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Abstract
This paper highlights the role of institutional resources and policies, whose origins lie in political
processes, in shaping the genetic etiology of body mass among a national sample of adolescents.
Using data from Waves I and II of the National Longitudinal Study of Adolescent Health, we
decompose the variance of body mass into environmental and genetic components. We then
examine the extent to which the genetic influences on body mass are different across the 134
schools in the study. Taking advantage of school differences in both health-related policies and
social norms regarding body size, we examine how institutional resources and policies alter the
relative impact of genetic influences on body mass. For the entire sample, we estimate a
heritability of .82, with the remaining .18 due to unique environmental factors. However, we also
show variation about this estimate and provide evidence suggesting that social norms and
institutional policies often mask genetic vulnerabilities to increased weight. Empirically, we
demonstrate that more-restrictive school policies and policies designed to curb weight gain are
also associated with decreases the proportion of variance in body mass that is due to additive
genetic influences.
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1. Introduction
According to recent estimates, more than one in three adolescents are overweight or at risk
of being overweight (Ogden et al., 2006), and prevalence rates of obesity are 10 times higher
in the United States than in other developed nations (Lissau et al., 2004). Given the links of
obesity to chronic health problems such as type-2 diabetes and hypertension, understanding
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1Although the MZ correlation is slightly more than twice the DZ correlation (indicating a small possibility of dominance) previous
research (Haberstick et al., 2010) suggests that the inclusion of the dominance parameter estimate does not improve model fit. Thus,
we only describe ACE models in our multivariate approach.
2Figure 2 arranges the values in terms of social risk. As such, the lowest level of punishment severity is characterized as a social risk
because we equate this with less social control. Thus, the low and high values from Table 3 appear to be ‘reversed’ in the Figure 2.
This was done so that the values are conceptually similar to the hypothesized models presented in Figure 1.
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the social, behavioral, and biological mechanisms responsible for differences in the risk of
obesity is a critical public health issue. ‘Obesity politics’ (Kersch, 2009) has taken center
stage in policy debates regarding the most effective means to improve the health of the
public but the bulk of policy research on obesity has focused on individuals and their
corresponding behavioral risk factors such as diet and exercise. Recent research, however,
has begun to examine characteristics of the built, social, and institutional environment that
may facilitate or hinder proper energy balance behaviors (Brescoll, Kersh, & Brownell,
2008; Gordon-Larsen et al., 2006). By contributing to the knowledge and understanding of
political and institutional processes at play, political science has the potential to be centrally
located in debates regarding the causes and consequences of obesity and can help to develop
weight management initiatives that begin with institutions such as schools and work places.

The heritability (the proportion of variance that is due to genetic factors) of body mass index
has ranged from as low as .3 to as high as .9 (Cornes et al., 2007; Franz et al., 2007; Maes et
al., 1997; Ordonana et al., 2007; Schousboe et al., 2003; Silventoinen et al., 2007; Wardle et
al., 2008; Haworth et. al 2008; Haberstick et al. 2010). Despite this large range, to date no
research has examined the effectiveness of institutional norms and policies as a function of
genetic vulnerability to weight gain. That is, some policies may be effective at reducing the
intake of fatty or high-caloric food and increasing the prevalence of regular exercise for the
overall population, but these policies may be relatively ineffective for those who are more
likely to gain weight because of very small differences across their genome. As such, the
interplay of genetics and environment (GxE) paradigm is critical for generating effective
policies aimed at reducing the prevalence of obesity by identifying and creating
environmental sources which also reduce the genetic influences on weight gain and energy
balance behaviors (Faith and Kral 2006).

This is particularly relevant to current state of the ‘obesity epidemic’ (Mokdad et al. 2000)
and the related ‘obesity politics’ (Kersch, 2009). Health policy makers have been engaged in
heated debates about the implementation of punitive sanctions for those who are obese. For
example, Arizona has proposed introducing a $50 fee for engaging in unhealthy behaviors
and they single out obese individuals (Williams 2011). This emphasis on choices frames the
increased prevalence of obesity as an individual-level phenomena and the corresponding
policies are aimed at influencing individual’s behaviors rather than examining the
environment in which these behaviors exist. Equally important, these policies assume that
increasing levels of control will lead to decreases in obesity levels but some research
suggests that this is not the case, especially if obese individuals feel further marginalized and
stigmatized by these policies (Story, Nanney, and Schwartz, 2009).

In this paper, we review the general GxE framework and illustrate how twin and sibling
models can be used to further our understanding of an important political and public policy
issue like obesity. To demonstrate the usefulness of this perspective, we take advantage of
the policy differences that exist across the schools that are included in the National
Longitudinal Study of Adolescent Health (Add Health). We conclude by discussing the
implications of these findings for policy-related work in general and for the genetics of
obesity in particular.

2. Gene-environment interactions: the social scientific perspective
Gene-environment interaction studies, characterized as the interplay between heritable traits
and environmental factors, have been a focus of many decades of research attempting to
unravel the overly simplified ‘Nature vs. Nurture’ debate (Freese and Shostak, 2009). While
scientists may share enthusiasm for GxE research, there is very little agreement in the broad
research community about what actually constitutes the environment. With ‘obesity politics’
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and public policy institutes such as The Rudd Center for Food Policy and Obesity, social
scientists in general and political scientists specifically, can provide important insights about
the contours of the political, social, and institutional contexts in which individuals interact
with one another. Apart from their families, schools are the most important social contexts
for most adolescents and schools provide clearly defined environments for specific health
related policies. In this section of the paper, we describe the current perspectives which
frame the social and institutional environments, with an eye towards policy suggestions that
are sensitive to the current social and political climate.

As noted by Kersch (2009), the dominant paradigm of current research on obesity has
focused on individual behaviors and activities. This criticism is particularly important in the
gene-environment interaction literature because the environment continues to be
operationalized and measured at the individual level. Different social policies and social
norms are useful ways to characterize the broad social environment and research has shown
predictable changes in genetic factors as a function of these different environments. For
example, research on the genetic and environmental inputs into smoking has examined
social contexts before and after the implementation of anti-smoking legislation (Boardman
et al. 2011; Boardman et al., 2010; Kohler et al., 1999), cultural contexts within schools
(Boardman et al., 2008; Rowe et al., 1999), and tax-rate differences across states
(Boardman, 2009). However, no existing work has extended this line of inquiry to the study
of body mass or obesity.

Given the classical and modern focus of political science on how institutions and social
norms shape behaviors (Hall and Taylor 1996; Gerber, Green and Larimer, 2008), the study
of how institutions and social norms influence the expression of heritability of body mass
certainly overlaps with heritability research areas in political science. Adding a GxE
framework to policy research, though methodologies such as observing how the heritability
of obesity may be altered (1) by student norms/stigmatization of weight or (2) school
resources for weight management, may also enhance health policy research which are
extensions of these established research areas.

3. Gene-environment interactions and body mass: conceptual models
Within the GxE paradigm, four perspectives have emerged to explain how social and genetic
forces interact to affect an individual’s risk of obesity. These models include social trigger,
social control, social push, and social distinction and they are depicted graphically in Figure
1. According to the social trigger model, genetic factors related to obesity should only
emerge in the most risky social environments because these environments trigger genetic
tendencies for behaviors and lifestyles that are linked to increases in physical weight. For
example, Loos and Bouchard (2003) point to differences in energy balance behaviors across
different social contexts as the reason for the observed differences in heritability estimates
across studies. According to their model, individuals may have latent genetic tendencies to
gain weight but this trait only manifests in ‘obesogenic’ environments characterized by high
caloric intake and no physical activity. In contrast, the social control model anticipates that
the social environment is more likely to suppress genetic influences than it is to trigger
them. Informal social norms and formal institutional rules (e.g., laws) are sources of control
that place real limits on the types of behaviors in which individuals can engage. As an
example, Boardman (2009) shows that the heritability of regular smoking is significantly
reduced for residents of states with higher taxes on cigarettes and states with the most
limitations on the sale of cigarettes compared to residents of states without these controls.
The trigger and control models are similar to each other because they both assume that the
environment causes genes to function differently. They are different from each other
because they anticipate a different threshold at which environmental influences are
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expected. As indicated in Figure 1, the social trigger model emphasizes the relevance of
genetic risk in the most risky environments; body mass may not be a heritable trait in non-
risk environments. In contrast, the social control model anticipates a main genetic influence
in most environments except in those with the highest level of social control (e.g., lowest
level of social risk).

In contrast to these causal models, the social push and social distinction models propose
non-causal mechanisms for gene-environment interactions. In other words, the environment
is not hypothesized to cause changes in genetic associations, rather the environment may
mask genetic associations which are only evident when considered across the spectrum of
different environments. The social push model emphasizes the difference between typical
and extreme social environments and anticipates that genetic factors will emerge as more
salient within typical but not extreme environments. Within the extreme ends of the
distribution, the social factors are causing behaviors and there is very little room for
genotype to differentiate individuals from one another. However, in the typical range, when
social forces on either end are minimized, genes become relatively important because the
environment allows for ‘biology to shine through’ (Raine, 2002: 314). Like the social push
model, the social distinction model emphasizes the ‘noisiness’ of certain social
environments. However, in contrast, the social distinction model suggests that it is in the
least risky environments where genetic influences will have the greatest effect on BMI. If
one examines cases (obese) and controls (non-obese) in environments characterized by a
low prevalence of obesity, where there is cheap access to healthy foods, and few limits on a
healthy lifestyle, one is more likely to identify genes linked to BMI than if one examines
cases and controls within ‘obesogenic’ environments (Loos and Bouchard 2003).

4. Schools and the genetics of obesity
In this paper, we build on this body of work by examining differences in the genetics of
body mass as a function of the institutional and normative characteristics of more than 130
schools in the Add Health study. Using the GxE paradigm discussed above, we demonstrate
how social norms and institutional factors may impact the heritability of BMI. In doing so,
we pull examples from recent research. Given recent findings that overweight children face
stigmatization and marginalization by peers of ‘normal’ weight (Puhl, Luedicke, and Heuer,
2011) we examine how school-level mean BMI (e.g., ‘norms’ for BMI) and variation around
the mean BMI (e.g., ‘enforcement of BMI’) among students who report being of normal
weight may alter heritability of BMI. For example, if the social trigger model is the most
relevant, then the heritability of BMI should be the highest within schools that have a higher
value of “normal weight” compared to schools with lower values of “normal weight” (e.g.,
stronger norms about physical size). Alternatively, if the heritability of BMI is the highest in
schools with average weight expectations for “normal weight” compared to either extreme
(e.g., the “normal weight” is either very low or very high) then the social push model would
receive support.

Additionally, we examine how school resources, punitive policies, and issues of social
disorganization may lead to differences in the heritability of BMI. Our examination of
school resources reflects research suggesting school resources for health and fitness reduce
obesity (Story, Nanney, and Schwartz, 2009). Given recent political and discussions about
potential dangers of punitive treatment of obesity in laws and school policy (Kersch, 2010;
Story, Nanney, and Schwartz, 2009) that mirrors the associations within families (Odoms-
Young and Fitzgibbon, 2009) it is important to examine the extent to which heritability is
influenced by the degree to which schools discipline their students. Specifically, this body of
work suggests that increasingly strict environments may actually increase the risk of weight
gain among those who may be predisposed to increases in body weight. Finally, given social
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disorganization in a child’s environment is associated with obesity (Burdette, Wadden, and
Whitaker, 2006), we also examine how measures of social disorganization may be
associated with differences in heritability of BMI. In this manner, we illustrate how
institutional characteristics (e.g., the extent to which schools experience social problems),
health resources, and punitive policies may impact the heritability of weight and weight
gain.

5. Data
This study uses data from the National Longitudinal Study of Adolescent Health (Add
Heath) (Udry, 1998). Add Health was designed to examine health and health-related
behaviors among a nationally representative sample of adolescents in seventh through
twelfth grade. In 1994, 90,118 adolescents from 134 schools completed questionnaires about
their daily activities, health-related behaviors, and basic social and demographic
characteristics. Following the in-school survey, 20,747 respondents were re-interviewed in
their homes (Wave I) between April and December of 1995, again one year later (Wave II),
and again between 2001-2001 (Wave III). In 1995, more-detailed school characteristics were
collected through a second round of interviews with school administrators.

Two aspects of this study are particularly useful for our purposes. First, the Add Health
study over-sampled twin pairs identified in the in-school survey (Harris et al. 2006). During
Wave III of the study, respondents who indicated that they had a full sibling or a twin during
Wave I were asked to provide saliva specimens to be genotyped. Of these 3,139 individuals,
83 percent (n = 2,612) agreed to take part in the study. Researchers then used 11 genetic
markers to confirm the reported zygosity of the twin and sibling pairs. As a result of this
test, 34 pairs were reassigned zygosity status. Based on this criterion of zygosity, we use 234
monozygotic (MZ, or identical) twin pairs, 370 dizygotic (DZ, or fraternal) twin pairs, 864
full sibling pairs, 238 half-sibling pairs, and 96 cousin pairs, for a total of 1,802 unique
pairs. The pair design makes it possible to decompose phenotypic variation into
environmental and genetic components, and the multilevel design allows for these estimates
to vary across social environments such as schools (Boardman et al., 2008). Second, because
nearly all students and administrators in the schools surveyed completed interviews, it is
possible to measure aspects of schools that are otherwise difficult to assess. Our analysis
uses data from all 134 schools, with an average of 15.52 pairs per school (SD = 24.18).
Descriptive statistics and pairwise correlations for BMI are provided in Table 1.

In our analysis, we examine the degree to which school norms within schools and
institutional characteristics of schools influence the genetic, shared environmental, and
unique individual components of body mass. To accomplish this task, we selected
biologically related siblings who have non-missing data from Wave I interviews, attended
schools where school administrators had completed surveys about school characteristics, and
attended schools in which at least 20 students were Wave I respondents so that BMI means
and standard deviations could be reliably estimated for those reporting ‘normal BMI’.

6. Measures
6.1 Dependent variable

We use the body mass index (BMI) to assess the weight of our respondents. This measure is
simply respondents weight (in kg.) divided by their height (in meters) squared. BMI at Wave
I is based on self-reports of respondent height and weight. Although later waves of Add
Health collected height and weight data through both self-reports and interviewer
measurements, we use Wave I self-reported BMI because the Wave II sample did not
include high school seniors who graduated during Waves I and II and the Wave II measures
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occur 12 months after our school-level indicators are assessed. It is important to note that is
Wave I self-reported BMI and Wave II objective BMI are highly correlated with measured
BMI (r = .93) and this correlation does not vary as a function of zygosity. Similarly, the
pairwise correlations for measured (rMZ = .77; rDZ = .40) and self-reported (rMZ = .71; rDZ
= .36) BMI provide roughly equivalent heritability estimates for BMI (h2 ~ .74 to .70).

6.2 School-level variables
We use five indicators of the school environment that are theoretically linked to the
heritability of BMI through social or institutional mechanisms. Means, standard deviations,
and correlations for these five variables are presented in Table 2. We discuss these variables
below.

Social disorganization is assessed using data from the Wave I school administrator
questionnaire. This scale represents the school administrator’s views of severity of a number
common problems found in the school’s student population. The items used in the scale are
the severity of the following issues: smoking or tobacco use, drug use, alcohol use, gang
violence, teenage pregnancy, sexual harassment, vandalism, eating disorders, racial conflict,
and stress or pressure. Administrator responses to these items were coded as 0 for ‘no
problem’, 1 for a ‘minor problem’, and 2 for a ‘major problem’. These items were summed
to provide a measure of social disorganization for the school (α = .85).

We estimate the degree to which schools are more or less punitive using a school
punishment severity score. This measure relies on Wave I data from school administrators,
who were asked about school punitive policies for a range of 12 first-time occurrences for
misbehavior or misconduct. These items consist of policies for the following infractions:
cheating, fighting with another student, injuring another student, possessing alcohol,
possessing an illegal drug, possessing a weapon, drinking alcohol at school, using an illegal
drug at school, smoking at school, verbally abusing a teacher, physically injuring a teacher,
and stealing school property. To differentiate levels of policies, we code scores for each item
as 0 for ‘minor actions’, 1 for ‘in school suspension’, 2 for ‘out of school suspension’, and 3
for ‘expulsion’. A school’s punishment severity score is measured as the sum of these 12
items (α = .76).

School weight-loss resources is assessed using data from Wave II, in which school
administrators were asked if they had an in-school recreation center and weight counseling.
To examine the extent to which these in-school weight-control (e.g., institutional weight)
resources are differentially associated with heritability of BMI, we estimate genetic,
common environmental, and unique environmental components of BMI for (1) schools that
had neither weight counseling nor a recreational center, (2) schools that had either weight
counseling or a recreational center, and (3) schools that had both weight-loss counseling and
recreational facilities. In supplemental analyses that are available upon request, we also
examined for variation in schools having a recreation center or weight-loss counseling and
found no significant variation from the results reported below.

We assess school body-size norms using the average weight among those who claimed to be
normal weight. During Wave I in-home interviews, respondents were asked, How do you
think of yourself in terms of weight? Response options were ‘very underweight’, ‘slightly
underweight’, ‘about the right weight’, ‘slightly overweight’, or ‘very overweight’. To
obtain a measure of socially acceptable BMI, we estimate the average BMI for the subgroup
of individuals at a given school who viewed themselves as being ‘about the right weight’
(i.e., as being neither overweight nor underweight). For schools with a sufficiently large sub-
population, we then estimate heritability and environmental components for schools with the
lowest, middle, and highest mean normal BMIs.
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We assess the BMI norm enforcement using variation in BMI among those who consider
themselves to be normal weight. That is, while the mean ‘normal’ BMI may capture the
socially acceptable BMI within a school, limited variation in the spread of BMI about the
mean in that school may indicate that the school body-size norm is strictly enforced.
Tremendous variation in weight for those who claim to be normal weight would indicate
less consensus and marginalization for those with ‘non-normal’ weight, providing indirect
evidence for loosely proscribed social norms regarding body size. In estimating the
heritability and environmental components for schools with lowest, middle, and highest
variation in perceived normal BMI, we attempt to capture how adherence to an ideal normal
weight may alter the scope of environmental and genetic influences of BMI.

Because we present our multivariate biometrical models (described below) by school type
for the respondents in the sample, we examine correlations of the school-level factors that
are used in our analyses. These results and descriptive statistics for the school-level
measures are presented in Table 2. The number of school weight-loss resources is only
weakly correlated with the level of the BMI norm within schools (r = −.05) but is
moderately correlated with norm enforcement of BMI (r = −.19). That is, there is
significantly less variability in physical weight among those who perceive themselves to be
normal weight in schools that have both weight-loss resources. Schools with both weight-
loss resources are also more likely to have more-strict punishments (r = .18) but more signs
of social disorganization (r = .22). Like the number of school weight-loss resources, social
disorganization and school punishment severity are only weakly correlated with average
BMI (r = .13 and r = .02, respectively). This is important because it suggests that the school
effects that we describe in Section 8 are likely to be operating independently of one another.

7. Methods
Using statistical procedures outlined by Guo and Wang (2002) and McArdle and Prescott
(2005), we use PROC MIXED in SAS to estimate genetic and environmental components of
BMI. These techniques are extensions of basic multilevel modeling techniques commonly
used in the social sciences, adapted to provide estimates of the variance components arising
from heritability and the environment. While the Add Health data provide a wide array of
contextual variables, the school-based design reduces shared environmental and genetic
variance relative to twin and family-based designs commonly used in behavioral genetics. In
addition, by analyzing individually structured data (rather than pairwise data), we can
estimate variance components while controlling for individual factors that are related to
BMI and differentially distributed across sibling types. These methods provide estimates for
the proportion of variance in BMI that is due to additive genetic (A), shared environmental
(C), and unique environmental (E) sources. As shared environmental variance component is
often zero, we use fit statistics to determine if ACE variance or A-E variance models are the
optimal fit. We present models that have optimal fit in the output provided below.
Importantly, our models will be estimated for different school types that we identify as the
most or least risky with respect to social and institutional factors unique to each school. By
comparing the proportion of variance in BMI that is due to environmental differences across
schools, we can test the various GxE models described above. These methods are described
in detail in Appendix 1.

Due to GxE interactions potentially having non-linear effects when models such as social
push or a ‘threshhold’ trigger effect are present, we estimate variance models separately for
the third lowest, middle, and high categories of each school environmental variable. For
each environmental variable, we display the estimated heritability and confidence intervals
for these three categories in Figure 2.
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8. Results
The correlations presented in Table 1 provide the first evidence that genetic factors
contribute substantially to BMI. Among the 234 MZ twins, the pairwise correlation for BMI
is .82. As expected, this measure is considerably smaller among DZ twins (r = .39) and full
siblings (r = .40) and is virtually identical for these two types of siblings, who are
genetically similar in that they share an average of one-half of their genes by descent.
Taking twice the difference of the MZ and DZ correlations provides a rough heritability
estimate of .86 for BMI. This estimate is in line with estimates found in other work using
these data (Haberstick et al., 2010).

Table 3 presents the multilevel parameter estimates and the corresponding variance
components for the ACE estimates from the models described earlier. The results suggest
that the AE model is the best-fitting model in 11 of the 15 models. Specifically, dropping the
C estimate significantly changes the model fit for 4 of the 15 models due to A-E models
providing best-fit statistics; as shown in the model, however, this simply implies that the
contribution of C to the overall distribution is negligible, and the parameter estimates
themselves are not statistically different from zero. Nevertheless, we include these estimates
because they slightly improve model fit. For the full sample, we estimate that additive
genetic factors account for 82 percent [h2 = 10.44 / (10.44 + 3.44) = .82] of the variance of
BMI. This heritability estimate is differs slightly from the simple comparison of MZ and DZ
pairs because the model includes controls for age, gender, and race and because we also
include full-sibling, half-sibling, and cousin pairs in the analysis.

The standardized heritability estimates and 95% confidence intervals from these models are
summarized in Figure 2. As in previous work on the school moderation of genetic influences
(Boardman et al., 2008; Rowe et al., 1999), these results indicate that the estimate of .82 is
an average and that it varies predictably across school types. For example, the genetic
influences on BMI are the highest for students who attend schools with a medium level of
normal BMI, but genetic factors are considerably less influential for students in schools with
higher or lower levels of normal BMI. This functional form is anticipated by the social push
perspective. This non-causal model suggests that an examination of genetic influences on
BMI is highest in schools which have close to the mean school BMI of the entire sample,
suggesting that heritability of BMI is highest in schools which reflect the norms of the larger
population of schools in the sample.

A similar non-causal model also seems to account for the differences by norm enforcement
of BMI (e.g., variance in normal BMI) and for social disorganization. In both cases, the
heritability for BMI is significantly higher in schools characterized as the least socially
risky. Schools with the least variation in BMI among those who report to be ‘normal weight’
provide evidence for the enforcement of norms about body weight. If the structure of this
association was causal in nature then the environment would be characterized as one in
which social enforcement of a normal BMI may stigmatize those with high weight gain,
possibly creating a hostile structure for non-heritable weight changes to emerge. However,
we observe the lowest heritability of BMI in schools with the least social enforcement of
BMI norms may not be as stigmatized, possibly creating a social structure where weight
gain may be more easily influenced by environmental factors. This finding is in line with the
social push model, but we refer to this functional form as social distinction because genetic
factors emerge as the strongest primarily in the most-supportive and the most-controlled
environments (rather than the in average environments). This non-causal social distinction
model is also shown for social disorganization: the heritability of BMI is the highest in
schools in which the principal reports the lowest number of problems such as fights, graffiti,
and drug use. Given the negative relationship between social disorganization and BMI, these
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results suggest that negative environmental influences may influence weight changes,
reducing the effect of heritability on BMI. In sum, these results suggest that meso-level
social-normative factors may be best characterized as non-causal GxE associations as related
to BMI.

However, when the environment is considered from an institutional (i.e., top-down)
perspective, rather than from a normative or behavioral perspective, the models take on a
causal orientation. For example, as the severity of punishment increases, the heritability of
BMI decreases Schools with low and average levels of punishment have heritability
estimates of .88 and .86, respectively. As indicated by the confidence intervals in Figure 2,
the estimated heritability is not significantly different in these two contexts. However, the
schools with the highest level of punishment, the heritability drops to .75 and this value is
significantly different from the other types of schools. Given the functional form of this
association and the nature of the measure, these results provide support for the social control
model. In other words, the more controlled social environments, especially those with the
highest levels of disciplinary may create environments that hold obesity rates below their
‘natural’ levels. Similarly, the availability of weight-loss resources seems to moderate the
heritability of BMI that is in line with the social trigger model. For example, schools with no
resources in place to help with healthy behaviors around weight management have the
highest heritability (h2=.84), compared to schools with one or both resources in place (h2=.
75). This nine point differences represents a twelve percent increase in the genetic influence
on BMI for schools without any resources in place and is in line with the ‘weak’ social
trigger model because the trigger is not required to observe genetic risks, it simply
exacerbates genetic tendencies for elevated BMI.

9. Discussion
The goal of this paper was to demonstrate the relevance of the GxE perspective for
understanding how social norms about body size and health policies may moderate the
heritability of body weight. While obesity has traditionally been a studied within public
health and epidemiology (Ogden, 2006), the increased prevalence of obesity in the United
States and the related burdens on the public health infrastructure have made ‘obesity
politics’ an increasingly prominent political issue that is an area of study within political
science. (Brescoll, Kersh, & Brownell, 2008; Kersch 2009). For political scientists and
policy makers, understanding the biological and social etiologies of this phenomenon cross a
number of research boundaries. Importantly, by using the GxE framework, our findings
illustrate the importance of considering contextual environmental factors.

Our findings distinguish between causal and non-causal GxE models and these models
appear to align with different environmental stimuli. Specifically, when environmental
factors are characterized as the behaviors and norms of the students within the schools, the
GxE associations for BMI are best described by non-causal models (i.e., social distinction
and social push). However, when the environment is considered from the ‘top-down’
institutional perspective the causal GxE models (e.g., trigger and control) were the most
relevant. As noted by Reiss and Leve (2007: 1006–1007), a large number of studies report a
triggering mechanism such that ‘[an] association between allele and behavior is observed
under adverse environmental circumstances but not under favorable circumstances’. Here,
adversity is the lack of health-related resources within schools that may help students to
engage in healthy behaviors.

By using schools as the backdrop for our study, we focus on the embodiment of complex
and multilevel social arrangements typical of institutional-level analysis (Krieger, 2001).
Critical aspects of the structured social spaces in which people interact are consistently

Boardman et al. Page 9

J Theor Polit. Author manuscript; available in PMC 2012 December 10.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



linked to the prevalence of obesity (Popkin et al., 2005). Thus, policies that are aimed at
reducing the prevalence of obesity in the population should take social spaces such as
schools as an important component of formulating policy. As institutions, schools have a
great deal of influence over the caloric intake and expenditure of their students. As shown
here, schools differ with respect to their ability to provide weight counseling or cost-free use
of recreational services which may affect the ability of their students in making healthy
choices regarding nutrition and exercise.

Finally, our findings make an important contribution to political science in general because
they challenge researchers to be explicitly state assumptions about the homogeneity of
populations. That is, our results provide additional evidence for the notion that social
policies may influence the prevalence of a particular health outcome or health behavior in
the population but without explicit efforts to compare the genetic and social contributions to
the prevalence before and after the policy, it is difficult to know if the same policy will
continue to exhibit the same level of effectiveness over time. That is, imagine a world in
which individuals engage in behaviors for either genetic or social reasons. Then imagine that
a policy is developed, such as anti-smoking and ‘just say no’ campaigns, that are designed to
change the norms regarding this behavior and ultimately reduce the likelihood that people
will engage in this behavior. This policy is likely to be effective for those who are using
drugs or smoking cigarettes for social reasons (e.g., to be cool, to distinguish one’s self, to
indicate belonging to a particular group). However, for those who smoke or abuse other
substances because of physiological reasons related to addiction, these policies are likely to
be ineffective. As such, over time, the social-genetic composition of those who remain in or
enter this group (e.g., smokers) is likely to tilt toward the genetic side. This has been shown
for smoking (Boardman et al. 2011) and this research suggests that policies that might have
effectively reduced smoking in the past (e.g., primarily social-behavioral models) might but
not be effective anymore because compared to previous time periods, a larger proportion of
smokers in the current time do so for biological rather than social reasons. As such, policies
should emphasize basic physiological processes such as nicotine replacement for long term
chronic smokers in this most recent cohort of smokers.

This is relevant to obesity research because it suggests that researchers should make efforts
to better characterize the social-genetic composition of the obese population and to
understand the social forces that enable or control genetic tendencies for weight gain for
particular populations at particular points in time. As with smoking, specific policies may
reduce the prevalence of obesity in the population, but they may not effectively reduce the
risk of obesity among genetically vulnerable individuals. Our findings point to the important
role of schools as a vehicle to enact salutary policies that better enable students to make
healthy choices. This general perspective also suggests that a proper understanding of the
genetic etiology of obesity should consider the social and political norms in which the study
is designed because it is possible that genetic effects are masked by elevated levels of
background noise.

10. Conclusion
Both behavioral genetics and political science stand to gain from increased collaborative
work. For behavioral genetics, incorporating political processes, social norms, and
institutions into current research can help to more fully explain how genes and environment
interact to predict outcomes such as obesity. For political scientists, the incorporation of
behavior genetics models can provide new insights into social and institutional factors, while
also helping to better implement social policies. Our results suggest this is true for obesity
and likely holds for other topical issues. Future research in political science can also expand
upon current research. For example, an important next step is to examine the behaviors that
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link the environment to observed body size because these behaviors are also shown to be
highly heritable. For example, regular breakfast consumption (h2 = .60) (Keski-Rahkonen et
al., 2004), sedentary behavior and fast food consumption (h2 ~ .24−.34) (Nelson et al.,
2006), meal frequency and size (h2 =.46−.56) (deCastro, 1993), and total food intake (h2 = .
33) (Faith et al., 1999; Hur et al., 1998) have all been shown to be moderately to highly
heritable. Therefore, rather than focusing on the phenotype (e.g., obesity), future work
should detail the endophenotypic pathways through which genetic and social factors
simultaneously operate. Similarly, efforts need to be made to identify specific genetic loci
that are responsible for the large heritability estimates that we present here. This is important
because, with some exceptions (Yang et al. 2010), results from genome wide association
studies have produced heritability estimates that are significantly smaller than comparable
estimates derived from twin and sibling studies. Our results suggest that some of this
‘missing heritability’ (Manolio, 2009) may be due to ways in which social and institutional
factors interact with genes to influence weight and weight gain. As our results generally
suggest, examination of social and institutional factors through the lens of political science
will likely help to account for an important portion of this missing variation.
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Appendix – Description of multilevel ACE model
Typically, twin and sibling studies rely on structural equation techniques that use highly
specific models in which the unit of analysis is the twin (or sibling) pair (Neale et al., 2003).
The multilevel approach has recently emerged as a more flexible and (at times) more
efficient method of decomposing phenotypic variance into environmental and genetic
components in which the level of analysis is the individual and individuals are nested within
pairs. McArdle and Prescott (2005) provide a detailed description of the model and
examples of SAS codes for various biometrical models. These models provide not only
estimates of the variance components but also standard errors for genetic, common
environmental, and unique environmental components of variance.

Equation 1 specifies a multilevel model in which BMI of the ith adolescent nested within the
jth family is described by an intercept (μ); a set of individual risk factors including age, race,
and sex (βXij); and three error terms capturing additive genetic (aij), shared environmental
(cj), and non-shared environmental variance (eij).

(1)

As shown in Equation 2, total phenotypic variance is then characterized as the sum of the
three sources of residual variance, which are independently and normally distributed.

(2)

Therefore, a heritability estimate is derived as follows:

Boardman et al. Page 11

J Theor Polit. Author manuscript; available in PMC 2012 December 10.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(3)

In total, this specification of A, C, and E as components of Equation 1 is conceptually
similar to a traditional random-effects model. The distinction of the biometrical models is
that the covariance of the random effects is conditional on the zygosity. As such, a series of
covariance matrices are specified using the same genetic theory that underlies structural
equation approaches (Neale et al. 2003). The matrices in Equations 4-6 are used to describe
this method. If there are two unrelated twin pairs j = 1, 2 with twin i = 1, 2 in each pair,
where the first pair are MZ twins and the second are DZ twins, then considering that MZ
twins share 100% of their genes and DZ pairs share (on average) one-half their genes, the
additive genetic covariance matrix is

(4)

Similarly the shared environmental covariance matrix is given by

(5)

Finally, the non-shared covariance matrix is given by

(6)

Therefore, if the phenotypes for the individuals i in twin pair j is given as Y = (y11, y21, y12,
y22), then the phenotypic covariance within and between pairs is given as

(7)

This model is quite flexible because additional covariates can be estimated at the individual
level. For example, to address potential BMI variation arising from basic demographic
characteristics, we include controls for the respondent’s gender, racial phenotype, and age.
Gender is coded as whether the respondent reported being female at Wave I. Racial
phenotype is coded as mutually exclusive categories from respondent’s Wave I self-reports
of being white, black, Hispanic, or a different race/ethnicity (i.e., Native American, Asian,
or ‘other’ racial category). Age was also assessed at Wave I interviews. The mixed model
described above also allow for the use of complex sample designs, generalized linear
modeling allows for the analysis of variables of any measurement, and they can be extended
to longitudinal growth curves (McCardle, 2006). Additional updates have been made to
extend these models to other statistical software packages, including the GLLAMM
procedure in STATA (Rabe-Hesketh et al., 2008), and they are quite flexible because they
allows for the inclusion of different types of pairs, including full siblings, half-siblings, and
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cousins. Similar to the covariance matrices presented in Equations 4-6, these additional pairs
take on different values for alleles shared by descent according to genetic theory.
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Figure 1.
Gene-environment interaction models: hypothesized influence of school factors on the
heritability of body mass.
Note: Figures represent hypothesized models of gene-environment interaction typology.
Darker bars represent areas with the lowest level of social risk compared to average (grey)
and high (white) social risk categories.
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Figure 2.
Observed Heritability of Body Mass by School Characteristics
Note: Estimates derived from the error variance terms presented in Table 3. Standard errors
for these estimates are used to calculate the confidence intervals (the standard errors are not
provided in the table and are available upon request). The risk categories have been changed
to reflect increasing social risk to allow a better comparison to the conceptual model in
Figure 1.
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