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Abstract
The human genome has been referred to as the blueprint of human biology. In this review we
consider an essential but largely ignored overlay to that blueprint, the human microbiome, which
is composed of those microbes that live in and on our bodies. The human microbiome is a source
of genetic diversity, a modifier of disease, an essential component of immunity, and a functional
entity that influences metabolism and modulates drug interactions. Characterization and analysis
of the human microbiome have been greatly catalyzed by advances in genomic technologies. We
discuss how these technologies have shaped this emerging field of study and advanced our
understanding of the human microbiome. We also identify future challenges, many of which are
common to human genetic studies, and predict that in the future, analyzing genetic variation and
risk of human disease will sometimes necessitate the integration of human and microbial genomic
data sets.
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INTRODUCTION
A logical step following the completion of the human genome sequence was the
identification and functional validation of variation in the human genome as well as
dissection of its association with disease. An important aspect to be considered in parallel to
these studies is now emerging: the contribution of the human microbiome to health and
disease. The term microbiome was coined by Joshua Lederberg to “signify the ecological
community of commensal, symbiotic, and pathogenic microorganisms that literally share
our body space and have been all but ignored as determinants of health and disease” (44).
And although the microbiota of our bodies have largely been overlooked (aside from
attempts at suppression and eradication), they constitute 90% of the total number of cells
associated with our bodies; only the remaining 10% are human cells (78). Despite the
extensive demonization that has ensued in this age of antibiotics and antimicrobials, the
microbes living in and on our bodies are largely commensal and provide us with genetic
variation and gene functions that human cells have not had to evolve on their own. In this
review, we discuss (a) the genomic technology that instigated and continues to advance
human microbiome studies; (b) how the human microbiome causes, contributes to, and
modulates health and disease, including conditions that once were thought to be genetically
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encoded purely by the 23 human chromosomes; and (c) the challenges and pitfalls
associated with this area of research, which is still in its infancy.

A HISTORICAL PERSPECTIVE
The cultivation and isolation of bacteria have long been the gold standard for the
identification and characterization of microbes, beginning in the late 1800s when Robert
Koch developed techniques to isolate the agent responsible for anthrax. After the isolation of
single colonies, bacterial identification was achieved by direct observation of the bacterial
cells and their morphology, biochemical testing, differential staining, and the use of
enrichment cultures. On several occasions, it was noted that the number and diversity of
cells observed microscopically far exceeded those of cells grown in culture (2, 90). It soon
became apparent that culture-based approaches introduced bias, selecting for those microbes
that thrive in isolation and under specific laboratory conditions, and that the full diversity of
microorganisms had remained largely unexplored.

The elucidation of bacterial phylogeny based on the well-conserved small-subunit 16S
ribosomal RNA (rRNA) sequence—the seminal work of Woese and colleagues (105, 106)—
set the stage for genomic identification and analysis of microbial communities. Soon after
the framework for bacterial phylogeny was established, Pace and colleagues developed a
method to circumvent culture-based approaches in identifying bacteria (43, 89) based on
isolation [via polymerase chain reaction (PCR)] of rRNA genes from bulk DNA extracted
from an environmental sample. The 16S rRNA gene, which is approximately 1,500 base
pairs in length, contains species-specific hypervariable regions but is conserved enough for
PCR amplification using broad-range primers (36). The 16S rRNA gene sequences are
compared with the phylogenetic reference tree to assign taxonomy. Since the original 16S
rRNA–based phylogeny was described from an initial group of 11 bacterial phyla in 1987,
reference databases have exploded with sequence data (105). As of February 2012, the
Ribosomal Database Project (RDP) (version 28) contained more than 2 million 16S rRNA
sequences and 35 phyla (13).

TAKING CUES FROM THE ENVIRONMENT AND ECOLOGY
Much of the technical and computational methodology for human microbiome research and
analysis was developed to investigate environmental/ ecological communities. This included
the interrogation of organisms and their functions from acid mine drainage (AMD) biofilms,
activated sludge, Yellowstone hot springs, surface water of the Sargasso Sea, agricultural
soil, and deep-sea whale skeletons (8, 37, 93, 96, 98). The first studies to couple
nextgeneration sequencing technology with the microbiome were also environmental,
including metagenomic analysis of a Minnesotan iron mine and a 16S rRNA tag sequencing
survey of the deep sea to reveal the rare biosphere (23, 86).

Notably, AMD biofilms proved an ideal system for analyzing microbial community function
using cultivation-independent approaches. AMD sites are low in microbial species richness
and complexity owing to low pH, high metal concentrations, and limited resource
availability. The results of such analyses uncovered species of bacteria and archaea that
resist cultivation (22, 81). Shotgun sequencing of small-insert libraries constructed from
AMD biofilms allowed the reconstruction of ~12 near-complete composite bacterial and
archaeal genomes and opened the field of proteogenomic analysis (18). These studies, in
addition to others, have demonstrated the tractability of the low-complexity AMD system to
resolve the ecological and functional roles of microbial diversity and provide insights into
interactions among bacteria, archaea, phages, and viruses. The utility of low-complexity
environments such as AMD sites to provide insights into more complex, heterogeneous, and
dynamic microbial populations is analogous to the utility of early human genetic studies that
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focused primarily on traits inherited in a monogenic, Mendelian fashion (e.g., hemophilia,
sickle cell anemia, and cystic fibrosis).

Studies of host-microbe mutualism also gained momentum beginning with insights gleaned
from ecological communities. A striking example is the southern pine beetle, which
leverages a bacterium to protect its fungal food source from a competitor fungus. 16S rRNA
gene sequencing revealed a novel actinomycete that colonizes the beetle and produces an
antibiotic that selectively suppresses the antagonistic fungi (82). This example illustrates one
of many ways in which a host is able to maintain beneficial microbes while suppressing
hostile invaders.

GENOMIC TECHNOLOGY CATALYZES HUMAN MICROBIOME RESEARCH
Amplicon-Based Surveys of Human Microbial Communities

High-throughput surveys of microbial communities have been greatly enabled by culture-
independent identification methods coupled with advancement in genomic technologies,
especially DNA sequencing technology (Figure 1). The earliest human microbial surveys
were based upon fingerprinting techniques, which relied upon physical separation of 16S
rRNA genes by denaturing gradient gel electrophoresis and terminal restriction fragment
length polymorphism analyses (49, 56). Greater specificity was gained with Sanger
sequencing of the amplified and cloned 16S rRNA gene. The longer read lengths produced
by Sanger sequencing are still a benefit to studies in the microbial community discovery
phase. However, the advent and commercialization of highly parallel DNA sequencing
technology have revolutionized our ability to quickly and precisely characterize microbial
populations at a much lower cost and a greater depth than Sanger sequencing can provide.

At present, many researchers in the field rely upon the Roche/454 pyrosequencing platform
for 16S rRNA gene sequencing, which produces ~1 million ~400-nucleotide reads per run.
Incorporating bar codes into the 5′ primer sequence multiplexes samples into a single
sequencing run and enables researchers to produce thousands of 16S rRNA sequences per
sample. If the goal of the study is to distinguish species within a genus (e.g., Staphylococcus
epidermidis versus the pathogenic S. aureus), then longer read lengths (> 300 nucleotides)
are necessary. As read lengths of the 16S rRNA gene decrease, so does taxonomic precision,
and thus the ability to distinguish between strains, species, and even genera. However, for
some studies researchers have preferred the greater sampling depth offered by Illumina
platforms, and have explored paired-end sequencing to mitigate the shorter read length.
Caporaso et al. (10) sequenced 1,967 microbiome samples across six lanes in a single run of
the Illumina Genome Analyzer IIx. Balancing sequence length and sampling depth is one of
the moving targets for the field, and the appropriate balance for a particular study is clearly
shaped by the overall objectives. In general, the final decision of which sequencing platform
to utilize depends upon the question being posed.

In addition to the choice of sequencing platform, investigators must consider many
associated pitfalls when embarking on a bacterial survey study. Although the next-
generation sequencing technologies eliminate cloning biases associated with Sanger
sequencing, 16S rRNA gene diversity surveys still rely upon limited PCR amplification,
which can potentially introduce bias. Known bias can derive from the design of the PCR
primers or from PCR conditions that can cause amplification bias and chimera formation
(102). Many of these study design issues and their analysis outcomes were recently
reviewed by the Knight and Schloss groups (41, 79).
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Microbial Genome Sequencing
Clearly, the use of next-generation sequencing has revolutionized the way that microbial
diversity surveys are performed, but this technology has also had a tremendous impact on
deciphering individual microbial genomes. In 1995, Haemophilus influenzae became the
first bacterial genome sequenced with Sanger sequencing, introducing whole-genome
random sequencing (85). At 1.8 Mb, the H. influenzae genome was 10 times larger than
previously sequenced viral genomes. However, generating this genome assembly required
the equivalent of three years of Sanger sequencing. (It was in fact completed by 14 machines
over three months.) Then, with the advent of nextgeneration sequencing, generating this
amount of data required only one instrument and one week. The ability to bypass cloning of
DNA into bacteria for shotgun sequencing was also a major turning point in obtaining better
coverage. Promoter regions of bacterial genes are to some degree uncloneable, and as a
result these regions are typically underrepresented in initial data sets generated from
cloning-based Sanger sequencing. As of February 2012, the Genomes Online Database
(GOLD; http://www.genomesonline.org) provided nearly 3,000 finished bacterial genomes,
with many thousands more underway.

Technological advances now make sequencing a single bacterial genome seem trivial and
the potential to sequence thousands realistic. One of the initiatives of the National Institutes
of Health (NIH) Common Fund’s Human Microbiome Project (http://commonfund.nih.gov/
hmp) is to sequence 3,000 cultivated and uncultivated bacterial reference strains. This
catalog of reference genomes is intended as a scaffold for the assembly of metagenomic
sequences and as a reference for 16S rRNA gene sequences (69). In May 2010, 178 bacterial
genomes were published, with the great majority isolated from the gastrointestinal (GI) tract
(58). From this work and others, it is clear that only the tip of the iceberg of species diversity
has been uncovered.

Targeted sequencing projects have focused on the pan-genome—the collection of genes
found across all members of a species—as a useful framework for describing genomic
diversity within a taxon. For example, Tettelin, Fraser-Liggett, and colleagues (92)
characterized the pan-genome of Streptococcus agalactiae, an important pathogen for
newborn infants, and found that ~20% of any given genome is made up of genes that are
shared only partially with other strains. Furthermore, they found that sequencing additional
genomes was predicted to increase the size of the pan-genome, indicating that S. agalactiae
has an open genome. This type of analysis has been used to characterize a number of
bacterial species as well as genera and has been used to estimate the pan-genome size of all
bacteria.

Recent studies foreshadow a transition in the near future to sequencing technologies that can
provide even faster turnaround for microbial genomics and microbiome studies. During the
recent Escherichia coli outbreak in Germany, the Ion Torrent Personal Genome Machine
proved its utility when a draft genome of the outbreak strain was produced in three days,
furthering efforts to determine the evolutionary origins and pathogenic potential associated
with the strain (76).

Whole-Genome Shotgun Metagenomic Sequencing
Highly parallelized DNA sequencing, such as that offered by the Illumina HiSeq, has paved
the way for whole-genome shotgun (WGS) metagenomic analysis of microbial communities
(Figure 1). Metagenomics provides the potential to analyze microbial communities from the
viewpoint of functionality while circumventing both PCR and cloning bias. WGS
metagenomics is a powerful alternative to sequencing 16S rRNA genes because it can in
part answer not only the question “Who is there?” but also “What can they do?” The general
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strategy for a metagenomic study (Figure 1) is to directly extract DNA from a clinical
sample (such as feces) and then construct a library of inserts that are multiplexed and
sequenced. Tens of millions of Illumina reads are typically generated to articulate the full
genetic potential of a sample. Unassembled reads that match signature genes (such as 16S
rRNA) can be classified by searching against databases (such as greengenes or RDP-II) to
determine the taxonomic makeup of the metagenomic data set. 16S rRNA read counts are
used to calculate the frequency of microbial species, and differences between samples are a
measure of relative microbial abundances.

However, individual reads are too short to generate the sequence of a complete gene and
thus predict a protein-coding function. Reads are therefore assembled into contiguous DNA
fragments to provide maximum information. However, there are often multiple highly
similar genomes present in a WGS metagenomic data set. The sheer volume of sequence
data generated combined with incomplete catalogs of sequenced reference genomes
(bacterial, viral, archaeal, eukaryotic) makes WGS metagenomics an extremely
computationally intensive undertaking. Sequence reads can be assembled as much as
possible using tools such as SOAPdenovo (47), as longer reads provide more accurate gene
annotation and phylogeny prediction. To identify putative protein-coding genes, a BLASTX
search can be performed against either a nonredundant database or a database of microbial
genome sequences specific to the environment/site of interest (e.g., the gut).

Functional data can then be inferred from the predicted proteins by searching against the
KEGG (Kyoto Encyclopedia of Genes and Genomes) (38) and COG (Clusters of
Orthologous Groups) (91) pathway databases. MG-RAST (Metagenomics Rapid Annotation
Using Subsystem Technology), a Web-based metagenomics analysis server, has
implemented many of these functions into an open-source metagenome analysis pipeline
that combines normalization, alignment, functional and taxonomic assignment, and
subsystem reconstruction into an automated workflow (53). MEGAN (Metagenome
Analyzer) is a similar tool that performs taxonomic classification, functional analysis using
KEGG or SEED classification, and computational comparison of metagenomes, all in an
interactive analysis and visualization platform (55) (Table 1). It should be noted that
reference databases (e.g., phylogenetic, pathway, and functional databases) are highly biased
toward those organisms that are readily cultivable and those genes with known functions.

CULTIVATING, SEQUENCING, AND DECIPHERING THE UNCULTIVABLE
One of the greatest obstacles to analyzing WGS metagenomic sequence data is the lack of
reference genome sequence. To generate reference genome databases, it is crucial that new
methods be developed to cultivate and isolate previously uncultivable and/or highly
fastidious organisms. One recently developed technology is an ichip (isolation chip)
composed of hundreds of miniature diffusion chambers, each inoculated with a single
microbial cell (59). This method is able to recover numerous novel phylotypes not recovered
by cultivation, but will work only when the environment is aqueous and capable of diffusion
(e.g., seawater). For human samples, dissociation into single nonadherent bacterial cells
would be a prerequisite to employ this method.

Some technologies are circumventing the cultivation step and leveraging whole-genome
amplification to sequence single-cell genomes. Microfluidic isolation of bacteria from the
subgingival crevice followed by single-cell genome amplification and sequencing resulted in
the first glimpse into the phylum TM7, for which no isolate or sequence data were
previously available (50). Woyke et al. (107) reported the first complete genome isolated
from a single cell, in this case from a polyploid bacterium, Sulcia muelleri, isolated from the
green sharpshooter. Isolation of single cells via fluorescence-activated cell sorting is also
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possible, and Chisholm’s group (75) employed this method followed by amplification of
single-cell genomes on hundreds of bacteria simultaneously while virtually eliminating
contaminating nontarget DNA. Multiple displacement amplification procedures leveraging
the high-fidelity bacteriophage ϕ29 DNA polymerase are typically preferred for singlecell
genome amplification because only minute quantities of DNA are required to amplify by
several orders of magnitude (17). However, this method introduces significant biases in
genome coverage, which some groups have attempted to mitigate through postamplification
normalization procedures (75). Genomic methods to query single microbial cells could have
an immense impact on the study of microbes, making previously uncultivable organisms and
their genes readily accessible.

Once reference genome sequence is available, another significant obstacle is the functional
annotation of putative open reading frames. Several efforts have been targeted at
deciphering the function of hypothetical proteins. One such effort is
COMBREX(Computational Bridges to Experiments), a consortium of closely collaborating
experimental and computational biologists. Based on a concept put forth by Roberts (74),
bioinformatic approaches are used to predict protein function and prioritize prime targets.
The list of these targets is then open to experimentalists to functionally test using their
experimental knowledge and reagents. The Joint Center for Structural Genomics has
developed and integrated high-throughput structural biology methods to solve more than
1,000 protein structures, many of unknown function. The Web-based annotation initiative
TOPSAN (The Open Protein Structure Annotation Network) facilitates collaborative efforts
to annotate and investigate such structures (24). Collaborative efforts such as these
demonstrate the value of open dialogue and partnership between computational biologists
and experimental biologists. Progress toward deciphering the role of the human microbiome
in health and disease will continue to rely upon such alliances.

THE HUMAN MICROBIOME AS A COMPOSITE OF MANY MICROBIOMES
One of the major goals of the five-year, NIH-funded Human Microbiome Project was to
define the healthy human adult microbiome at multiple body sites in a large cohort (n = 242)
(65). The body sites sampled included the oral cavity, skin, and GI tract as well as the
vagina in females. Both 16S rRNA and WGS metagenomic data sets were generated from
this large number of clinical samples. Not surprisingly, this study confirmed that each body
habitat harbors dominant signature taxa, something that had been shown by individually
focused studies (14, 33, 70, 71, 94). For example, the sebaceous area behind the ear, the
retroauricular crease, is consistently dominated by the lipophilic Propionibacterium;
Lactobacillus dominates the vagina; and Bacteroidetes and Firmicutes dominate the gut
(Figure 2). Body habitat was also noted as a strong determinant of microbial co-occurrence
and coexclusion. On the one hand, with its large cohort, this study underscored the findings
of multiple previous studies in which interpersonal variation was significantly greater than
intrapersonal variation (Figure 3). On the other hand, the relative abundances of metabolic
and functional pathways in the metagenomic data were much more stable than organismal
abundances as measured by 16S rRNA sequences. Surprisingly, actively pathogenic
organisms were rarely present in the microbial communities of these individuals (Hum.
Microbiome Proj. Consort., manuscripts in review).

As was clear from the Human Microbiome Project study and individual site-specific studies,
each body site is a highly specialized niche characterized by its own microbial consortia,
community dynamics, and interaction with host tissue. Next, we address several of these
niches, highlighting salient and unique findings that have advanced our understanding of the
microbiome’s role in human health and disease.
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The Gastrointestinal Tract: Readily Accessible with Abundant Microbiota
The GI tract contains the bulk of microbiota associated with the human body and has been
one of its most thoroughly examined ecosystems. Fecal samples are commonly used for
these analyses because they are easy to obtain and contain a large amount of biomass. The
gut microbiome is quite low in diversity at higher phylogenetic levels, comprising primarily
the bacterial phyla Firmicutes and Bacteroidetes (21), but contains great diversity at lower
phylogenetic levels (species, strains) (45). One study suggested that more than 5,000
bacterial taxa may reside in the gut (19).

Initial microbial colonization of the gut in infants appears to be dependent on delivery mode;
vaginally delivered babies acquire microbiota similar to those of their mother’s vagina (i.e.,
dominated by Lactobacillus and Prevotella), and babies delivered via Caesarian section
acquire microbiota similar to those typically associated with the skin (i.e.,
Propionibacterium, Staphylococcus, and Corynebacterium) (20). Furthermore, there were
significant differences between the gut microbiota of formula-fed and breast-fed infants,
with some of those bacteria common in formula-fed babies being associated with a higher
prevalence of antibiotic use, hospitalization, and prematurity (64). The gut microbiota
eventually converge toward an adultlike profile during the first year of life (61).

Even more abundant than bacteria are the viruses that infect them—the bacteriophages. In
their lysogenic phase, bacteriophages can integrate into the bacterial genome and provide
additional genetic diversity. Virome analysis of the gut revealed that the major type of
variation was interindividual, but significant changes were observed when the host was
placed on a defined diet (54). The diet-induced changes in the gut virome covaried with
changes in the gut bacterial community, and gut virus populations converged in individuals
placed on similar diets. This is in sharp contrast to another study that found the gut virome
to be stable over time (72). It is unclear what accounts for the differences observed between
these two studies, but this example highlights the need for standardization in study design
and result reporting.

The GI tract was one of the first human ecosystems to be examined by WGS metagenomic
analysis. Early WGS metagenomic sequencing and analysis of the fecal matter of two
individuals identified the metabolic potential of the gut microbiota by assigning function to
Sanger sequence reads (31). The MetaHIT (Metagenomics of the Human Intestinal Tract)
Consortium, funded by the European Commission and comprising 13 academic and industry
partners, has been a key leader in the gut microbiome and metagenomics arena. Qin et al.
(70) described a WGS metagenomic analysis of 124 Europeans that used Illumina Genome
Analyzer technology and generated over 576 Gb of metagenomic sequence reads. Using this
data set, they described the core gut metagenome, which consists of genes essential for host-
microbe interactions such as those that degrade complex polysaccharides and those that
synthesize short-chain fatty acids, vitamins, and amino acids. Even so, it should be noted
that only ~12% of the genes derived from this sequence data set mapped to reference
genomes. As more reference genomes are sequenced—for example, as part of the MetaHIT
Consortium and NIH Human Microbiome Project initiatives—these numbers should
improve. WGS metagenomic analysis of this data set and others subsequently demonstrated
the existence of three distinct enterotypes—i.e., groups of individuals defined by the
composition of their gut microbiota (3). The enterotypes were neither nation nor continent
specific and could not be explained by body mass index, age, or gender. This study provided
the first indication that the composition of the human gut microbiota is stratified and not
continuous.

Because a fecal sample is theoretically a composite of bacteria collected throughout the
length of the GI tract, one challenge lies in the analysis of spatial microbial diversity in the
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GI tract, for which there is very little data. One of the first genomic analyses of gut
microbiota utilized 16S rRNA gene sequencing to begin to define the intrapersonal (spatial)
and interpersonal variation of the adherent mucosal and fecal microbiota (21). Much of the
sequence diversity along theGI tract was novel and revealed spatial differences not captured
by a fecal sample. This is to be expected, as the host tissue varies greatly throughout the
length of the GI tract, dictating distinct microenvironments depending on dominant cell
types and functions.

This leads to the question of what determines the microbiota that colonize the gut. In
addition to host- and tissue-specific factors, there are certainly environmental factors that
must play some role in selecting for those microbes that constitute the gut microbiota. Wu
and colleagues (108) demonstrated that gut enterotypes are strongly correlated with long-
term dietary patterns, especially high-fat, high-protein diets as compared with high-
carbohydrate diets. Gordon’s group (26) definitively demonstrated a relationship between
both the total abundance and the relative levels of bacteria evoked by diet perturbations in
mice colonized with defined bacterial communities. Genetic factors are also implicated in
microbial gut colonization, with initial studies carried out in animal models. For example,
studies in advanced intercross mice demonstrated that host genotype had a large influence
on gut microbiota composition, independent of litter and cohort effects (5). In fact, a relative
abundance of gut microbial taxa was associated by genome-wide linkage with 18
quantitative trait loci, which demonstrates the power of the host genotype in shaping
microbial diversity.

Interesting features of the gut microbiome and its role in disease are beginning to emerge,
especially its role in obesity, diabetes, and metabolic disease. Perhaps the best-known
example is the contribution of gut microbiota to obesity. Although human geneticists
continue to search for host variation tied to obesity, it is now appreciated that the gut
microbiota of obese individuals are significantly altered and carry a greater capacity for
energy harvest (95). Animal models have proven especially useful in demonstrating
mechanistic and functional linkages of the gut microbiota to disease. An animal model
deficient in Toll-like receptor 5 (Tlr5)— an important component of innate immunity and
infection control in the gut—exhibits hallmarks of metabolic syndrome (adiposity, insulin
resistance, hypertension, hyperlipidemia) and altered gut microbiota as compared with
healthy control mice (99). Additionally, when transferred to germ-free mice, the gut
microbiota of Tlr5-deficient mice were sufficient to recapitulate features of metabolic
syndrome.

Interaction of the innate immune system with the gut microbiota was demonstrated to be a
critical epigenetic factor governing the development of type 1 diabetes in nonobese diabetic
(NOD) mice. Specific-pathogen-free NOD mice deficient in MyD88—an adaptor protein
essential to multiple innate immune receptors and signaling pathways—do not develop
diabetes. This effect appears to be dependent on the gut microbiota, as germ-free Myd88−/−

NOD mice develop robust diabetes. However, diabetes was attenuated in germ-free
Myd88−/− NOD mice colonized with defined microbiota from donor specific-pathogen-free
Myd88−/− NODmice (101). This is yet another example of how interactions between the
microbiota and the host govern predisposition to disease.

Studies in Drosophila have provided insight into the complex interactions between host and
microbe in the gut. In Drosophila, the homeobox gene Caudal represses the NF-κβ-
dependent signaling of antimicrobial peptides, which in turn regulates host-microbe
mutualism (77). RNA interference knockdown of Caudal results in altered gut microbiota
and eventually gut cell apoptosis and death. In a separate study, the commensal bacterium
Acetobacter pomorum proved to be a key link in the regulation of Drosophila development,
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body size, metabolism, and intestinal stem cell activity (84). A. pomorum–derived,
pyrroloquinoline quinone–dependent alcohol dehydrogenase activity modulates Drosophila
insulin/insulin-like growth factor signaling.

In humans, beyond aiding with digestion, bacteria were recently found to play a role in
cancer. Colorectal carcinoma is associated with enriched abundance of Fusobacterium (11,
40), an invasive anaerobic bacterium that was previously associated with inflammatory
bowel disease but is a rare constituent of the healthy gut microbiota. Though the exact role
of Fusobacterium in colorectal carcinoma remains unclear, it is capable of eliciting a host
inflammatory response, a known risk factor for colorectal cancer (52, 109). Additionally,
Fusobacterium abundance was positively associated with lymph node metastasis (11). More
work is needed to define the mechanism by which Fusobacterium is related to colorectal
carcinoma, but a more immediate value may be in exploiting it as a marker for colorectal
cancer presence, risk, or prognosis.

Finally, the role of the gut microbiota through their metabolic potential extends far beyond
the intestine to the metabolism of systemic drugs and disease manifestation in other organ
systems. Nicholson’s group (12) deciphered the first example of metabolomics intersecting
with the microbiome, showing a clear link between an individual’s ability to metabolize
acetaminophen (most commonly known in the United States under the brand name Tylenol)
and bacterial metabolic state. Acetaminophen has been one of the most commonly used
nonprescription medicines for decades, so one might think that its toxicology and
metabolism would be well understood. However, Nicholson’s study showed a novel and
striking association between an individual’s predose metabolite profile and his or her
specific metabolism and excretion of acetaminophen. As these pathways described for
acetaminophen impact the metabolism of many drugs, the gut bacterial metabolism might
have a large influence on both drug-induced responses and disease development.

Microbiome profiling clearly has a role in personalized medicine that extends beyond the
variation in drug-metabolizing enzymes. Hazen’s group (100) made the first link between
diet, gut bacteria, liver metabolism, and atherosclerosis leading to cardiovascular disease.
Their initial experiments screened for plasma metabolites in patients who had experienced a
heart attack or stroke. While testing this metabolic cascade in animal models, they found
dramatic differences in mice treated with broad-spectrum antibiotics. They teased apart this
mechanism by examining atherosclerosis development in mouse models of human metabolic
disorders that were placed on restricted diets and then treated with antibiotics. The hunt is
now on to find a probiotic approach to selectively eliminate the gut microbes that process
metabolites derived from high-fat foods before they are delivered to the liver and ultimately
deposited in blood vessels. These studies clearly show the vast unexplored role of the gut
microbiota in regulating human health beyond simply intestinal disorders.

The Oral Microbiome
In general, the dominant bacteria of the oral cavity are streptococcal species, with common
representation also from Veillonella, Gamella, Rothia, Fusobacterium, and Neisseria (1, 6).
Many diseases of the oral cavity, such as dental caries (cavities) and periodontitis (gum
disease), have long been suspected to be caused at least in part by microbes. A metagenomic
analysis of dental caries demonstrated that consortia of microbiota inhabit the caries and that
these microbes differ functionally from those inhabiting the healthy oral cavity (4).
Strikingly, those who never suffered from caries were colonized with microbiota enriched
for genes encoding antimicrobial peptides and quorum-sensing molecules. In periodontitis,
Porphyromonas gingivalis, an anaerobic bacterium, has historically been the suspected
etiological agent. Mechanistic work in germ-free mice demonstrated that only minute
quantities of P. gingivalis induce quantitative and qualitative changes in the oral microbiota,
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not directly but rather via exploitation of the complement cascade to cause periodontal bone
loss (34).

Bacteriophages have been another focus of oral microbiome research and have provided the
greater microbiome community with scientific insight. Pride et al. (67) recently analyzed the
salivary viromes of five healthy individuals and found that the vast majority of human oral
viruses are bacteriophages. Many of the viral genes encoded virulence factors, and thus the
oral virome may be a reservoir for oral pathogenicity factors. In this same study,
comparisons of the salivary virome with gut and respiratory viromes showed that habitat is
an important selection factor for the virome.

Genome-encoded clustered regularly interspaced short palindromic repeats (CRISPRs) are a
bacterial defense mechanism against mobile genetic elements such as bacteriophages and
conjugative plasmids. CRISPRs are acquired from the invading element, forming a
heritable, adaptive record of prior infection. Bacterial cells express CRISPR RNA to
interfere with invading nucleic acids (51). An analysis of streptococcal CRISPR sequences
in the oral cavity revealed great diversity within individuals, suggesting that each individual
was exposed to unique viral populations (68). Although much remains to be learned about
CRISPR elements, the historical perspective they provide about bacteria strains may be
useful for ecological and epidemiological studies and eventually personalized medicine.

Epidemiological studies have suggested a correlation between periodontitis and diseases that
affect seemingly unrelated organ systems, e.g., diabetes and atherosclerosis. A common link
that could explain this apparent association is the human microbiota, their priming of the
immune system, or their long-term effects on inflammation. Metagenomic sequence analysis
of the oral cavity revealed enrichment of Streptococcus mitis bacteriophage SM1–derived
genes encoding platelet-binding factors, which are key virulence factors in endocardium
infection (104). Koren et al. (39) demonstrated not only that bacteria were present in the
atherosclerotic plaques, but also that the types and abundance of those bacteria correlated
with the abundance of those same bacteria in the oral cavity. Furthermore, the abundance of
several bacterial taxa in the oral cavity and the gut showed correlation with plasma
cholesterol levels. These studies also illustrate the potential of the microbiome as a disease
marker.

The Reproductive Tract Microbiome
Even before genomics arrived on the scene, it was suspected that the vaginal microbiota play
a key role in the prevention of multiple diseases, including bacterial vaginosis (BV), yeast
infections, sexually transmitted diseases, urinary tract infections, and human
immunodeficiency virus. In a study of 396 reproductive-aged women, 16S rRNA gene
sequence analysis revealed that vaginal bacteria profiles generally fall into one of five
clusters. Four of the clusters were dominated by Lactobacillus species, whereas the fifth
group had a higher proportion of anaerobic species and overall greater bacterial diversity
(71). This group was also associated with a higher vaginal pH and a higher Nugent score,
the latter of which is a cellular morphological indicator of BV. Several independent analyses
of women with BV compared with healthy women showed the same trend of greater vaginal
microbiota diversity associated with BV (48, 60, 88). A longitudinal study of the vaginal
microbiota indicated that levels of lactobacilli fluctuate with menses, with a notable increase
in Gardnerella vaginalis during menstruation; the authors hypothesized that this is due to
increased iron availability because of the presence of vaginal blood during menses (88).
Longitudinal analysis of women with BV during a treatment time course demonstrated that
BV-associated bacteria were eradicated by treatment with the antibiotic metronidazole but
tended to reappear following treatment.
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The male genitourinary tract microbiome does not get the same attention as the vagina’s, but
could be a very important factor in sexually transmitted infections. In an analysis of the male
urine microbiota, anaerobic, fastidious bacteria were associated with sexually transmitted
infections (57). In an analysis of pre- and postcircumcision microbial diversity in 12 African
men, circumcision was associated with a decrease in anaerobic bacteria and overall
decreased bacterial diversity of the coronal sulci of the penis (66).

The Skin Microbiome
Genomic approaches characterizing skin bacteria have revealed a much greater diversity of
organisms than was previously apparent from culture-based methods (14, 27, 29, 32, 33).
Our group and others have demonstrated that the physiology of the skin site is a strong
determinant of the dominant colonizing bacteria, with specific bacteria associated with
moist, dry, and oily microenvironments (14, 33). In general, bacterial diversity appears to be
lowest in oily sites (such as the back and face) and highest in dry, exposed sites (such as the
arms and legs). In general, intrapersonal variation in microbial community membership and
structure between symmetric skin sites is lower than interpersonal variation, as determined
by 16S rRNA gene sequencing (14, 29, 33).

There is a particular need to develop better methods for typing fungal and other
microeukaryotic species, as these organisms are known to thrive on the skin and in some
cases are associated with skin disorders. Analysis of 18S rRNA gene sequences has shown
that the vast majority of fungal organisms residing on the healthy skin resemble Malassezia
species, closely mirroring culture-based data, but the identity of more rare species may still
prove important to understanding human disorders such as toenail infections and athlete’s
foot (28, 62, 63). Demodex mites are also considered part of the normal skin microflora,
residing in the sebaceous glands and hair follicles of the facial skin and increasing in
prevalence with age (25, 35). Molecular methods for typing Demodex do not exist, but there
is evidence suggesting a role for Demodex in some skin disorders such as rosacea (30, 42,
46).

WGS metagenomic data for skin communities would provide a fuller articulation of gene
content and function to address basic questions such as the potentially beneficial role of skin
bacteria to the human host. But although skin holds tremendous advantages for ease of
sampling, the clear disadvantage lies in the difficulty of obtaining the critical threshold of
starting material required for WGS metagenomic sequencing. Swabbing a 1-cm2 area of skin
typically yields only tens of nanograms of DNA, which is at the very low end of the amount
required to make a next-generation sequencing library. And although skin cells undergo a
linear program of terminal differentiation that limits the amount of human DNA present at
the surface, unbiased whole-genome amplification needs to be further developed before skin
WGS metagenomic sequencing can be tractable on a large scale. It seems that beyond the
diseases that affect an organ system, every microbial community comes with its own
technical advantages and limitations for genomic analysis.

ANTIBIOTICS
The prevalence of antibiotics in our society has effectively transformed a fraction of their
intended targets into superbugs, selecting for those mutants and strains of bacteria with the
capacity to survive large doses of antibiotic drugs. Blaser & Falkow (7) go further to
hypothesize that the recent increase in allergic and other diseases without any obvious
explanation (e.g., asthma and metabolic diseases) are a consequence of the disappearing
microbiota. Cleaner water, smaller families, delivery by Caesarian section, and widespread
antibiotic use (especially in young children) have all contributed to the disappearance of our
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microbiota, which have evolved and coexisted with their hosts for millions of years. Is it
possible that our cleanliness is making us sick?

In moving toward answers to these types of questions, genomic approaches have been useful
in determining the effects of antibiotics on the human microbiota. In a longitudinal study of
the gut microbiota in three antibiotictreated adults, ciprofloxacin treatment was associated
with decreased bacterial diversity (19). Most bacterial taxa recovered after four weeks, but a
handful of taxa did not recover even after six months, demonstrating the persistent effects of
antibiotic treatment on the gut microbiota. In mice, antibiotic treatment completely displaced
the normal gut microbiota, allowing exogenously administrated vancomycin-resistant
Enterococcus to completely invade the gut (97). Parallel analysis in patients undergoing
allogeneic hematopoietic stem cell transplantation showed that these drug-resistant strains
dominate the gut microbiota prior to bloodstream infection, suggesting the prognostic value
of microbiome markers.

The emergence of multidrug-resistant bacterial strains has focused attention on identifying
reservoirs for antibiotic resistance genes that may be available to clinically relevant
pathogens. Lateral gene transfer events are largely responsible for the dissemination of
antibiotic resistance genes as well as virulence genes. Lateral gene transfer can occur by
bacteriophage-mediated transduction, direct uptake of environmental DNA (such as
transformation by plasmids), transposition, or conjugation. The soil has also been identified
as a rich source of antibiotic resistance genes (15, 16, 73), which is not surprising because
many clinically relevant antibiotics are derived from soil actinomycetes. Culture-
independent functional characterization of the antibiotic resistance reservoir of human gut
and saliva microbiota revealed that most resistance genes have not been previously
identified and were evolutionarily distant from known resistance genes (87). Furthermore,
the majority of resistance genes identified in cultured isolates of the gut microbiota were
identical to known resistance genes in clinically relevant pathogens. These findings raise
many questions about the commensal human microbiota as reservoirs for antibiotic
resistance genes.

THE CHALLENGES THAT LIE AHEAD
Because we are only beginning to realize the full potential of the human microbiome and its
significance to health and disease, the road ahead is neither easy nor straightforward. The
same questions were asked in ecology and environmental microbiology for years prior to the
realization that the human microbiome is also an ecosystem. Integrating strategies and
findings from environmental ecosystems into human microbiome studies is a logical and
expedient way forward.

One of the main challenges ahead lies in the sheer amount of data generated by increasingly
cheap DNA sequencing. Generating the sequence data is probably the easiest step in these
studies, but the computational capacity and bioinformatic expertise to process and analyze
these data are hard to come by. Furthermore, obtaining biologically relevant samples, with
carefully annotated metadata and meticulous clinical phenotyping associated with them, is
essential to creating meaningful microbiome data sets. Wise use of sequencing resources in
carefully designed studies will produce the greatest advances in answering questions about
the human microbiome. Another overarching challenge for the field is how to visualize the
complex, multitiered analyses from these microbial studies.

In addition to these challenges, many questions remain. We are beginning to glimpse the
effect of the microbiome on multiple organ systems. For example, asthma and hay fever are
often preceded by skin eczema, referred to as the atopic march. Is it possible that exposure
early in life to microbes associated with eczema predisposes an individual to other allergic/
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atopic diseases? In the same way, how does the microbiome educate the immune system so
that it distinguishes the pathogenic from the commensal, and therefore repress any damaging
and unnecessary host responses? In this way, one can envision the value of the microbiome
in its prognostic and predictive potential.

Although it is unlikely that our modern society will give up its love affair with everything
antibiotic and antimicrobial, is there a way that we can leverage commensal microbes such
that they can repress pathogens and host response to pathogens? This is a critical question to
address as an increasing number of pathogenic microbes become multidrug-resistant
superbugs. Another challenge will be the regulatory landscape for prebiotics and probiotics
as the United States and other countries roll out guidance on whether microbial organisms
will be considered drugs, natural products, or food additives.

Finally, we envision that eventually metagenomic and human genetic data sets will be
integrated, so that in addition to genetic markers (such as single-nucleotide polymorphisms),
metagenomic markers will also be queried. Just as in genome-wide association data,
assigning meaning to these markers when an association is observed will require functional
studies to move beyond association to causation.
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Glossary

Microbiota microorganisms—such as bacteria, fungi, viruses, and archaea
—present in a community

Microbiome all of the genetic material of a microbial community sequenced
together

Metagenomics genomic analysis of DNA extracted directly from a clinical or
environmental sample; it can assess community diversity
(through 16S rRNA metagenomics) or fuller complexity
(through whole-genome shotgun metagenomics)

NIH Common Fund’s
Human Microbiome
Project

study aimed at characterizing the microbial communities found
at several different sites on the human body and analyzing the
role of these microbes in human health and disease

Pan-genome the collection of genes found across all members of a species

Bacteriophage a virus that infects a bacterium

MetaHIT
(Metagenomics of the
Human Intestinal
Tract) Consortium

consortium comprising 13 academic and industry partners
funded by the European Commission to intensively study the
gut microbiome’s role in health and disease

Germ-free mice mice born and reared in sterile environments from which no
microbiota can be cultured

Metadata clinical or environmental data associated with samples collected

LITERATURE CITED
1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral

cavity. J. Clin. Microbiol. 2005; 43:5721–5732. [PubMed: 16272510]

Grice and Segre Page 13

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2013 June 06.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



2. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual
microbial cells without cultivation. Microbiol. Rev. 1995; 59:143–169. [PubMed: 7535888]

3. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. Enterotypes of the human gut
microbiome. Nature. 2011; 473:174–180. [PubMed: 21508958]

4. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, et al. The oral
metagenome in health and disease. ISME J. 2012; 6:45–56.

5. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, et al. Individuality in gut microbiota composition is
a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl.
Acad. Sci. USA. 2010; 107:18933–18938. [PubMed: 20937875]

6. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, et al. Bacterial diversity in the oral cavity
of 10 healthy individuals. ISME J. 2010; 4:962–974. [PubMed: 20336157]

7. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat. Rev.
Microbiol. 2009; 7:887–894. [PubMed: 19898491]

8. Bond PL, Hugenholtz P, Keller J, Blackall LL. Bacterial community structures of
phosphateremoving and non-phosphate-removing activated sludges from sequencing batch reactors.
Appl. Environ. Microbiol. 1995; 61:1910–1916. [PubMed: 7544094]

9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. QIIME allows analysis of
high-throughput community sequencing data. Nat. Methods. 2010; 7:335–336. [PubMed:
20383131]

10. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, et al. Moving pictures of the
human microbiome. Genome Biol. 2011; 12:R50. [PubMed: 21624126]

11. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, et al. Fusobacterium
nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012; 22:299–306.
[PubMed: 22009989]

12. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification
of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc.
Natl. Acad. Sci. USA. 2009; 106:14728–14733. [PubMed: 19667173]

13. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, et al. The ribosomal database
project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res.
2007; 35:D169–D172. [PubMed: 17090583]

14. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community
variation in human body habitats across space and time. Science. 2009; 326:1694–1697. [PubMed:
19892944]

15. Dantas G, Sommer MO, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotics. Science.
2008; 320:100–103. [PubMed: 18388292]

16. D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science.
2006; 311:374–377. [PubMed: 16424339]

17. Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA
using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res.
2001; 11:1095–1099. [PubMed: 11381035]

18. Denef VJ, Mueller RS, Banfield JF. AMD biofilms: using model communities to study microbial
evolution and ecological complexity in nature. ISME J. 2010; 4:599–610. [PubMed: 20164865]

19. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human
gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008; 6:e280. [PubMed:
19018661]

20. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, et al. Delivery mode
shapes the acquisition and structure of the initial microbiota across multiple body habitats in
newborns. Proc. Natl. Acad. Sci. USA. 107:11971–11975.

21. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, et al. Diversity of the human
intestinal microbial flora. Science. 2005; 308:1635–1638. [PubMed: 15831718]

22. Edwards KJ, Bond PL, Gihring TM, Banfield JF. An archaeal iron-oxidizing extreme acidophile
important in acid mine drainage. Science. 2000; 287:1796–1799. [PubMed: 10710303]

23. Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, et al. Using pyrosequencing
to shed light on deep mine microbial ecology. BMC Genomics. 2006; 7:57. [PubMed: 16549033]

Grice and Segre Page 14

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2013 June 06.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



24. Ellrott K, Zmasek CM, Weekes D, Sri Krishna S, Bakolitsa C, et al. TOPSAN: a dynamic web
database for structural genomics. Nucleic Acids Res. 2011; 39:D494–D496. [PubMed: 20961957]

25. Elston DM. Demodex mites: facts and controversies. Clin. Dermatol. 2010; 28:502–504. [PubMed:
20797509]

26. Faith JJ, McNulty NP, Rey FE, Gordon JI. Predicting a human gut microbiota’s response to diet in
gnotobiotic mice. Science. 2011; 333:101–104. [PubMed: 21596954]

27. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the
diversity of hand surface bacteria. Proc. Natl. Acad. Sci. USA. 2008; 105:17994–17999. [PubMed:
19004758]

28. Gao Z, Perez-Perez GI, Chen Y, Blaser MJ. Quantitation of major human cutaneous bacterial and
fungal populations. J. Clin. Microbiol. 2010; 48:3575–3581. [PubMed: 20702672]

29. Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin
bacterial biota. Proc. Natl. Acad. Sci. USA. 2007; 104:2927–2932. [PubMed: 17293459]

30. Georgala S, Katoulis AC, Kylafis GD, Koumantaki-Mathioudaki E, Georgala C, Aroni K.
Increased density of Demodex folliculorum and evidence of delayed hypersensitivity reaction in
subjects with papulopustular rosacea. J. Eur. Acad. Dermatol. Venereol. 2001; 15:441–444.
[PubMed: 11763386]

31. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, et al. Metagenomic analysis of the human
distal gut microbiome. Science. 2006; 312:1355–1359. [PubMed: 16741115]

32. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, et al. Topographical and temporal diversity
of the human skin microbiome. Science. 2009; 324:1190–1192. [PubMed: 19478181]

33. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, et al. A diversity profile of the human
skin microbiota. Genome Res. 2008; 18:1043–1050. [PubMed: 18502944]

34. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, et al. Low-abundance biofilm species
orchestrates inflammatory periodontal disease through the commensal microbiota and
complement. Cell Host Microbe. 2011; 10:497–506. [PubMed: 22036469]

35. Hay R. Demodex and skin infection: fact or fiction. Curr. Opin. Infect. Dis. 2010; 23:103–105.
[PubMed: 20042975]

36. Hugenholtz P, Pace NR. Identifying microbial diversity in the natural environment: a molecular
phylogenetic approach. Trends Biotechnol. 1996; 14:190–197. [PubMed: 8663938]

37. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR. Novel division level bacterial diversity in a
Yellowstone hot spring. J. Bacteriol. 1998; 180:366–376. [PubMed: 9440526]

38. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the
genome. Nucleic Acids Res. 2004; 32:D277–D280. [PubMed: 14681412]

39. Koren O, Spor A, Felin J, Fak F, Stombaugh J, et al. Human oral gut, and plaque microbiota in
patients with atherosclerosis. Proc. Natl. Acad. Sci. USA. 2011; 108(Suppl. 1):4592–4598.
[PubMed: 20937873]

40. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, et al. Genomic analysis identifies
association of Fusobacterium with colorectal carcinoma. Genome Res. 2012; 22:292–298.
[PubMed: 22009990]

41. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, et al. Experimental and
analytical tools for studying the human microbiome. Nat. Rev. Genet. 2012; 13:47–58. [PubMed:
22179717]

42. Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate
inflammatory cells in rosacea. Br. J. Dermatol. 2007; 157:474–481. [PubMed: 17596156]

43. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal
RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA. 1985; 82:6955–6959.
[PubMed: 2413450]

44. Lederberg J, McCray AT. ’Ome sweet ’omics—a genealogical treasury of words. Scientist. 2001;
15:8.

45. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity
in the human intestine. Cell. 2006; 124:837–848. [PubMed: 16497592]

Grice and Segre Page 15

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2013 June 06.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



46. Li J, O’Reilly N, Sheha H, Katz R, Raju VK, et al. Correlation between ocular Demodex
infestation and serum immunoreactivity to Bacillus proteins in patients with facial rosacea.
Ophthalmology. 2010; 117:870–877. [PubMed: 20079929]

47. Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K. SNP detection for massively parallel
wholegenome resequencing. Genome Res. 2009; 19:1124–1132. [PubMed: 19420381]

48. Ling Z, Kong J, Liu F, Zhu H, Chen X, et al. Molecular analysis of the diversity of vaginal
microbiota associated with bacterial vaginosis. BMC Genomics. 2010; 11:488. [PubMed:
20819230]

49. Liu WT, Marsh TL, Cheng H, Forney LJ. Characterization of microbial diversity by determining
terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ.
Microbiol. 1997; 63:4516–4522. [PubMed: 9361437]

50. Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, et al. Dissecting biological “dark matter”
with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth.
Proc. Natl. Acad. Sci. USA. 2007; 104:11889–11894. [PubMed: 17620602]

51. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria
and archaea. Nat. Rev. Genet. 2010; 11:181–190. [PubMed: 20125085]

52. McLean MH, Murray GI, Stewart KN, Norrie G, Mayer C, et al. The inflammatory
microenvironment in colorectal neoplasia. PLoS ONE. 2011; 6:e15366. [PubMed: 21249124]

53. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, et al. The metagenomics RAST server—a
public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC
Bioinforma. 2008; 9:386.

54. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, et al. The human gut virome: inter-individual
variation and dynamic response to diet. Genome Res. 2011; 21:1616–1625. [PubMed: 21880779]

55. Mitra S, Rupek P, Richter DC, Urich T, Gilbert JA, et al. Functional analysis of metagenomes and
metatranscriptomes using SEED and KEGG. BMC Bioinforma. 2011; 12(Suppl. 1):S21.

56. Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin.
Microbiol. 1999; 2:317–322. [PubMed: 10383868]

57. Nelson DE, Van Der Pol B, Dong Q, Revanna KV, Fan B, et al. Characteristic male urine
microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE. 2010;
5:e14116. [PubMed: 21124791]

58. Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, et al. A catalog of reference
genomes from the human microbiome. Science. 2010; 328:994–999. [PubMed: 20489017]

59. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, et al. Use of ichip for highthroughput
in situ cultivation of ”uncultivable” microbial species. Appl. Environ. Microbiol. 2010; 76:2445–
2450. [PubMed: 20173072]

60. Oakley BB, Fiedler TL, Marrazzo JM, Fredricks DN. Diversity of human vaginal bacterial
communities and associations with clinically defined bacterial vaginosis. Appl. Environ.
Microbiol. 2008; 74:4898–4909. [PubMed: 18487399]

61. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant
intestinal microbiota. PLoS Biol. 2007; 5:e177. [PubMed: 17594176]

62. Paulino LC, Tseng CH, Blaser MJ. Analysis of Malassezia microbiota in healthy superficial human
skin and in psoriatic lesions by multiplex real-time PCR. FEMS Yeast Res. 2008; 8:460–471.
[PubMed: 18294199]

63. Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples
from healthy human skin and psoriatic lesions. J. Clin. Microbiol. 2006; 44:2933–2941. [PubMed:
16891514]

64. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, et al. Factors influencing the composition of the
intestinal microbiota in early infancy. Pediatrics. 2006; 118:511–521. [PubMed: 16882802]

65. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH Human Microbiome
Project. Genome Res. 2009; 19:2317–2323. [PubMed: 19819907]

66. Price LB, Liu CM, Johnson KE, Aziz M, Lau MK, et al. The effects of circumcision on the penis
microbiome. PLoS ONE. 2010; 5:e8422. [PubMed: 20066050]

Grice and Segre Page 16

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2013 June 06.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



67. Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, et al. Evidence of a robust resident
bacteriophage population revealed through analysis of the human salivary virome. ISME J. 2012;
6:915–926. [PubMed: 22158393]

68. Pride DT, Sun CL, Salzman J, Rao N, Loomer P, et al. Analysis of streptococcal CRISPRs from
human saliva reveals substantial sequence diversity within and between subjects over time.
Genome Res. 2011; 21:126–136. [PubMed: 21149389]

69. Proctor LM. The human microbiome project in 2011 and beyond. Cell Host Microbe. 2011;
10:287–291. [PubMed: 22018227]

70. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. A human gut microbial gene catalogue
established by metagenomic sequencing. Nature. 2010; 464:59–65. [PubMed: 20203603]

71. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, et al. Vaginal microbiome of reproductive-
age women. Proc. Natl. Acad. Sci. USA. 2011; 108(Suppl. 1):4680–4687. [PubMed: 20534435]

72. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, et al. Viruses in the faecal microbiota of
monozygotic twins and their mothers. Nature. 2010; 466:334–338. [PubMed: 20631792]

73. Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new
antibiotic resistance genes. Environ. Microbiol. 2004; 6:981–989. [PubMed: 15305923]

74. Roberts RJ. Identifying protein function—a call for community action. PLoS Biol. 2004; 2:e42.
[PubMed: 15024411]

75. Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW. Whole genome
amplification and de novo assembly of single bacterial cells. PLoS ONE. 2009; 4:e6864.
[PubMed: 19724646]

76. Rohde H, Qin J, Cui Y, Li D, Loman NJ, et al. Open-source genomic analysis of Shiga-toxin-
producing E. coli O104:H4. N. EnglJMed. 2011; 365:718–724.

77. Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, et al. Innate immune homeostasis by the homeobox
gene Caudal and commensal-gut mutualism in Drosophila. Science. 2008; 319:777–782.
[PubMed: 18218863]

78. Savage DC. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 1977; 31:107–
133. [PubMed: 334036]

79. Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing
artifacts on 16S rRNA-based studies. PLoS ONE. 2012; 6:e27310. [PubMed: 22194782]

80. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. Introducing mothur: opensource,
platform-independent, community-supported software for describing and comparing microbial
communities. Appl. Environ. Microbiol. 2009; 75:7537–7541. [PubMed: 19801464]

81. Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF. Distribution of Thiobacillus
ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage.
Science. 1998; 279:1519–1522. [PubMed: 9488647]

82. Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR. Bacterial protection of
beetlefungus mutualism. Science. 2008; 322:63. [PubMed: 18832638]

83. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, et al. Metagenomic biomarker discovery
and explanation. Genome Biol. 2011; 12:R60. [PubMed: 21702898]

84. Shin SC, Kim SH, You H, Kim B, Kim AC, et al. Drosophila microbiome modulates host
developmental and metabolic homeostasis via insulin signaling. Science. 2011; 334:670–674.
[PubMed: 22053049]

85. Smith HO, Tomb JF, Dougherty BA, Fleischmann RD, Venter JC. Frequency and distribution of
DNA uptake signal sequences in the Haemophilus influenza Rd genome. Science. 1995; 269:538–
540. [PubMed: 7542802]

86. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, et al. Microbial diversity in the
deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA. 2006; 103:12115–
12120. [PubMed: 16880384]

87. Sommer MO, Dantas G, Church GM. Functional characterization of the antibiotic resistance
reservoir in the human microflora. Science. 2009; 325:1128–1131. [PubMed: 19713526]

88. Srinivasan S, Liu C, Mitchell CM, Fiedler TL, Thomas KK, et al. Temporal variability of human
vaginal bacteria and relationship with bacterial vaginosis. PLoS ONE. 2010; 5:e10197. [PubMed:
20419168]

Grice and Segre Page 17

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2013 June 06.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



89. Stahl DA, Lane DJ, Olsen GJ, Pace NR. Analysis of hydrothermal vent-associated symbionts by
ribosomal RNA sequences. Science. 1984; 224:409–411. [PubMed: 17741220]

90. Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in
aquatic and terrestrial habitats. Annu. Rev. Microbiol. 1985; 39:321–346. [PubMed: 3904603]

91. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. The COG database: an
updated version includes eukaryotes. BMC Bioinforma. 2003; 4:41.

92. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. Genome analysis of multiple
pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”.
Proc. Natl. Acad. Sci. USA. 2005; 102:13950–13955. [PubMed: 16172379]

93. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, et al. Comparative metagenomics
of microbial communities. Science. 2005; 308:554–557. [PubMed: 15845853]

94. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. A core gut microbiome in
obese and lean twins. Nature. 2009; 457:480–484. [PubMed: 19043404]

95. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated
gut microbiome with increased capacity for energy harvest. Nature. 2006; 444:1027–1031.
[PubMed: 17183312]

96. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, et al. Community structure and
metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;
428:37–43. [PubMed: 14961025]

97. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, et al. Vancomycin-resistant Enterococcus
domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes
bloodstream invasion in humans. J. Clin. Investig. 2010; 120:4332–4341. [PubMed: 21099116]

98. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, et al. Environmental genome
shotgun sequencing of the Sargasso Sea. Science. 2004; 304:66–74. [PubMed: 15001713]

99. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, et al. Metabolic syndrome
and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010; 328:228–231.
[PubMed: 20203013]

100. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, et al. Gut flora metabolism of
phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472:57–63. [PubMed:
21475195]

101. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, et al. Innate immunity and intestinal
microbiota in the development of Type 1 diabetes. Nature. 2008; 455:1109–1113. [PubMed:
18806780]

102. Weng L, Rubin EM, Bristow J. Application of sequence-based methods in human microbial
ecology. Genome Res. 2006; 16:316–322. [PubMed: 16461883]

103. White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features
in clinical metagenomic samples. PLoS Comput. Biol. 2009; 5:e1000352. [PubMed: 19360128]

104. Willner D, Furlan M, Schmieder R, Grasis JA, Pride DT, et al. Metagenomic detection of
phageencoded platelet-binding factors in the human oral cavity. Proc. Natl. Acad. Sci. USA.
2011; 108(Suppl. 1):4547–4553. [PubMed: 20547834]

105. Woese CR. Bacterial evolution. Microbiol. Rev. 1987; 51:221–271. [PubMed: 2439888]

106. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms.
Proc. Natl. Acad. Sci. USA. 1977; 74:5088–5090. [PubMed: 270744]

107. Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, et al. One bacterial cell, one complete
genome. PLoS ONE. 2010; 5:e10314. [PubMed: 20428247]

108. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, et al. Linking long-term dietary patterns
with gut microbial enterotypes. Science. 2011; 334:105–108. [PubMed: 21885731]

109. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, et al. A human colonic commensal promotes
colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 2009;
15:1016–1022. [PubMed: 19701202]

Grice and Segre Page 18

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2013 June 06.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 1.
Workflow for metagenomic sequencing and analysis projects.
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Figure 2.
Genus- and phylum-level classification of bacteria colonizing a composite subject, showing
that human microbiome diversity is dependent on the site sampled. Sites in the oral cavity
share greater similarity than other types of sites, such as the skin, vagina, and gut. Data
derived from the NIH Human Microbiome Project study (http://commonfund.nih.gov/hmp).
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Figure 3.
Interpersonal variation in levels of bacteria (classified at the genus and phylum levels) of the
skin, vagina, gut, and mouth. The median relative abundance of each bacteria is indicated by
a central point, the boxes extend from the first to third quartiles, and the whiskers extend to
the highest and lowest data points no farther than 1.5 times the interquartile range from the
box. Gray dots represent individual samples that lie outside this range. Each body habitat
harbors dominant signature taxa. Actintobacteria (Corynebacterium and Propionibacterium),
Firmicutes (Staphylococcus, Streptococcus, and others), and Proteobacteria predominate on
the skin, with interindividual variation displayed; Lactobacillus predominates in the vagina;
Bacteriodetes and Firmicutes predominate in the gut; and Bacteriodetes, Firmicutes
(Streptococcus), Fusobacteria, and Proteobacteria predominate in the mouth. Data derived
from the NIH Human Microbiome Project study (http://commonfund.nih.gov/hmp).
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Table 1

Selected examples of freely available bioinformatics tools for the analysis of 16S ribosomal RNA (rRNA)
sequence data sets and metagenomic data sets

Analysis tool Web site Reference

Ribosomal Database Project:

• Database of aligned, annotated rRNA sequences

• Web-based analysis tools

http://rdp.cme.msu.edu 13

mothur:

• Open source software to analyze microbiome data

• Full analysis pipeline from raw sequences to visualization

http://www.mothur.org 80

QIIME (Quantitative Insights into Microbial Ecology):

• Open source software to analyze microbiome data

• Full analysis pipeline from raw sequences to visualization

http://www.qiime.org 9

LEfSe (LDA Effect Size):

• Online interface to identify and estimate the effect of biomarkers

• Biomarkers may be taxa, genes, or pathways

http://www.huttenhower.org/galaxy 83

Metastats:

• Web-based tool to identify differentially abundant features

• Accepts input as 16S rRNA abundance counts, functional data, or
metabolic data

http://metastats.cbcb.umd.edu 103

MG-RAST (Metagenomics Rapid Annotation Using Subsystem Technology):

• Open source server for metagenomic data normalization, analysis,
and visualization

http://metagenomics.anl.gov 53

MEGAN (Metagenome Analyzer):

• Taxonomic and functional analysis and visualization of
metagenomic, metatranscriptomic, and metaproteomic data

http://ab.inf.uni-tuebingen.de/software/megan 55
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