsatellites or more, the differences among the results
become quite subtle. However, for the complete data set of 377 loci, there is a slight but
noteworthy difference between results from the new and original admixture models (Fig.
4B). Unlike the original admixture model, the new admixture model estimates that all the
Han Chinese individuals contain a small amount of ancestry from both the Melanesians and
the Surui. Since it is implausible that there has been recent gene flow of this magnitude from
Native Americans and Oceanians into the Chinese population, this argues that the new prior
model is subtly shifting the performance of the method on this highly informative data set.
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Discussion

The new models presented in this study are designed to help detect population structure and
to produce more accurate ancestry estimates for data sets with low information content. Our
simulation studies suggest that the models can help considerably in such cases. As the
information content in the data increases, the results become similar to those obtained using
the original models. In general, our simulations show that the new models provide an
appropriate balance between the potential value of incorporating location information into
the inference, while still remaining reasonably robust when there is no population structure.
Moreover, the new models are able to ignore the sampling information when there is clear
evidence of population structure, but the structure is uncorrelated with sampling locations.

For these reasons, we feel that it will often be beneficial to use the new models for analysing
small- or medium-sized data sets, such as are currently typical in studies of molecular
ecology or conservation genetics. However, we would still encourage users to run the
original models as well, and to check that substantial differences between results from the
new and old models seem biologically sensible. We also suggest that the value of rcan be a
useful indicator of whether the location information is relevant to the model: values of rnear
or below 1 imply that the ancestry proportions differ substantially between sampling
locations.

1dudsnueiy Joyiny [INHH

However, we also caution that the new models are not a panacea. For example, srrucrure
sometimes overestimates the number of clusters: for example when there is inbreeding or
relatedness among some individuals. Moreover, the number of clusters is not well-defined in
settings where the allele frequencies vary smoothly across the landscape (Wasser et al.
2004). The new models are likely to be affected similarly by these issues. Finally, for very
informative data sets, the new and old models should provide very similar results. However,
in one example (the HGDP data, described above), we noted slight differences between
results with the old and new priors. Given this, and the fact that there is now a great deal of
accumulated experience with the standard srrucrure models, we recommend that the standard
models should continue to be the default for data sets in which the data are highly
informative.

1dudsnuey Joyiny [INHH

Finally, we remind users that the new models serve a very different purpose from an existing
model in sructure that also uses location information (obtained in the software by setting
USEPOPINFO = 1) (Pritchard et a/. 2000). That model was designed for identifying migrant
individuals in data that are highly informative, in contrast to the goal here of detecting very
weak population structure.

The models presented here have been implemented in a forthcoming version of srucrure,
version 2.3. The use of the new models will be described in detail in the next release of the
structure Manual. The new software and documentation will be available online at http://
pritch.bsd.uchicago.edu/structure.html.
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Appendix: MCMC updates

No admixture model with sample groups

To sample from Pr(P, Z, r, n, y|X), the algorithm proceeds as follows:
1. Sample A from Pr(P| Zm-1), (m-1) q(m-1) Am=1) " x).
2. Sample Z(M) from Pr(Z | AM), (1) n(m=1) Am=1) | xq).
3. Update rusing a Metropolis-Hastings step.
4. Update n using a Metropolis-Hastings step.
5. Update y using a Metropolis-Hastings step.
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Because the new models have only modified the prior for Z, Pr(P| Zm1D), (m-1) (1)
A1) X) does not depend on -y, 7, or r, and step 1 does not need to be modified from the
original srructure algorithm.

For step 2, we note that since 1 and 7form a prior for vy, Pr(Z | A, (m-1) (1) fm-1),
X) is equivalent to Pr(Z | A, (m1) x)_ Then, for each individual /from location /;we
can sample z;based on the distribution:

Pr(z;=kly)Pr(X|P, z;=k
Pr(z;=k|X, P,y)= r(z;=kly)Pr(X|P, z;=k)

K A ;
Zk’: Przi=k [y)Pr(X|P, zi=K')

where Pr(z;j= Ky) = y % and Pr(X| P, Z;j= K) is a product of allele frequencies in cluster &
corresponding to the genotype data. The exact expression is defined in the appendix of
Pritchard et a/. (2000).

For step 3, 7 is simulated from a uniform distribution in (A D—r,, A + r). /' is
rejected if it is not in the range (0, fyax. Otherwise, it is accepted with the probability:

ﬁf (elr',m)
AR

where /=1 ... Sindicates the sampling locations, and where vy, | r, ) is given by the
Dirichlet distribution:

K
k

1—‘(Zk:lrnk) rng—1

K Yie -
[T om0 ki

k=1

folr,m=

If 7 is accepted, than /™ is set to 7, otherwise /™ is set to AM~2).
In all the analyses in this manuscript, 7, was set to 0.1.

For step 4, two clusters, 7and j, are chosen at random so that 7% j. A random number e is

(m—1) D

simulated randomly in the range (0, emax). Then, issettos;,” '+&, and is set to n.(im_ - &

All other elements Tl;c are set to n,((m_l) for knot equal to 7or j. The update is rejected if either

or n, is not in the range (0,1). In this way, the elements of the n" vector are guaranteed to
sum to 1, given that the elements of 7("1) sum to 1. Then, 1" is accepted with the
probability:

ﬁ Fonlr)
i Sl

If " is accepted, (" is set to 1. Otherwise, (™ is set to n(”1). For all analysis in this
paper, epmax Was set to 0.025.
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For step 5, each vector -y, is updated in turn, for each location / A y;.iS generated in exactly
the same manner as n’, and is rejected if any of the elements are not in the range (0,1). Then,
v/ is accepted with the probability:

1;=1)

Forilnm [g(zily')]
fOulnm i1 8Gily)

Here, /(/;= J is the indicator function which equals 1 if individual /comes from location /,
and zero otherwise, and g(z;| y) is the probability of observing a particular value of z; given

y. If 5/ is accepted, " is set to y”, otherwise ¥\ is set to y" ",

Admixture model with sample groups

To sample from Pr(Z, @, P, a, r| X), the algorithm proceeds as follows:
1. Sample A7 from Pr(P| Zm-1), g1, o (1), A1) ).
2. Sample Q™ from Pr(Q| AM, Zm1), o (1) Ar=1) | x),
3. Sample Z(™ from Pr(Z| Am, Qim), o (m1) Am-1) x).
4. Update rusing a Metropolis-Hastings step.
5. Update a using a Metropolis-Hastings step.

The new admixture model only affects the prior for Q, and therefore steps 1 and 3 do not
need to be modified from the original algorithm. To perform step 2, the admixture
proportions for individual /from location /have a distribution given by:

gi~Dirichlet(an +n;1, ap+ni, .. ., @ +ny)

where njy is the total number of copies of each locus assigned to population kin individual /.

For step 4, 7 is simulated from a uniform distribution in (A1 = ., A7) + 1), where r, is
the same as in the new no-admixture model. 7’ is rejected if it is not in the range (0, /iax)-
Otherwise, it is accepted with the probability:

ﬁl—[h(alklr )
haylr, @)’

=1 k=1

where Ma y| ) is given by the Gamma distribution with parameters 7, 1/r.

Step 5 is achieved by independently updating every element of the a vector. First each

element of (9 is updated. a,(f) is simulated from a normal distribution with mean a(g)(’" b

and standard deviation o, It is rejected if it is outside the range (0, apmax)- Other\lee itis
accepted with the probability:

S

l—lh((llk|r a

=1 haglr, Ol(g)

(9% )
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Finally, to update each element of a4, an a}k is simulated from a normal distribution with

mean a},’{”‘l) and standard deviation o. It is accepted with the probability:

N 1U=1)

h(a,Ir, a}?)l—[ [f(qill,a;.)]
@y Lf(qill, ar)

haylr, a i=1

For all the analysis in this paper, o, was set to 0.025.

Mol Ecol Resour. Author manuscript; available in PMC 2012 December 10.



Hubisz et al. Page 15

A: True K=2
S ] o _| I
A I s . ~ - ‘: :I'. — meanr
‘qE) o _| o o ---- 5%, 95% tail
P o '
I 2 X «© :
I § © _| 8 N % ]
< >° g @ ]
> g < | J‘:; E
= 5 ° § 3 &
> % —— no admix, new = —— no admix, new
2 o N | - - -+ admix, new N ===+ admix, new
= © — no admix, original - — no admix, original
Z - -~ admix, original - - -+ admix, original
Q o | — PCA > 7 — PCA .
g e I I I I T I I I I I I I I I I
wn 0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
S, Fsr Fsr Fsr
=
B: True K=5
el ___— [ ™[
A e 0 - > = - ‘: —meanr
£ o e B ‘: --- 5%, 95% tail
0 o 7 \
s < < |
1} G = ® |
Q © _| ® S \
> S Q o) v
I g 2 o g o |
< E 3 e % '\
Z ) 8 w < — \
— c o dmix, > | —— no admix, new
> § o g e 3 ™
(- S © —— no admix, original — no admix, original N —
r—jf ---- admix, original o glz;;ix’ original 11 N
() o | — PCA — | = o - NI
= ° 5 T T T T T T T T T T T
Z 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06
% Fer Fst Fst
=
U) .
o Figurel.
S Results for simulations without admixture. Data were simulated for K'=2 and K=5, as
=
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The middle plots show the average choice of K, with the dotted horizontal lines indicating
the true value of K. On the right, the solid line shows the average estimate of rcalculated
using the new no-admixture model with sampling locations. The dotted lines show the 5%
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Figure 2.
Results for simulations with admixture. Data were simulated with K'= 3, as described in the

Methods. On the left is the mean similarity coefficient over 50 simulated data sets as a
function of the number of loci. In the middle is the mean estimate of K] with the dotted
horizontal line indicating the true value of K. The right plot shows the average estimate of r
calculated using the new admixture model with sampling locations, with the dotted lines

giving the 5% and 95% tails of the distribution.
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Figure 3.

Results for simulations with admixture, using 25 sampling locations with an average of 4
individuals per location, and K= 5. See Figs 2 and 3 for descriptions of the plots. Each data
point is an average over 50 simulated data sets for a given value of Fr.
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Effect of varying the amount of information contained in the location data. The simulations
assumed 250 individuals, five sampling locations, K= 5, Fst = 0.03, and no admixture. The
x-axis shows the fraction of individuals whose location data were randomized. For all other
individuals, the location number matched the true population number.
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Figureb.

Analysis of five populations from the Human Genome Diversity Panel microsatellite data
set. In Fig. 5A, the mean similarity coefficient and choice of Kare plotted, averaged over 50
runs using a number of randomly chosen microsatellites, shown on the x-axis. Figure 5B
shows Structure results for the first 2, 6, and 10 loci, as well as the entire data set.
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Table 1

Summary of structure parameters

STRUCTURE parameters

K: number of clusters

N. number of individuals

L: number of loci

q;; admixture proportion of individual 7in cluster j

Zim: cluster of origin for locus / individual / copy m

(ay, ..., ak): parameters to Dirichlet distribution which forms a prior for g;

Py Trequency of allele jin locus / cluster k

1duosnuey Joyiny [INHH

A: parameter to Dirichlet distribution which forms a prior for py;

Fy: the amount of drift from ancestral population to cluster & in the model of correlated allele frequencies

New model parameters

S: number of sampling locations

T r. parameter which estimates the informativeness of the sampling location data

% (Mg, ... , nk): for the no-admixture model, these parameters reflect the relative proportion of individuals assigned to each cluster

; (Ys1s --- » YsK): for the no-admixture model, these parameters reflect the relative proportion of individuals from location s assigned to each
c cluster

—*

= (9) (9) i i i indivi

(@) (a:L P QRS ): for the admixture model, these parameters reflect the relative levels of admixture from each cluster over all individuals
=

< (a1, ..., agk): for the admixture model, these parameters reflect the relative levels of admixture from each cluster for an individual from
% location s

c

wn

(@)

=
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