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Abstract
When event data are retrospectively reported, more temporally distal events tend to get “heaped”
on even multiples of reporting units. Heaping may introduce a type of attenuation bias because it
causes researchers to mismatch time-varying right-hand side variables. We develop a model-based
approach to estimate the extent of heaping in the data, and how it affects regression parameter
estimates. We use smoking cessation data as a motivating example, but our method is general. It
facilitates the use of retrospective data from the multitude of cross-sectional and longitudinal
studies worldwide that collect and potentially could collect event data.

1 Introduction
In this paper we develop methods to deal with a ubiquitous characteristic of survey data - the
tendency of respondents to report in units that are rounded or heaped. Our primary goal is to
provide methods to estimate how heaping affects parameter estimates in regression models,
to quantify the degree to which heaping affects statistical inference, and to provide a method
by which to recover parameter estimates of interest that are less biased.

As a motivating example, we use retrospectively reported data on smoking behavior from
the Panel Study of Income Dynamics (PSID - http://psidonline.isr.umich.edu) and the
Current Population Survey - Tobacco Use Supplements (CPS-TUS - http://
riskfactor.cancer.gov/studies/tus-cps). When surveys ask ex-smokers about when they quit,
they commonly phrase the question in one of three ways. The PSID survey asks “How old
were you when you quit smoking?” Other surveys (like the CPS) ask “How long ago (in
years) did you quit smoking?” Some surveys ask: “In what (calendar) year did you quit
smoking?” These prototypical questions often result in “heaped” responses – reported
answers that tend to have non-smooth distributions with peaks at multiples of five and ten
years. These patterns show up in many types of data and there is evidence that heaping does
in fact introduce bias into estimates. For example, Wang and Heitjan [1] analyze cigarette
count data to show that heaping can attenuate the treatment effect by as much as 20 per cent.
Hu and Tsiatis [2] show that in continuous time framework heaping has substantial effect on
the estimated survival curve. In their simulations they find that heaping attenuates the
Kaplan-Meier curve by 10 to 60%.

Many analyses rely on linear regression where it is conceivable that heaped responses may
result in biased estimates. For instance, suppose we convert the reported ages to calendar
years and let pt be the probability that a smoker quit in Year=t. One may be interested in
fitting the logistic model log (pt/(1 − pt)) = Xtβ where Xt is a design matrix, containing
covariates such as age, health status, and cigarette prices to test the hypothesis that smokers
will be more likely to quit when tobacco prices increase. To do so, we need to know whether
and how estimates of the coefficient on price and its standard error vary when survey
respondents heap their reported quit ages. Here we investigate this issue.
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We take a model-based approach and assume that, however it is measured, the distribution
of quit-times mixes outcomes generated by two processes. The first is a stochastic process
that represents quit decisions that occurred for some stochastic reason. As such, they are
randomly distributed along the dimension of age, elapsed time, or calendar year. The second
normally-distributed component arises when smokers quit in response to some external
conditions, such as serious health issues, changes in family or employment status, or,
perhaps, due to changes in cigarette prices. We fit the mixture model using the Expectation
Maximization (EM) algorithm [3] or a Monte Carlo Markov Chain (MCMC) simulation, and
obtain a smooth, parametric distribution of quit-times. We sample from this mixture
distribution and fit the linear model to obtain parameter estimates.

We use Monte Carlo methods to simulate data that represent the quit decisions of subjects
who respond in a known way when a single covariate of interest changes. We then use (a set
of) rules to replicate the heaping we observe in distributions of quit ages from survey data.
With these data we test whether our algorithm recovers the true underlying distribution. To
estimate the bias due to heaping, we compare the average estimates with the ones we derive
from the observed (heaped) data.

We develop a general method that researchers can use to model and control for bias that
heaping might introduce in the study of event data of any type. Such studies abound. For
example, a Google Scholar (http://scholar.google.com/) article search yields thousands of
hits for “age at marriage,” “time of marriage,” “age at birth of first child,” etc. Because
event data are the focus of so much attention, there is great value in developing methods to
reduce potential bias that heaping introduces.

The paper is organized as follows. In Section 2 we review the extant literature, including
studies that suggest methods to mitigate the bias due to heaping. In Section 3 we motivate
the analysis with graphic illustrations and several observations using PSID data. In Section 4
we discuss the possibility that some of the observed heaping reflects true behavior. In
Section 5 we develop our methods, fit parameters using both EM and MCMC algorithms,
describe three parametric mixture models for three common types of smoking cessation
data, and estimate mixture distribution parameters. Section 6 contains a simulation study. In
Section 7 we describe how one might use our model-based approach to estimate the bias in
regression parameter estimation, the classification error rate in the response, and the
probability that a person is ‘at risk’ to quit smoking. We conclude with a discussion in
Section 8.

2 Background
Our analysis follows and builds on the work of [4, 5, 6]. These studies recognize the
potential problem that heaping might cause. Little [4] succinctly reviews event history
analysis and missing-data methods. Torelli and Trivellato [5] deal with heaped data on
unemployment spells of Italian youth. They specify a parametric model of the errors in the
reformulated likelihood function, add a dummy variable to flag youth who heap or do not
heap, and smooth the data as recommended by [6]. Heitjan and Rubin [6] attempt to solve
the problem of heaping by coarsening data over broad intervals centered around the heaping
unit. They use a simple framework in which survey respondents use a single heaping rule.
They assume that, within broad intervals, heaping occurs randomly. Crockett and Crockett
[7] deal with the consequences of heaping in the British religious census of 1851. They point
out that it is implausible that data are “coarsened” randomly, and hence, it is not ‘ignorable’
in the sense of [6]. Lambert [8] deals with a special case of heaping, where there are an
excess of observations of 0 in count data. In her analysis, she shows that one has to account
for heaping in Poisson regression, in the presence of ‘zero-inflated’ data. In more recent
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work, Forster and Jones [9] model smoking initiation and smoking cessation using UK data
in discrete-time hazard models with and without controls for heaping. They implement
solutions proposed by [5] but find little evidence that heaping biases coefficients on cigarette
tax in models of smoking duration. However, a recent working paper [10] shows substantial
heaping effects, using Monte Carlo simulations. Pudney [11] focuses on heaping in
consumption expenditure data, and changes in heaped responses between consecutive
waves. Similar to our findings, he notes that in any group of survey respondents, multiple
heaping rules are used. His analysis focuses on patterns of transition between heaping points
for the same individual.

Although our model-based approach shares features with several studies, it also improves on
the other methods in several ways. Schneeweiss et al. [12] develop an estimate for the
rounding error, based on a Taylor series, and apply Sheppard’s correction to account for bias
in standard deviations that arises from rounding. Neither they nor we assume that rounding
occurs in a symmetric fashion around heaping points. Wang and Heitjan [1] discuss the
possibility that smokers use multiple heaping rules when they report how many cigarettes
they usually smoke. They develop a likelihood function that allows reported cigarette counts
that are a multiple of 5 to either be the correct response or a result of one of several heaping
rules (e.g. heap to 5, 10, 20). They use zero-inflated Poisson or Negative Binomial models.
Our method is similar to theirs because it also accommodates multiple heaping rules. Our
method differs because it accommodates a wider range of distributions (discussed below).
Furthermore, in our method, one can incorporate covariates into the heaping probability
function. Like Wright and Bray [13], we also use MCMC simulations in a hierarchical
model to estimate the effect of heaping. However, our method improves on theirs in three
ways. First, it accounts for multiple heaping rules. Second, it allows for a mixture
distribution of the response. Finally, we implement an empirical Bayes estimation procedure
in two ways: via the EM algorithm and a fully Bayesian (MCMC) estimation procedure.

3 Data Explorations
We begin with a number of motivating examples using 1986 PSID data on the age ex-
smokers said they quit. In Figure 1 we plot the quit age distribution for 2,269 ex-smokers.
The labels ‘A5’ and ‘A10’ correspond to ages that are multiples of five or ten years,
respectively. Clearly the data are heaped.

Heaping is also present in Figure 2 where we plot the distribution of start ages, but it is less
pronounced and more prevalent among smokers who were older when they responded to the
survey (left panel). The right panel shows that, among people interviewed when they were
50 or younger, starting age is distributed approximately normal (mean start age ≊ 17.5 and
variance ≊ 11). Such a pattern is consistent with the hypothesis that people are more likely
to heap if they remember less well. To formally test this hypothesis, we fit the logistic
regression model

(1)

where I [A5] equals 1 if the reported start-age is a multiple of five, and 0 otherwise. We test
the null hypothesis that β1 = 0 vs. the alternative, β1 ≠ 0. Figure 3 plots the fitted logit
function and the parameter estimates. The horizontal dashed line at .20 represents the
proportion of smokers one expects to have started at an age that is a multiple of five. The
results confirm the above pattern. The odds a smoker reports he started at an A5 age rise
exponentially with age (p < 6.1E − 9). (Note also that people who report a ‘heaped’ starting
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age are more likely to report a ‘heaped’ quitting age. Both are correlated to a person’s age
when surveyed.)

To motivate the idea of a mixture distribution, we analyze the distribution of a related
quantity that combines start and quit ages – the fraction of a person’s lifetime that he has
smoked. We define FY S =Fraction of Years Smoking, as

Measured over a person’s whole lifetime, the distribution of this quantity is much less
sensitive to the choice of the cohort. Figure 4 demonstrates the distribution of FY S in two
age groups – those age 90 or less and those age 60 or less. The distribution for other age
groups is practically the same. However, as we show below, if one measures the fraction of
life a person has smoked from mid-life forward, one observes a much different distribution.

A natural choice for fitting the observed FY S is the generalized beta distribution with
support (L, H) where L = min(FY S) > 0 and H = max(FY S) < 1, with the probability
distribution function

(2)

where B(,) is the Beta function. Figure 5 shows the fitted generalized Beta distribution (left)
and a quantile-quantile plot (right).

When we consider the subset of quitters who are at least 49 years old at the time of the
survey and plot the fraction of years smoking starting from age 49, i.e.

then the distribution of FY S49 is almost uniform, as can be seen in Figure 6. A possible
explanation for the difference between FY S and FY S49 is that the observed distribution of
quitting age is actually a mixture of two distributions. This observation motivates our
model-based approach.

Before we develop the model (in Section 5) we summarize the intuition and assumptions
that underlie our mixture-distribution approach. We assume that, at any given age, a certain
fraction of smokers will randomly quit. They do so according to some stochastic process (or
will die without ever quitting). The decision to quit in the first group is related to their start
age. We assume that there is a second group for whom the decision to quit is unrelated to
their start age. Smokers in this group quit after they experience a significant event (such as
heart attack, birth of a child, retirement, a cigarette price increase, etc.). Although we posit
the existence of two groups, one can also assume a process where, over the course of an
individual’s life, he switches between one of two distributions that govern his decision to
quit. In the steady state, each smoker quits according to a random process that is
independent of external events. When a shock occurs, some smokers are pushed into the
second distribution. Quit decisions for this group are distributed as described above. More
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generally this structure allows for the presence of a large number of smokers who do not
respond to shocks but who still quit according to a random process – a point to which we
return later.

4 Heaping and “True Heaping”
While in many cases heaping in observed distributions reflects true behavior, we argue here
that most of the heaping shown in Figure 1 probably does not. To differentiate between
heaping and actual behavior, analysts must carefully examine both the (assumed) data
generating process and the raw data. A failure to do so may cause some analysts to not
recognize when observed heaping is more likely the result of misreporting.

When there is ‘true heaping’ the probability of quitting at round ages (e.g. 50) will be higher
than expected under a smooth distribution. Sometimes heaping on particular values is
expected because of observable characteristics of the data-generating process. For example,
the amount of cash that people withdraw from ATM machines is dictated by the menu of
options that ATM machines offer [14]. Similarly, there is heaping in the length of
unemployment spells that corresponds closely with the maximum time unemployment
benefits are paid [15].

Often heaping is masked by transformations of raw data. The top panel in Figure 7 plots data
on time that has elapsed since 14,142 ex-smokers quit. To generate these data the CPS-TUS
asked “How long ago did you quit smoking?” One observes significant heaping at T5 and
T10 points (corresponding to multiples of 5 and 10, respectively, in terms of number of
years since quitting smoking). However, when the response is converted to the age a smoker
quit, there appears to be less heaping at A5 and A10 ages than in the PSID data (Figure 1).
Because there is no reason to believe that ex-smokers systematically differ in the PSID and
CPS samples, it is apparent that, to look for preliminary evidence of heaping, analysts need
to examine the distribution of the raw data - on the scale of the responses offered by the
survey question.

Analysts should also pay attention to how question wording dictates at which points in the
distribution one should expect to observe heaping. For example, the 2002 German Socio-
Economic Panel survey (SOEP) asks “In which calendar year did you quit smoking?”. One
expects (and finds) heaping in calendar years evenly divisible by five.

In any given sample, there may be subsamples that each use a different heaping rule (age,
elapsed time, calendar year). For example, in the SOEP, heaping on calendar years divisible
by 5 is expected. However, an analyst should also look for evidence of elapsed time heaping
in calendar years that end in 2,7,12, etc. Indeed, we observe evidence of heaping from two
or more heaping rules in several data sets that we have analyzed.

At least for smoking cessation data there are good reasons to believe that heaping (in the
above distributions) did not result from true behavior. The primary reason to suspect
heaping rather than true behavior is because of the known process by which smokers quit.
On average, smokers attempt to quit three to four times before they succeed and the period
between relapses is approximately three to four months [16, 17, 18, 19]. This stylized fact
suggests that if smokers did, in fact, have a higher tendency to decide to quit at round ages,
we would expect to observe more quits just after A5 ages than just before. Instead, in the
distribution of reported quit ages, we find substantially more mass at A5 ages, and no
significant differences between the mass at A5−1 and A5+1 ages.

Ultimately analysts need to carefully evaluate what is known about the process that
generates their data, the form of survey questions, response categories, and the raw data
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those questions and categories generate. Heaping is almost always present to some degree.
At the same time, there may be reasons to suspect that some heaping results from true
behavior. We note again that our proposed model-based approach accommodates “true
heaping.”

5 Statistical Models
To develop and test our model, we simulate data that resembles the observed smoking
cessation distribution. To assess how heaping affects parameter estimates from models of
interest, we propose a parametric model to fit a mixture distribution to the data. The first
component represents the population of smokers who quit randomly. The second component
represents the population of smokers who quit in response to certain events. The choice of
distribution one fits to the first component is dictated by the form of the survey question.
The second component allows us to incorporate covariates of interest and assess their effect
on people’s decision to quit.

In this section we propose a family of parametric models for fitting distributions to data on
the age smokers quit. In Section 7 we describe how we use the models to estimate the
attenuation bias due to heaping.

The hierarchical nature of our model-based approach is depicted in Figure 8. Subject i may
quit smoking according to either a stochastic process or a process that generates a normal
distribution, with probabilities p and 1 − p respectively. We denote the probability
distribution function of the stochastic process generically by fR(ri; ψ) where ψ is a set of
hyper-parameters. For the normal distribution, we assume mean θ and standard deviation σ.
In our model bi is a Bernoulli random variable, so either bi = 1 (the subject belongs to the
group of people who quit randomly), or 1 − bi = 1 (the subject belongs to the group of
people who quit in response to certain conditions). Hence, ri represents the true quit age
(time) of subject i.

We assume that there is some probability that a subject ‘heaps.’ ‘Heapers’ do not report ri
but instead report Hc(ri), where c is a multiple of the time units (e.g., in Model 2 below, we
denote the heaped ages by A5 or A10 for multiples of 5 or 10 years, respectively). The
probability that a subject heaps is distributed according to a function, F, with a set of hyper-
parameters φ. Given the evidence we presented in Section 3 it would be logical to allow F to
depend, for instance, on the subject’s age when surveyed. However, it can more generally
depend on other factors.

This framework has several attractive features. For example, the normal component of the
mixture distribution allows us to incorporate covariates into the model, since it can be
written in the usual form in normal linear regression, as Xβ + ε, where β is a vector of
effects and ε is the random error. To estimate the coefficients on the covariates while
accounting for heaping we take a two-step approach. In the first step we estimate only the
overall mean and variance of the normal component in the mixture distribution (using the
EM algorithm or MCMC). The parsimony of our model ensures that the complexity of this
step does not depend on the number of covariates. In the second step we use a Monte Carlo
approach to estimate the regression parameters, as we describe in detail in Section 7.

In addition, as formulated here, our model is quite general. We need not assume particular
properties for the function F(φ) (that describes the distribution of the indicator variables hi).
For instance, F (φ) does not have to be symmetrical around the heaping points. In the
simplest case, we might assume that hi are drawn from a Bernoulli distribution such that
person i heaps his response (hi = 1) with probability q (independently of his age or any other
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covariate). Alternatively, we can assume that qi depends on a person’s age, and use logistic
regression as we did in Section 3 (Eq. 1) to estimate a subject-specific heaping probability.

Although we leave the addition of other covariates to future work, there is evidence that a
framework that accommodates them will be valuable. Several studies identify factors
associated with respondents’ recall accuracy. Recall duration or time since event is a strong
predictor of the quality of retrospective reports on marital history in the US Panel Study of
Income Dynamics (PSID, [20]), age at first sex in the National Longitudinal Survey of
Youth 1979 (NLSY79) in [21], and post-partum amenorrhea (the interval after a pregnancy
before menstruation returns) in the Malaysian Family Life Surveys (MFLS) in [22].
Researchers also agree that timing of events are more accurately reported when they are
more salient to the respondent. Kenkel et al. [23] find that smokers are more likely to report
the same starting age across different waves of the NLSY79 if they are or were heavier
smokers. Although marriage and divorce are both salient life events, [20] shows evidence
that dates of divorce are reported less consistently than dates of marriage and conjectures
that it may be because divorce is less socially acceptable. Researchers have also linked recall
accuracy with demographic characteristics such as education and race/ethnicity [23, 20],
question wording [20], and even arithmetic facility [21].

In our model we assume that the covariates that affect a person’s decision to quit are
independent of the covariates that affect their probability to heap. We recognize that this
assumption may not always hold. For example, a person may have quit smoking following a
heart attack, the timing of which he recalls perfectly. Such people are more likely to also
accurately recall and report the correct quitting age. However, based on the analysis of
multiple data sets, we believe our assumption is reasonable for most ex-smokers. In our
earlier analysis (available on request) a person’s age when surveyed is the strongest
predictor of heaping. In those models, other covariates, like major life events, have
significant but much smaller effects on the probability of heaping. Further, in our approach,
data on those events can be directly incorporated into the normal component of the mixture
as explanatory variables. In ongoing work we relax the independence assumption.

Another advantage of our approach is that one can extend the model to allow for multiple
heaping rules and each rule can be modeled with a different probability distribution
function, Fc (e.g. A5 and A10 may have different probabilities in Model 2 below.) Although
we do not develop the full model with multiple heaping rules here, to do so only requires
that we assume that hi follows a multinomial distribution, and yi has the form

where I[No Heap] is the indicator function that takes the value 1 if and only if person i
provided the true response, I[Heap Type = u] is the indicator function that takes the value 1
if and only if person i provided a heaped response according to heaping rule u, and H Cu (ri)
is the heaped version of the true response, according to rule u.

The mixture-model approach also easily accommodates the existence of two or more groups
of people who differ in their response to external events. It is well recognized that, in
regression models, the failure to account for such heterogeneity may diminish the power to
detect significant effects.

We noted before that our method accommodates “true” heaping - i.e. the case that people
may be more likely to quit at certain ages or at certain times. One can incorporate this prior
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belief into our model-based approach. To do so, one can easily add point-mass mixture
components to the model and estimate their probabilities. Alternatively, we could add these
ages as fixed effects to the regression model (e.g. I[is 50 ij] = 1 if subject i was 50 years old in
time period j, and 0 otherwise).

To summarize, our model-based approach is flexible enough to accommodate a wide range
of assumptions about the nature and type of underlying data generating processes.

We use two methods to estimate the mixture-model parameters - the Expectation-
Maximization (EM) algorithm and Monte Carlo Markov Chain (MCMC). The EM
algorithm is well suited for fitting parametric models to such data because the model
explicitly allows for missing data. Specifically, missing data include the mixture component
to which each subject belongs and whether an apparently heaped value is in fact heaped. The
MCMC approach, while more computationally intensive, allows us to modify the assumed
underlying mixture model more easily. One confronts different issues such as computational
speed when one implements each method. However, we present both as viable estimation
methods, as they share the same underlying (parsimonious) model-based approach. In
simulations they both yield excellent results.

5.1 Using the EM Algorithm to Fit Model Parameters
We first use the EM algorithm to obtain the parameter estimates for the generic model in
Figure 8. To begin, we write the complete data log likelihood, lC, with two sets of
unobserved variables, {bi} (the mixture component indicators), and {hi} (the heaping
indicators). To simplify the presentation, we focus here on a single heaping rule (e.g., round
to multiples of five years,) but the extension to multiple rules is straightforward. We also
simplify the derivations slightly here, by assuming that qi = q (that is, a uniform probability
that a person reports a heaped quitting age).

We first set notation. When subject i is in the stochastic component of the mixture
distribution the probability of ri (the true response) is given by FR(ri). When he is in the

normal component, the probability of ri is FN (ri). Let  and  respectively be the
probabilities that one observes the heaped value yi = HC(ri) rather than the true value ri. Let
I5[yi] be the indicator function that takes the value 1 if yi is a multiple of 5, and 0 otherwise.

The complete data likelihood function is:

(3)

and the complete-data log-likelihood is

(4)

To apply the EM algorithm we construct the Q (ϕ; ϕ (k) function, where ϕ = {ψ, θ, σ, p, φ},
ϕ (k) is the estimate after the k–th iteration of the EM algorithm, and
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(5)

In every iteration we replace the missing data variables with their expectations, given the
current parameter estimates. For the Bernoulli variables, bi, we simply use Bayes rule to find
the posterior probability that subject i’s quitting age is distributed through the first
component of the mixture distribution. That is, we use the distribution of the stochastic
process:

(6)

where Prob(CR(i)), Prob(CN (i)) are the posterior probabilities that subject i is in the
stochastic or normal component, respectively. Specifically,

(7)

(8)

For the heaping indicators we set hi = 1 with probability q if a person reported a ‘heaped’
age. As noted before, one can easily specify q=qi so that the heaping probability varies with
subject-specific factors such as current age.

To estimate parameters we maximize the Q function with respect to ϕ. Given the parameter
estimates in the k-th step of the algorithm, we can express FN and FR in terms of the
continuous cumulative distribution functions. We then take the derivatives in order to find
the current iteration’s maximum likelihood estimates.

Regardless of the choice of FR, the maximum likelihood estimates for p is

(9)

To estimate q we use the current estimates for ϕ to compute Ê5 - the expected number of
ages that are multiples of 5. Denote the observed number of multiples of 5 by B5 = ΣI5[yi].
The percentage of heapers is estimated by

(10)

We noted above that it is easy to extend the model to allow for multiple heaping rules and
estimate the appropriate parameters. For example, suppose that we believe that there are two
types of heapers – those who report quit ages (time) on multiples of 10 (A10) and those who
report on odd multiples of 5 years. Let q10 be the probability of A10 heapers, and qc be the
probability of heaping on odd multiples of 5 years (i.e. Ac where c = 10k + 5 for k = 0, 1,
…). We define Êc as the expected number of odd multiples of 5 years (given the current
estimates of ϕ), and Ê10 is the expected number of multiples of 10 years, and let Bc = Σ
Ic[yi] and B10 = Σ I10[yi] be the observed counts of odd multiples of 5, and multiples of 10,
respectively. Then,
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(11)

(12)

To obtain the maximum likelihood estimates of x ∈ {θ, σ2} one maximizes the fourth line in
(4) with respect to x. Note that the form of these estimators does not depend on the choice of
the stochastic process component. We perform the maximization numerically, expressing FN

and  in terms of the integral of a normal distribution. In our example, the response is
expressed in terms of years (integers) and we are considering only one heaping rule
(reporting multiples of five years instead of the true age), so in the our derivation we assume
that

for i = 1 … n; and for i ∈ H

If one assumes a different heaping rule, these functions may take other forms. For example,
it may be assumed that people only round down (or up), not symmetrically as in this
example. The derivation of the maximum likelihood estimates remains (qualitatively)
unchanged. However, the limits of the integrals may change according to the assumed
heaping scheme.

The estimates one obtains for the remaining parameters varies with the choice of the

distribution ofFR and . Generally, the estimation requires that one maximize the fifth line
in (4) with respect to the distribution-specific parameters, φ. In practice, we obtain the
maximum likelihood estimates numerically using standard maximization methods. We next
discuss the application of the model for three distributions that are candidates to fit smoking
cessation age data.

5.2 Three Mixture Models
Model 1 – a Beta/Normal Mixture—The first model is motivated by the observations in
Section 3 where we saw that the distribution of fraction of years smoking is different for
smokers above a certain age. In the stochastic mixture component we use the trivial identity:

(13)

As discussed earlier, the distribution of StartAge is approximately normal, and its mean and
variance can be estimated using a subset of younger respondents, and Years Smoking/
Current Age can be estimated using (2).
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For the second mixture component, we assume that quitting ages are distributed normally
with mean θ and variance σ2. Hence, given the starting age si and the current age ci, the
probability distribution function of the quitting age qi, is

(14)

where the unobserved indicator variables bi are distributed Bernoulli (p) and fB() has the
form given in (2).

Model 2 – an Inverse-Gaussian/Normal Mixture—Our second model also
corresponds to data generated by questions of the form “How old were you when you quit
smoking?” We assume that the population of smokers is a mixture of two groups. In this
case, we assume that responses in the first group are distributed according to an Inverse
Gaussian distribution, with probability distribution function

(15)

for x > 0. The Inverse Gaussian distribution (IG) is related to ‘first passage time’ in
Brownian motion: given a stochastic process Xt with X0 = 0 and Xt = νt + τWt where Wt is
a standard Brownian motion with a positive drift ν, the first passage time is defined as Tα =

inf{0 < t|Xt = α}, which is distributed . In the context of smoking cessation, ‘first
passage time’ refers to a smoker’s decision to quit. The definition of the IG distribution and
its intuitive interpretation make it a natural candidate for modeling event occurrences in
general and smoking duration in particular. The IG distribution has been used to model the
emptiness of dams [24], purchase incidence [25], and duration of strikes [26]. It is quite
popular in the field of finance, where strategies for buying or selling assets are often
determined using a ‘first passage time’ rule (buy/sell when the price of a stock reaches a
certain threshold). Recently, the IG distribution was also used to model time until the first
substitution in soccer games [27]. Folks and Chhikara [28] detail the origin, properties, and
applications of the IG distribution. They note that for several data sets which were modeled
using the IG distribution, the log normal, the Weibull, and the gamma distributions seemed
equally adequate. However, they recommend using the IG distribution to model events that
occur over long periods of time because of “its considerable exact sampling distribution
theory” and because it is preferable to base the choice on the relation to an underlying
physical mechanism. In the case of smoking cessation, the “physical mechanism” may, in
fact, be a psychological or social one. In any case, the ‘first passage time’ interpretation
makes the IG model a natural choice to model the stochastic process component of our data.

According to our mixture model, given the starting age si, the probability distribution
function of the quitting age qi is

(16)

As in Model 1, bi are unobserved indicator variables, distributed Bernoulli (p).

Among those in the sample who still smoke at the time of the survey, qi is censored, and we
only observe their current age, ci. To estimate the parameters in the model, we consider only
the quitters (i = 1, …, m), but in principle, we can include the subset of still-smokers when
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fitting the model. For the censored qi, i = m + 1, …, n we can find the expected value, given
that the subject still smoked at the time of the survey. The expected value is given by

(17)

where ci is the person’s age at the time of the survey, and f, F are the probability and
cumulative distribution functions, respectively, obtained from (16).

Model 3 – an Exponential/Normal Mixture—The third model corresponds to data
generated by questions of the form used in the CPS-TUS. That survey asks ex-smokers,
“How long ago did you quit smoking?” In this case we assume that the first group’s
stochastic responses (quit time) follow an exponential distribution, with probability
distribution function

for x > 0.

5.3 Comparing the EM and MCMC Fitting Procedures
The above model-based approach lends itself quite naturally to a fully-Bayesian framework
that uses MCMC simulations algorithms. However, before analysts use MCMC they should
consider what they trade when they use MCMC versus the EM algorithm. The EM
algorithm is computationally efficient because it provides tractable expressions for
parameter estimates. In practice it can be time-consuming to implement because the
computer program must maximize the complete data likelihood function with respect to
each parameter. This feature means that, when an analyst wants to assume that the data are
generated by a different underlying mixture model, he must run a new program. Therefore,
when the analyst wishes to use a new specification of the distribution functions in the model
in Figure 8 or to implement different heaping rules, MCMC simulations may be preferred.

However, when analysts choose the MCMC approach they trade simplicity for speed. Even
though we have described parsimonious models, an MCMC sampling approach tends to be
slow since its implementation requires that the algorithm randomly samples from the
underlying distributions. By contrast, the EM algorithm analytically derives estimates and
therefore converges much faster. Furthermore, MCMC sampling may require multiple runs
to assess convergence and to tune up initial values of prior distributions.

Both methods are viable options for the critical step towards bias estimation -recovering the
assumed (‘true’) underlying distribution of responses. However, we tend to prefer the EM
algorithm implementation for two reasons. First, its speed and scalability is rather important,
especially when the sample size is large. Second, the MCMC approach, while easy to set up
in principle, can be quite challenging to optimize in terms of the choice of robust priors and
achieving convergence.

6 Simulation Study
We stated earlier that two factors can contribute to biased estimates of coefficients on
covariates of interest in regression models. First, some of the population may quit smoking
according to a stochastic process that does not depend on the covariates in the regression. It
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is important to separate out the two groups, in order to assess what impact certain policies
can have on smoking habits. For example, in the extreme case in which all the subjects quit
at random, we cannot expect any policy to affect people’s decision to quit smoking. Second,
some respondents heap. Heitjan and Rubin [6] coined the term ‘ignorable coarsening’ to
describe a set of conditions under which heaping would introduce no bias. However, as
stated here and other places (e.g., [13]), heaping cannot always be ignored. Our goal is to
estimate the extent of heaping in data sets and to describe how to use the model to quantify
the degree to which regression parameters are biased as a result of heaping.

To assess the performance of our method, we perform simulations in which we vary the
distribution of the random process, the mixture proportion, the set of parameters of the two
mixture components, and the heaping probabilities. Here, we report two scenarios which
demonstrate the power of our method to recover the true parameters.

6.1 Data Generation
Our simulations consist of data generated according to the mixture models described
schematically in Figure 8. In each simulated data set, we choose the stochastic mixture
component and vary the parameters. Each data set has n = 10000 subjects. To obtain
standard errors for the parameters estimates, we ran 30 simulations for each parameter
configuration. We run the simulations under two scenarios that use two different
distributions for the stochastic process:

1. To simulate a survey that asks about quitting ages (as in the PSID), we use an
Inverse Gaussian distribution with parameters μ = 13 and λ ≈ 61. This scenario
represents a situation in which the smokers who draw their quit age from the
stochastic distribution, quit, on average, 13 years after they start smoking (with a
standard deviation of 6). For the normal component, we vary the mean and variance
parameters. Results shown here use values θ = 55 and σ = 5. This represents a
group who quit in response to an external event (e.g., disease, birth of a child, etc)
on average at age 55 with standard deviation 5.

2. The second scenario emulates a survey in which people report the time elapsed
since quitting (as in CPS-TUS). Here, the stochastic component is assumed to
follow an exponential distribution. We use the rate of λ = 1/7 in this scenario. The
normal component here represents a ‘one-time shock’, which we think of
(simplistically) as the effect of a price increase, θ years ago. We use θ = 14 and σ =
0.2.

To test the accuracy of our estimation procedure under different mixture proportions and
different heaping probabilities (denoted by p and q, respectively in our model), we generate
data sets according to the above specifications, with p ∈ [0.75, 0.99] and q ∈ [0.15, 0.5].

Note that the purpose of this simulation study is three-fold. First, for any estimation
procedure, it is expected that when the correct model is assumed, the estimates will be close
to the true values. Hence, the first goal is to verify that, under the right model, our procedure
provides accurate results. Second, even under the right model, it is not obvious that the
parameter estimates will be accurate in the presence of heaping. Therefore, our second goal
is to verify that they are. The third objective is to show that the model-based approach is
flexible enough to accommodate different distributional assumptions. This goal is especially
important because survey information may often suggest that another distribution better
describes the data generating process. The flexibility of our approach in easily
accommodating different distributional assumptions is also important because, as is the case
with any parametric estimation procedure (for example, least-squares estimation for linear
regression), the validity and quality of the estimation depends on the extent to which the
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distributional assumptions are reasonable approximations of the true underlying
distributions.

6.2 Results – IG Distribution
In Table 1 we report how well our algorithm recovers the parameters of the mixture
distribution. To evaluate how our algorithm performs, we generate Inverse-Gaussian/Normal
mixtures according to the procedure in (6.1), and use the EM algorithm to estimate
parameters. Each row reports results for a different combination of p and q (in this
simulation the means and variances of both the normal and the IG distributions were fixed,
as described above). The first column identifies the true mixture and heaping probability
values, respectively. The next four columns report the average bias (and standard error of
the bias) of the fitted values of the mean and variance of the Normal and IG components of
the mixture distribution. The last two columns report the average bias and standard errors for
the estimated mixture and heaping probabilities. The average bias is computed by

 where ψ stands for any of the estimated parameters, and ψ̂i is the
estimate in the i-th simulation. We similarly compute the standard error of the bias.

In general, the average bias is very low. For example, in the first row when p = 0.7 and q =
0.15 the average bias of the mean of the normal component (θ) is 0.05 (with standard error
of 0.13). The true value of is 55 throughout. Hence, the bias is very small relative to the true
value. This pattern holds for all other parameters. Because we get very accurate estimates,
we can recover the true mixture distribution. Our estimates are very accurate even in the
difficult case in which only 1% of the population quits in response to external shocks and
over 56% of respondents report a heaped quitting age. In this case, the estimation procedure
is considerably slower.

To demonstrate that our algorithm works with survey data we apply the EM algorithm to the
PSID data shown in Figure 1. We assume the data are generated by two heaping rules. We
assume one group heaps on odd multiples of 5 year ages (with probability q5). The other
group heaps on even multiples of 5 year ages (with probability q10). This exercise yields the
following estimates:

• Normal component: mean 45.9, standard deviation 11.9.

• Inverse Gaussian component: mean 11.2, standard deviation 12.16.

• The proportion of the stochastic (IG) component is p̂ = 0.65.

• Heaping probabilities: q̂5 = 0.038, q̂10 = 0.043.

Hence, 65% of the population quit smoking according to an Inverse-Gaussian random
process, approximately 11 years, on average, after they started smoking. The overall
proportion of ‘heapers’ is a little over 8%. In the PSID 26.23% of ex-smokers report a
heaped quit age, whereas ex ante one expects 20% to report such an age. The excess mass of
6.23% on heaped ages is close to the proportion our model estimates. The fitted distribution
is depicted in Figure 9.

6.3 Results – Exponential Distribution
In Table 2 we report how well our algorithm performs with an exponential/normal mixture.
We include a simulated ‘one-time shock’ 14 years prior to the survey. Here, we only report
results for one combination of p and q (where p = 0.8 and q = 0.2). The average bias and its
standard error are computed as above. For all but one parameter our algorithm once again
estimates the true parameters accurately. Only the heaping probability, q, is underestimated.
On average, it was estimated to be 0.14, when the true probability was 0.2.
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Understanding this discrepancy helps to illustrate a very important characteristic of the
algorithm and how it interacts with specific features of the data. Two pieces of information
are important. First, in this simulation we have a one-time ‘shock’ 14 years prior to the
survey. Second, 15 is a heaping point.

When the mean of the normal component is very close to a heaping point, a slight bias
(overestimation) of the mean (θ) is translated by the algorithm into a larger proportion of
‘true heapers’. To illustrate this point with a numeric example, consider the following. In
one of our simulations the point estimates of the mean and standard deviation of the normal
distribution, θ and σ, were 14.43 and 0.15, respectively. The algorithm correctly estimated
the proportion of the normal component to be 0.2 (which corresponds to 2,000 subjects).
The expected number of subjects in the normal component that are estimated to have quit
more than 14.5 year ago is 641. Specifically,

This corresponds to 6.4% of the population, which is very close to the observed average bias
in the estimation of q. Because the mean of the normal component is overestimated, the
algorithm assigns more of the mass from the normal component to be ‘truly’ at 15, so fewer
of the people reporting an A5 age are considered heapers. Generally, our algorithm will
estimate the heaping probability more accurately when the normal component is more
diffuse or when its mean is not too close to a heaping point.

This observation has important practical implications worth discussing here. First, note that
the other estimates are very accurate. The algorithm does a good job recovering the mixture
distribution but considers too many people to be ‘true heapers’. Since our main focus is the
estimation of the effect of a certain event such as a price increase, the timing of which the
analysts will often know, our results show that the algorithm picks up the effect of the event.
We can easily correct the estimate of the heaping probability accordingly. Second, this
example highlights the importance of allowing the algorithm to specify ‘true heaping.’ For
example, if the shock occurred 15 years ago, the estimate for q must reflect the fact that
more people truly quit at that time. Lastly, this particular example illustrates the difficulty in
unraveling important effects if one does not account for the interaction between the mixture
distribution and the heaping behavior.

As a side note, we observe that this situation illustrates a shortfall of one of the main
alternative methods for dealing with heaping, namely the “coarsening” of data proposed by
[6]. Recall that to apply their method, one averages all data inside the interval over which
heaping is assumed to occur. By definition this process throws away information. Under a
mixture distribution where behavior occurs both stochastically and in response to events,
coarsening not only dilutes the timing of any shock, it also entails an efficiency loss because
it combines the random variation from the stochastic component with the systematic
variation from the normal component.

We conclude this section by noting that we also fit the data using MCMC simulations and
obtained equally good results. In one such simulation we simulated 2000 subjects who
reported their quitting time in terms “how long ago.” We set p = 0.9 (1800 subjects quit
according to a stochastic process given by an exponential distribution with rate λ = 0.1. 100
subjects quit because of external conditions according to a normal distribution with mean θ
= 14 and standard deviation σ = 0.5. We had 34% of people heap their responses (q5 = 0.34).
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Using the WinBUGS MCMC sampler [29], we set up two chains with 6000 iterations in
each, of which the first 3000 were discarded as burn-in iterations. We further thinned the
MCMC posterior sample, by keeping one of every three consecutive samples. Thinning
MCMC chains is a common practice to reduce the dependence between simulated samples.
Hence, each chain provided 1000 samples from the posterior distribution. [29] provides
details on the posterior distribution of the parameters and the sampling methods that
WinBUGS is using.

A general approach, which we follow, is to use relatively flat priors. However, given the
data, one may tweak the prior distributions to gain faster convergence. For instance, we
assume that the mean event time has a normal prior distribution. Because in the observed
data the mean event time is around 14, we choose to center our prior around that point. We
note that in general, if the prior is sufficiently diffuse and the sample size is large enough,
the posterior distribution is determined primarily by the data. In this case, the particular form
of the prior has a diminishing effect as the sample size gets larger. When the sample size is
small, the posterior distribution that results from MCMC depends more critically on the
assumed prior distribution. However, the observed distribution always serves as a guide to
the choice of the prior.

Here we use a Beta(0.1, 0.9) distribution for elapsed time parameter (λ), a normal
distribution with mean 14, and variance 2 for the mean event time (μ), a Beta(0.5, 1.5)
distribution for the probability of heaping, and a Beta(0.9, 0.1) for the mixture probability.
Since we are simulating a ‘shock event’, we assumed that the prior of the variance of the
mean event time is distributed gamma(64, 16). Because our sample size is large, the results
are robust to the choice of priors.

We assessed convergence of the MCMC simulation using autocorrelation and trace plots.
Figure 10 shows the trace plot (panel A) and a histogram (panel B) of 1000 samples from
one of two chains, and an autocorrelation plot (panel C). The plots for the second chain, as
well as for the other parameters, exhibit similar properties. Namely, the plots show good
mixing in the simulation, normality of the posterior distribution, and low autocorrelation.

Furthermore, by using multiple chains we can assess convergence by means of the R̂, which
measures the potential scale reduction for each parameter [30, Section 11.6]. The R̂ values
for all parameters were 1 (the Bayesian literature recommends using a maximum threshold
of 1.1). When the R̂ values are at or below 1.1 taking more samples will not significantly
improve inferences based on the posterior distribution of each parameter. Finally,
WinBUGS also provides a statistic, n.eff, that is the effective number of independent
simulation draws. Ideally n.eff should be as large as the total number of posterior draws
(here 2000). We obtained exactly this value for λ, θ, and q. For p n.eff was 880 and for σ−2

(the precision of the normal distribution) it was 220. These values further indicate that
convergence has been achieved and that inference based on the posterior distribution is
valid.

Table 3 summarizes the results of the MCMC simulation. The posterior means of the five
parameters in the model are very close to the true values, even in the presence of significant
heaping and with a relatively small proportion of sample in the normal component of the
mixture.

7 Bias Estimation
Our main goal in this paper is to estimate to what extent heaping in surveys can affect
parameter estimates in regression models. We begin this section with a brief review of
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discrete time survival analysis regression. Our notation below follows that in [31], which we
summarize here for completeness.

7.1 Discrete-Time Survival Analysis – Brief Review
Let gij = Pr{Ti = j|Ti ≥ j, Z1ij = z1ij, …, ZPij = zPij} be the discrete time hazard function. gij is
defined as the conditional probability that person i with covariates Zkij quit smoking in time
j, given that he smoked in the previous period. We use the model proposed by Cox [32] and
assume that the log-odds of quitting follow a linear model:

(18)

where the data are stored in a person-year format. In any given sample, t(1) will be the
earliest year a person is at risk to quit (e.g. the year the first person began to smoke) and t(J)
is the last year (usually the survey year). The first subscript in Dtij represents the range of
time periods in the sample, 1, …, J. Subscript i represents the subject. Subscript j represents
the current period. For each subject, the data set contains si rows, where si is the number of
years the subject reported to have been smoking. The variable Dtij is set to 1 if subject i has
been smoking for j years at time period t, and 0 otherwise. Note that for a fixed t, for each
pair ij at most one dummy variable Dtij can be 1. The parameters at represent the baseline
hazard in each time period.

The variables Zpij record the values of P covariates for each subject i, in each time period j
in which he was ‘at risk’ for quitting. These covariates may be fixed for all time periods
(e.g., sex, race, etc.) or time-varying (e.g., cigarette price, or major events such as marriage,
heart attack, etc.) The parameters βp describe the effect of the P predictors on the baseline
hazard function (on the logit scale).

The observed response, Yij, equals 1 if subject i quit in his j-th year as a smoker and equals 0
if he was still smoking.

The design matrix X for the logistic regression consists of J + P columns where the first J
correspond to the smoking duration indicators Dtij. The last P columns correspond to the

linear predictors. The number of rows in X equals , the total number of smoker-
person-years represented in the sample. To estimate the parameters ϕ = {α1, …, αJ, β1, …,
βP }, we maximize the likelihood function

(19)

where gij is obtained from (18).

The main goal of most researchers is to estimate the parameters {βp}. The set {αt} can be
considered as nuisance parameters. Therefore, to implement our approach we would convert
(18) from logit representation to a hazard function in order to use the partial likelihood
method, introduced by [32]. This estimation method allows one to consider the nuisance
parameters jointly, in the baseline hazard function. It also estimates the regression
parameters more efficiently because it uses standard proportional hazard fitting methods,
such as coxph in R. Assessing the significance of the predictors is typically done by
comparing −2LL of the complete and reduced models, where the latter includes only the
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intercept parameters, αt, and −2LL is −2 times the log-likelihood. The drop in −2LL is
compared with a Chi-square distribution with P degrees of freedom.

7.2 Estimating Heaping-Induced Bias and Misclassification Probabilities
Using the notation in 7.1, it is obvious that heaping (or for that matter, any type of error in
reported ages in retrospective surveys) will result in a different design matrix X and
response vector Y, and hence may result in biased estimates for {βp}.

To estimate the heaping-induced bias we propose that one use Monte Carlo simulations:
recall that in Section 5 we provided a model-based approach to estimate the distribution of
quitting ages. One would use these estimates (which we denoted by ϕ̂) to generate random
design matrices and response vectors, X(m) and Y (m), respectively. For each such pair,
obtain the regression parameter estimates, β̂pm (for m = 1, …, M). Specifically, take the
birth years of subjects in the survey, and draw start- and quit-smoking ages according to the
fitted distribution for the appropriate model from Section 5 and convert them to calendar
years. For each predictor p = 1, …, P then estimate the bias by

(20)

where β̂p is the maximum likelihood estimator of βp obtained from the survey data (without
accounting for heaping) and β̂pm is the estimator from the m-th random pair (X(m), Y (m)).

Specifically, one could obtain M bootstrap iterations [33] from each column of X to generate
the columns X(m). Then, to generate Y (m) proceed as in the data generation process in
Figure 8 for each m = 1, …, M: using the estimated regression parameters, β̂, compute the
mean of the normal component, θ(m) = X(m)β̂. Draw M random responses from the normal
component, ri,N ~ N(θ(m), σ̂2). Also, draw M random samples from the stochastic
component, ri,R ~ FR(ψ̂), where ψ̂ is the set of estimated parameters obtained from our
fitting procedure. Similarly, generate M mixture component indicators, bi ~ Ber(p̂); and M
heaping indicator variables, hi ~ Ber(q̂). For each subject, compute ri = biri,R + (1 − bi)ri,N,

and its ‘heaped’ version, H(ri). Finally, obtain .

Using the bootstrap/Monte Carlo simulation approach we could also estimate the response
misclassification probabilities, defined for each time period j, as in [34], by γ0,j = Pr(Yij = 1|
Ỹij = 0) and γ1,j = Pr(Yij = 0|Ỹij = 1), where Ỹij is the true response (subject i quit in time
period j), and Yij is the reported response. Similarly, we could estimate the misclassification

probabilities of the ‘at-risk’ set at time t, .

8 Discussion
The above exercise shows that our method recovers the parameters of the underlying
distribution in our simulated data. With estimates of the underlying parameters, we can
estimate the bias in regression parameters. Our method is similar to the one developed by
[13] with two important extensions. Those authors assume there is one underlying
distribution and that respondents all use a single heaping rule. Here we assume a mixture of
two distributions (that replicate the observed data very well) and we allow for multiple
heaping rules. Our approach also relaxes two very strong assumptions of [6] – that
respondents only use a single heaping rule and that, within intervals, respondents randomly
heap their responses. In most data both assumptions probably do not hold.
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We developed a model-based approach that relies on two key assumptions. First, that
observed data result from two distinct and separate processes. In one we assume that the
behavior of interest occurs stochastically. In the other we assume that observed behavior
responds to external shocks. We also assume that survey respondents either report accurately
or they fall into (possibly multiple) groups that each use a different heaping rule when
responding to survey questions. We fit the model to simulated data to show that we can
recover the parameters of the true distribution very accurately, even when the proportion of
heaped responses is very high. We also apply the algorithm to retrospectively reported
survey data on smoking cessation from the Panel Study of Income Dynamics. We suggest
how one can apply our algorithm to estimate the attenuation bias that heaping appears to
cause in regression coefficients (shown empirically in [35]).

Our simulation study revealed two important insights that both guide the application of our
methods and recommend it over alternative methods. First, we find that when external
shocks occur near a heaping point, researchers must take care when applying the algorithm.
If researchers fail to incorporate information about the timing of the events when they apply
the algorithm, it may underestimate the actual proportion of heaping. Second, our algorithm
is preferred over methods such as coarsening because it does not throw away information.
Further, our algorithm is flexible. It can accommodate any distributional assumptions
researchers believe underlie the data generating process. In addition, the algorithm easily
allows one to model heaping probabilities using subject-specific covariates. Finally, the
algorithm is not limited to either a single heaping rule or to assumptions about the specific
form of the heaping (e.g. symmetry).
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Figure 1.
The distribution of reported quit ages in the 1986 PSID survey.
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Figure 2.
Reported start-smoking ages for two current-age groups.
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Figure 3.
The probability of a heaped start-smoking age, as a function of current-age.
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Figure 4.
The distribution of FY S for different subsets from the sample.
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Figure 5.
Fitting the distribution of FY S.
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Figure 6.
The distribution of FY S49.
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Figure 7.
The distribution of the response to the question ‘how long ago did you quit smoking’ in the
CPS survey (top), and the inferred quitting ages (bottom).
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Figure 8.
Data generation process for heaped smoking cessation ages
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Figure 9.
Fitting the PSID 1986 data with an Inverse Gaussian/Normal mixture

Bar and Lillard Page 30

Stat Med. Author manuscript; available in PMC 2013 November 30.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 10.
Sampling from the posterior distribution of p̂ (ptrue = 1).
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Table 3

Posterior means, standard errors, and 95% Highest Posterior Density (HPD) interval

Parameter True Value Estimate (se) HPD

p 0.90 0.880 (0.0098) (0.865, 0.904)

q 0.34 0.280 (0.0156) (0.249, 0.309)

θ 14 13.930 (0.0701) (13.790, 14.060)

σ−2 4 4.790 (0.5583) (3.581, 5.782)

λ 0.10 0.092 (0.0024) (0.088, 0.097)
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