
A mutli-omic systems approach to elucidating Yersinia virulence
mechanisms

Charles Ansong1, Alexandra C. Schrimpe-Rutledge1, Hugh Mitchell2, Sadhana Chauhan3,
Marcus B. Jones4, Young-Mo Kim1, Kathleen McAteer5, Brooke L. Deatherage Kaiser1,
Jennifer L. Dubois7, Heather M. Brewer6, Bryan C. Frank4, Jason E. McDermott2, Thomas
O. Metz1, Scott N. Peterson4, Richard D. Smith1, Vladimir L. Motin3, and Joshua N. Adkins1

1Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
2Computational Sciences & Mathematics Division, Pacific Northwest National Laboratory,
Richland, WA
3Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston,
TX
4Infectious Disease Group, J. Craig Venter Institute, Rockville, MD
5Biology Program, Washington State University Tri-Cities, Richland, WA
6Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland,
WA
7Biosciences Division, Stanford Research Institute, International, Menlo Park, CA

Abstract
The underlying mechanisms that lead to dramatic differences between closely related pathogens
are not always readily apparent. For example, the genomes of Yersinia pestis (YP) the causative
agent of plague with a high mortality rate and Yersinia pseudotuberculosis (YPT) an enteric
pathogen with a modest mortality rate are highly similar with some species specific differences;
however the molecular causes of their distinct clinical outcomes remain poorly understood. In this
study, a temporal multi-omic analysis of YP and YPT at physiologically relevant temperatures
was performed to gain insights into how an acute and highly lethal bacterial pathogen, YP, differs
from its less virulent progenitor, YPT. This analysis revealed higher gene and protein expression
levels of conserved major virulence factors in YP relative to YPT, including the Yop virulon and
the pH6 antigen. This suggests that adaptation in the regulatory architecture, in addition to the
presence of unique genetic material, may contribute to the increased pathogenenicity of YP
relative to YPT. Additionally, global transcriptome and proteome responses of YP and YPT
revealed conserved post-transcriptional control of metabolism and the translational machinery
including the modulation of glutamate levels in Yersiniae. Finally, the omics data was coupled
with a computational network analysis, allowing an efficient prediction of novel Yersinia
virulence factors based on gene and protein expression patterns.
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Introduction
Yersinia pestis (YP) is a Gram-negative bacterium and the causative agent of plague, an
acute and lethal disease responsible for at least three human pandemics that resulted in an
estimated 200 million deaths 1. Several lines of evidence suggest that YP has evolved from
the gastrointestinal pathogen Y. pseudotuberculosis (YPT) within the last 20,000 years 2.
Genomic analyses show YP and YPT to be genetically similar (~97% identity at the
nucleotide level 3), yet despite their close genetic relationship, the bacteria exhibit markedly
different pathogenecities and modes of transmission 4. YPT causes non-fatal gastrointestinal
disease and is transmitted via the fecal oral route, while YP is the causative agent of
typically fatal plague and is transmitted via flea bite. Based both on the ability to ferment
glycerol and to reduce nitrate, YP strains have traditionally been assigned to one of three
biovars: antiqua, medievalis, and orientalis 1. Recently, the new biovar microtus has been
identified on the basis of unique pathogenic, biochemical, and molecular features 5. In
laboratory studies, microtus strains (also known as Pestoides) are lethal to microtus species
(voles), mice, and some other small rodents, however they are avirulent in humans and
larger mammals. Whereas antiqua, medievalis, and orientalis biovars cause disease in
humans (i.e. epidemic strains), there is no evidence that human plague can be caused by
Pestoides (i.e. non-epidemic) strains 6.

The availability of genome sequences for several Yersinia strains, including YPT and both
epidemic and non-epidemic YP variants, has provided an opportunity to explore
mechanisms responsible for the differences in pathogenicity. Comparative genomic analyses
revealed all human pathogenic Yersinia strains, including YP and YPT share almost
identical ~70-kb virulence plasmids that are essential for virulence 7. This plasmid (pCD1 in
YP) encodes two major types of virulence factors: (i) the Yersinia outer proteins (Yops) and
V antigen and (ii) the type three secretion system (T3SS) apparatus which is required to
translocate Yop effector proteins to the host cytoplasm to modulate host cell function and
promote disease progression 8. Additionally, comparison of the genomes of YP and its
progenitor YPT reveal a modest number of species-specific chromosomal genes as well as
the presence of two plasmids (pMT1 and pCP1) specific to YP that are thought to contribute
to YP pathogenesis 1, 3, 9–14. The pMT1 plasmid harbors genes coding for the capsular
antigen F1 and murine toxin, while the pPCP1 plasmid encodes the plasminogen activator.
Importantly, these species-specific attributes cannot fully account for the marked difference
in pathogenecity between YP and YPT 9, 15–21. One hypothesis is that the differential
expression of genes common to both organisms, in addition to overt genetic differences, is
an important contributing factor to the different pathogenicities and clinical outcomes of YP
and YPT.

In this study we have performed a systems level multi-omic analysis of YP CO92 (YPCO)
and YPT PB1/+ (YPTS) to gain an understanding as to how an acute and highly lethal
bacterial pathogen, such as YP differs phenotypical from its less virulent progenitor YPT.
We also compare YP CO92 (YPCO) to the non-epidemic YP strain Pestoides F (YPPF) to
provide insights to the mechanism(s) underlying the virulence-restricted phenotype of non-
epidemic YP strains compared to epidemic YP strains. The parallel sample-matched
transcriptomics and proteomics analysis of multiple pathogenic Yersinia strains in a single
study allows for the prediction of genes putatively involved in core pathogenic processes
important for virulence mechanisms of Yersinia species. In the present work, cells were
grown in a chemically defined medium (pH 7.2) at physiologically relevant temperatures
(representative of flea vector and mammalian host environments) and sampled through an 8
hour time course. Transcription was analyzed using a multi-genome microarray and protein
and metabolite levels were analyzed by mass spectrometric methods. This experimental
design offered the advantage of revealing both transcriptional and post-transcriptional
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responses to a temperature shift simulating the host-Yersinia interaction through a time
course that simulates the progression of a mammalian infection. The data suggests that
adaptation in the regulatory architecture, in addition to the presence of unique genetic
material, may contribute to the increased pathogenenicity of YP relative to YPT; and also
revealed conserved post-transcriptional control of metabolism and the translational
machinery in Yersiniae.

Experimental
Reagents

The following reagents were used in sample preparation: Nanopure or Milli-Q quality water
(~18 megohm·cm or better); ammonium bicarbonate (NH4HCO3); bicinchoninic acid (BCA)
or coomassie protein assay reagents (Pierce, Rockford, IL); urea; thiourea; dithiothreitol
(DTT); 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate(CHAPS); calcium
chloride; sequencing-grade modified trypsin (Promega); HPLC-grade methanol (MeOH);
trifluoroacetic acid (TFA); acetonitrile (ACN); ammonium formate; formic acid; and
ammonium hydroxide (NH4OH). All reagents were obtained from Sigma Aldrich (St. Louis,
MO) unless otherwise specified.

Bacterial strains and culture conditions
Y. pseudotuberculosis PB1/+ (YPTS), Yersinia pestis Pestoides F (YPPF), and a wild-type
Yersinia pestis CO92 (YPCO) cured of the pPCP1 plasmid were grown in a chemically
defined BCS medium 22 in which neutral pH 7.2 was maintained by addition of 50 mM
morpholinopropanesulfonic acid (MOPS) as described previously 22, 23. Bacterial cultures
were grown in Erlenmeyer flasks aerated at 200 rpm at 26°C or 28°C. Briefly, a starter
culture was grown, diluted to optical density OD600= 0.1 to begin overnight culture, and
grown to an OD600 of ~3.0. The overnight culture was diluted to OD600= 0.1 and grown in
two flasks at 26°C. When the cultures reached OD600 ~0.5, one flask was moved to 37°C.
Similarly cultures grown at 28°C were shifted to 37°C. Aliquots from both cultures 26°C/
28°C and 37°C were taken at 0, 1, 2, 4, and 8 hours, optical densities measured, and samples
prepared as described below for transcriptomic, proteomic, and metabolomic analyses. The
different low temperatures were used due to biofilm formation of YPCO at 26°C and more
ideal suspension culturing at 28°C, results were largely similar for the purposes of our
analyses.

Transcriptomics
RNA preparation and microarray analysis of transcripts were performed as previously
described in 24.

Proteomics analysis
Approximately 2 × 1010 bacteria were harvested from the cultures at each time point,
pelleted, and immediately frozen at −80°C. Thawed cell pellets were washed with 100 mM
NH4HCO3 (pH 8), lysed via bead beating, and soluble and insoluble protein digestions were
performed as described previously 25. Peptides were concentrated in a Speed-Vac
(ThermoFisher, Savant) to ~100 μL, and a BCA protein assay was performed to quantify
peptide concentration prior to analysis.

Peptide samples were analyzed using the accurate mass and elution time (AMT) tag
approach 26, which is enabled by a number of published and in-house tools available for
download at omics.pnl.gov 27–31 We note that the scale of the experiment in which 24
comparisons within a single MS experiment are being considered (i.e. 3 strains × 2
temperatures X 4 time points) guided our choice of label-free intensity based quantification.
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Briefly, a reference database of AMT tags for peptides from all three Yersinia strains
employed in this study was previously generated through exhaustive 2-dimensional LC-MS/
MS analyses, as described 24, and was augmented with additional peptides identified in the
LC-MS/MS analyses described here. Samples were blocked and randomized to minimize the
effects of systematic biases and ensure the even distribution of known and unknown
confounding factors across the entire experiment. Peptides from each of the soluble and
insoluble protein preparations were analyzed in triplicate using an custom built capillary LC
system 32 coupled with an LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific, San
Jose, CA) via an in-house manufactured electrospray ionization interface, as previously
described 33. RAW files for these datasets are available at http://omics.pnl.gov and at
www.Sysbep.org. The LC elution time and monoisotopic mass (determined using the charge
state and high accuracy mass measurement) of each peptide feature observed in the analysis
were matched to entries within the AMT tag database using the in-house STAC
algorithm 34, which calculates a probability of match. The integrated areas under the elution
profiles were used as measures of peptide abundances. Each peptide included for subsequent
data analysis was observed in at least one LC-MS analysis with a probability of a correct
match being 0.9 and matches for the same peptide in the remaining LC-MS analyses were
required to have a minimum probability of 0.5. In addition, at least two unique peptides
were required per protein identification. The software program DAnTE 35 was employed to
perform an abundance roll-up procedure to convert peptide information to protein
information, thereby inferring protein abundances.

Metabolomics analysis
For 1H nuclear magnetic resonance (NMR) analysis, 540 μL of spent media were added to
60 μL of 5 mM 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) in 99.9% deuterium oxide
(D2O) in 5-mm NMR tubes. DSS is used as an internal standard and to provide a 1H
chemical shift reference at δ 0.00 ppm. 1H NMR spectra were acquired on a Varian
INOVA-600 MHz NMR spectrometer (Varian Inc., Palo Alto, CA) at 298 K, using a triple
resonance 5-mm HCN salt-tolerant cold probe. A one-dimensional NOE pulse sequence
adapted from the two-dimensional Varian tnnoesy was used. For each sample, 96 to 512
transients were collected into 64 K data points using a spectral width of 7225.4 Hz with a
relaxation delay of 1.0 s, an acquisition time of 4.00 s, and a mixing time of 100 ms. Spectra
were processed using Chenomx 6.1. A 0.5-Hz line-broadening function was applied to all
spectra prior to Fourier transformation (FT) and baseline correction. The profiler module of
Chenomx was used to identify and quantify metabolites.

For GC-MS analysis, metabolites were extracted from the cell culture suspensions using
four volumes of chilled (−20°C) chloroform/methanol (2:1, v/v). The aqueous layer obtained
after centrifugation (12,000 × g, 5 min) was transferred to a new vial and dried in vacuo. All
metabolite extracts were then subjected to chemical derivatization to enhance metabolite
stability and volatility during analysis 36. Briefly, 20 μL of methoxyamine in pyridine (30
mg/mL) was added to each dried sample, followed by incubation at 37°C with shaking
(1000 rpm) for 90 min. Next, 80 μL of N-methyl-N-(trimethylsilyl)trifluoroacetamide
(MSTFA) containing 1% trimethylchlorosilane (TMCS) was added to each vial, followed by
incubation at 37°C with shaking (1000 rpm) for 30 min. The incubated samples were
allowed to cool to room temperature and were then analyzed by GC-MS. The GC-MS
system consisted of a 7890A GC-coupled with a single quadrupole MSD 5975C (Agilent
Technologies, Santa Clara, CA), and separations were performed on a DB-5MS column (30
m × 0.25 mm × 0.25 μm; Agilent Technologies). The injection mode was splitless, and 1 μL
of each sample was injected. The injection port temperature was held at 250°C throughout
the analysis. The GC oven was initially maintained at 60°C for 1 min and then ramped to
325°C at 10°C/min, followed by a 5 min hold at 325°C 37. The obtained GC-MS raw data
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files were processed by MetaboliteDetector 38. Retention indices (RI) were calculated based
on the analysis of a mixture of fatty acid methyl esters (FAMEs; C8 – C30), and this
information was subsequently used to align the retention times of metabolite features
detected across GC-MS chromatograms. The chromatographically aligned features were
identified using a database, containing mass spectra and retention indices for approximately
700 metabolites 37.

Network inference
For network inference analysis transcriptomics and proteomics data from the “ambient”
temperature (26°C and 28°C) samples and mammalian host temperature (37°C) samples
were used (Suppl. Table 1) to enhance robustness of the network predictions.
Transcriptomics and proteomics data were log2 transformed as the ratio of 37°C to 26°C
samples, or 37°C to 28°C samples. Missing values in proteomics data were dealt with as
follows: Proteins for which there were observations for only one strain were removed. Of
the remaining 933 proteins, 670 had a complete complement of data values for all strains
and conditions. For the remaining 263, if values were missing for all samples in a single
strain, it was assumed the protein was not present in that strain and zeros were filled in,
representing a non-changing sample for that protein. In many cases, proteins were detected
across all time points at one temperature (in a given strain) but absent at another. For these
scenarios, it was assumed the differential in temperature was causing the protein level to fall
below the level of detection, and the minimum value for the entire data table was filled in.
For instances when only 1 time point was missing for a temperature series, the value from
the next earlier time point was filled in. If the missing value was from the first time point,
the second time point was filled in. All other missing values were filled in with the
minimum value of the entire data table.

To determine relationships between transcripts and proteins we used an approach to infer a
separate coexpression network for each dataset. To infer edges between network elements,
we used context likelihood of relatedness (CLR), an inference algorithm which determines
similarity between gene expression profiles based on mutual information between the
profiles, and then scores the relationships using a Z-score 39. For each network we used
default parameters for inference using 10 bins for binning data and 3 splines for curve fitting
(see 39 for details).

Thresholds for considering a relationship to be an edge in a network were chosen to
minimize false negatives and false positives. Interestingly, Z-scores for proteomics were
noticeably lower than for transcriptomics (proteomics mean positive Z-score = .67,
transcriptomics mean positive Z-score = 1.04) such that a lower percentage of proteomic
edges were preserved than transcriptomic edges at any given cutoff. For this reason, we
elected to apply differential Z-score thresholds for transcriptomics (5.0) and proteomics
(3.0), yielding 3823 transcriptomic edges and 607 proteomics edges, which is a similar ratio
to that of transcriptomic and proteomic entities remaining after the initial filtering process
(4020/929). Since locus ID tags were common to both datasets, edge files for each were
simply merged and redundant edges removed, forming a new integrated network. The full
network is provided in a single Cytoscape 40 session file as Supplemental Data.

To find clusters in the network, we used the Louvain community-finding algorithm 41,
which maximizes modularity between communities and returns the corresponding cluster
membership. All clusters with a membership of 10 proteins or more were analyzed for
enrichment of functional categories using gene ontology. These functional clusters were
visualized using the Cytoscape graph visualization package 40.
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Results and Discussion
Experimental design and omics data generation

To elucidate mechanisms that contribute to the difference in pathogenicity between YP and
YPT, high throughput “omics” technologies were used to analyze YP CO92 (YPCO), YPT
PB1/+ (YPTS) and YP Pestoides F (YPPF) cells sampled periodically through a time course
of 8 hours (1, 2, 4, and 8 h) post-temperature shift from flea vector (26°C/28°C) to
mammalian host (37°C) temperature. YPTS typically causes a mild infection in mammals
and birds. The microbe is capable of a saprophytic life style, and thus alternates between the
natural environment and warm blooded hosts. The non-epidemic YPPF circulates within
natural plague reservoirs and is transmitted between common voles by the fleas, similar to
epidemic strains of Y. pestis (i.e. YPCO). The only difference between non-epidemic and
epidemic strains is the reduced virulence of the former strains to large animals. Thus, a
temperature shift model is relevant to all three Yersinia used in our studies. Transcriptomics
analyses were performed utilizing a Yersinae multi-genome microarray which has been
previously described 24. Unlike a traditional microarray that targets annotated genes for a
single strain, this microarray incorporates 7641 unique probes designed against seven
sequenced Yersinia strains on a single chip, including the three strains examined in this
study. Proteomics analyses were performed using capillary LC-MS combined with the
accurate mass and time (AMT) tag approach 26. Overall, microarray-based transcriptomics
analyses quantified 5005 genes, and mass spectrometry-based proteomics analyses
quantified 1365 proteins across all conditions examined. The data are summarized in Suppl.
Table 1 and provided as a resource for the community (www.sysbep.org). This study
focused on the response to temperature shift from flea vector temperature 28°C to
mammalian host temperature 37°C, represented as log2 transformed ratios of expression at
37°C relative to 28°C, unless indicated in the text.

Comparative omics analysis of Y. pestis and Y. pseudotuberculosis
While YP and YPT have been shown to be very similar genetically (~97% identity at
nucleotide level) 3, the bacteria exhibit markedly different pathogenicities 4. The molecular
mechanism(s) underlying the acute character of the plague infection caused by YP in the
mammalian host is poorly understood. We hypothesized that differential expression of genes
common to both organisms, in addition to overt genetic differences contributes to their
significantly different pathogenicities in the mammalian host. To test this hypothesis,
thermal-shift transcript and protein profiles of YP CO92 (YPCO) and YPT PB1/+ (YPTS)
were analyzed.

From our analysis, we identified 70 genes preferentially up-regulated in YPCO relative to
YPTS following a shift from flea vector to mammalian host temperature, suggesting a
potential functional role in the mammalian host context. Examination of these 70 genes
revealed that 66 genes were located on the pCD1 plasmid, which is essential for virulence in
all human pathogenic Yersinia strains, with 44 genes annotated as encoding Yops or
components of the T3SS (Suppl. Figure 1 and Suppl. Table 2). These included secretion
apparatus members, chaperones, effectors and low calcium response genes. In agreement
with the transcriptional data, all pCD1-encoded Yops and T3SS proteins detected by
proteomics were preferentially up-regulated in YPCO relative to YPTS in response to
temperature elevation (Figure 1). In fact, protein expression was not detected for any of
these proteins in YPTS across all time points. While it is possible that these proteins were
simply not detected due to the stochastic nature of MS-based proteomics analysis methods, a
more likely explanation is low protein expression levels in YPTS that fall beneath the
detection level of the instruments employed for analysis. YadA is a factor important for YPT
pathogenesis but thought to be either absent or nonfunctional in YP 42. Here our microarray
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data shows detection of YadA transcripts in both YPCO and YPTS suggesting that
expression of this pseudogene does occur in YP (Figure 1). Examination of the
corresponding proteomics data however shows presence of YadA protein in YPTS alone but
not YPCO consistent with it being non-functional in YP (Figure 1). Taken together these
observations suggest a role for post-transcriptional regulatory mechanisms in modulating the
genotype to phenotype expression of YadA in Yersiniae.

Three of the four chromosomally-encoded genes preferentially up-regulated in YPCO
relative to YPTS following temperature increase are required for the assembly of a
functional pH6 antigen (psaABC; Suppl. Figure 1). The fourth chromosomally-encoded
gene is an acid resistance membrane protein (YPO0590). The pH6 antigen (Psa) is
conserved across pathogenic Yersinia species and is thought to contribute to both YP and
YPT virulence in the mammalian host. In YPT, Psa was reported to be a thermoinducible
adhesin that allows binding of the organism to cultured mammalian epithelial cells 43. In YP
a psa deletion mutant strain was shown to be attenuated by the intravenous route of
infection 44 and more recently Psa was shown to promote resistance to phagocytosis further
clarifying its role in virulence 45. Taken together, these observations suggest that the
increased pathogenicity of YP relative to YPT is not only due to genomic differences, but
stems from differences in transcriptional regulatory networks resulting in higher transcript
and protein expression of common essential virulence mechanisms.

These observations encouraged examination of the extent that differential expression of
other major virulence mechanisms conserved across pathogenic Yersinia species contribute
to observed differences in pathogenicity. The high pathogenicity island (HPI)-encoded ybt
locus is conserved across pathogenic Yersinia spp with 97–100% identity and is comprised
of genes required for the biosynthesis and secretion of yersiniabactin, a siderophore that is
essential for Yersinia virulence 46. Transcripts of the genes encoding yersiniabactin
biosynthetic proteins (YPO1907–1911), as well as the transcript for the yersiniabactin
receptor (YPO1906), were down-regulated following temperature shift in YPCO compared
to YPTS (Suppl. Figure 2). The ferric uptake regulator (Fur) negatively regulates
transcription of ybt genes while transcriptional regulator YbtA positively regulates
transcription of ybt genes 47. No differences between YPCO and YPTS transcript and
protein levels were observed for Fur. Similarly no differences between YPCO and YPTS
transcript levels were observed for YbtA. YbtA protein expression was not detected in either
organism. Taken together these results suggest that regulation of yersiniabactin biosynthesis
and secretion is different in YPCO and YPTS and likely comprises additional yet
unrecognized levels of transcriptional or post-transcriptional control that contribute to the
differences in pathogenesis between these strains. This is supported by previous work
showing that an inactivating mutation in the yersiniabactin receptor YPO1906 causes loss of
siderophore production in YPT, but not in YP 48.

Comparative omics of Y. pestis CO92 and Y. pestis Pestoides F
We compared YP CO92 (YPCO) to the non-epidemic YP strain Pestoides F (YPPF) to gain
insights to the mechanism underlying the virulence-restricted phenotype of non-epidemic
YP strains compared to epidemic YP strains. From our analysis, we identified 66 genes
preferentially expressed in one organism or the other in response to temperature shift (Suppl.
Table 3) as judged by clustering analysis. A majority of these genes, 51, exhibited a
coordinated down-regulation of transcript and protein levels following a shift from flea
vector temperature to mammalian host temperature suggesting a potential functional role in
the flea vector context. The remaining 15 genes were up-regulated following temperature
shift in this case, suggesting a potential functional role in the mammalian host context. All
15 genes that were up-regulated following temperature shift were preferentially expressed in
YPCO relative to YPPF, with 11 of the 15 genes encoded on the pMT1 virulence plasmid.
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The pMT1 plasmid is a 100 kb YP-specific plasmid that encodes approximately 100 genes,
including the two well characterized virulence factors F1 capsule protein (Caf1) and
Yersinia murine toxin (Ymt). Ymt is a phospholipase D (PLD) shown to be required for
survival of YP in the midgut of the flea but not required for virulence in mice 12, 49. Caf1
was previously demonstrated to be an anti-phagocytic factor that inhibits the internalization
of YP by macrophages 9, and additionally promotes transmission by flea bite, increasing the
potential for epidemic spread 50. More recent results suggest that Caf1 is required for
pathogenesis during bubonic and pneumonic infections 51. It is clear that acquisition of the
pMT1 plasmid, and thus the ymt and caf loci, enhanced YP potential for epidemic spread. It
is currently unknown but likely that additional virulence determinants are encoded on the
pMT1 virulence plasmid. The 11 pMT1 plasmid encoded genes preferentially expressed in
YPCO relative YPPF warrant further investigation as potential molecular switches for the
epidemic versus non-epidemic phenotypes of YPCO and YPPF.

Multi-omics integration for network prediction of putative virulence factors
While the identification of factors that contribute to species-specific pathogenic attributes of
YP and YPT is important, equally important is the elucidation of the full repertoire of
determinants that play a role in core pathogenic processes required for the virulence
mechanism of pathogenic Yersinia spp. Here the context likelihood of relatedness (CLR)
algorithm 39 was employed to integrate the proteomics and transcriptomics datasets and
predict proteins important for Yersiniae pathogenesis in an efficient and systematic manner.
Since proteomic expression profiles are often poorly correlated with transcriptomic profiles,
there is likely additional regulatory information in the combined results. The value added of
an integrated approach, is therefore the incorporation of potential impacts of post-
transcriptional regulation on the network analysis. The robustness of the predictions was
enhanced by the incorporation of omics data from bacteria grown at both flea vector
temperatures, 26°C and 28°C, and at the mammalian host temperature (37°C) (Suppl. Table
1). The proteomics and transcriptomics datasets were integrated at the network level to
generate a multi-omics network, and subsequent functional enrichment analyses were used
to predict proteins important for pathogenesis as described below. A similar approach was
previously employed to predict novel virulence factors in the related pathogen Salmonella
Typhimurium which were subsequently verified experimentally 52.

These proteomic and transcriptomic networks were then combined under specific thresholds
to create an integrated multi-omics network including only high confidence protein to
protein (Z score > 3.0) and transcript to transcript (Z score > 5.0) relationships (see the
Materials and Methods section for the fractional contribution of transcriptomics and
proteomics). The network was partitioned using a community-finding algorithm 41, and each
of the resulting clusters was analyzed for enrichment of functional categories using gene
ontology (GO) analysis. Among the most significantly enriched functional clusters was the
cluster labeled ‘Type III secretion’ (T3SS) as shown in Figure 2. To predict proteins
potentially important for Yersinia pathogenesis, further analysis was focused on this cluster
because of the established characterization of the T3SS as a major Yersinia virulence factor,
and proteins co-regulated with it across multiple organisms, conditions and time points are
likely to play a role in Yersinia pathogenesis.

Examination of the T3SS-associated functional cluster revealed 151 cluster members (Suppl.
Table 4), with 34 members encoded on the pCD1 virulence plasmid, including 28 annotated
as members of the Yop virulon. Fifty three cluster members are encoded on the pMT1
plasmid including the major virulence determinants Yersinia murine toxin (Ymt) and the F1
capsule protein (Caf1). Sixty four cluster members are chromosomally-encoded, the
majority of which are annotated with unknown function. Among the subset of chromosome-
encoded cluster members were several proteins that have been suggested to play a role in
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pathogenesis in Yersinia including PgaA, HmsR, Ail, Asr, RpoS, and NlpD. For example,
the lipoprotein NlpD was recently shown to be a novel Yersinia pestis virulence factor 53.
Chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence
to an LD50 of at least 107 cfu for subcutaneous and airway routes of infection, and the
mutant was unable to colonize mouse organs following infection 53. Given the very high
enrichment of virulence-related proteins and proteins important for adaptation to the host
environment in this cluster, the remaining uncharacterized members of this cluster are
predicted to be enriched for proteins important for Yersinia pathogenesis.

Comparison of omics datasets across multiple Yersina strains reveals conserved
biological processes under post-transcriptional control

In most instances, gene expression in YPCO relative to YPTS or YPPF was confirmed by
the proteomics data if the protein of interest was confidently detected. However, this
analysis also revealed a number of cases where changes in protein expression were in
contrast with the observations from the transcriptional analysis (i.e. transcript appeared
unaffected by the temperature shift, while protein displayed substantial change),
highlighting the importance of proteomics in addition to transcriptional analyses.

Typically, disparities between transcript and protein measurements are often attributed to
post-transcriptional regulation 54, 55, thus these observations prompted examination of
instances of apparent post-transcriptional regulation in response to temperature switch on a
global scale. First, transcript and protein responses to temperature shifts were considered for
each gene at the same time-point within each of the three organisms by calculating Pearson
correlations. A general trend of improved correlation was observed between transcript and
protein over time across all three organisms. For example, in the case of YPCO transcript-
protein correlations of 0.28, 0.55, 0.65, and 0.53 were observed at 1h, 2h, 4h, and 8h
respectively (Suppl. Figure 3). It is possible that this general trend of improved correlation
may be explained by adaptation to new environmental conditions as the later time points
reach a steady-state with only subtle changes in macromolecules needed. This is in contrast
to the 1hr time point during which there appears to be a vigorous dynamic adaptation in
response to temperature shift occurring, necessitating substantial transcription and
translation of newly required biomolecules.

While low transcript-protein correlation is typically interpreted as evidence of post-
transcriptional regulation, it is very likely that temporal lags between dynamic changes in
transcription and translation at the level of individual genes also represent an important
contribution to the observed low correlation; although this has rarely been demonstrated as
most studies reporting low correlation have been single time-point studies. The temporal
sample-matched global transcript and protein datasets presented here allow us to begin to
evaluate this in part with regards to temporal lag on a genome-scale. If the assertion that
temporal lags between dynamic changes in transcription and translation represent an
important contribution to the low transcript-protein correlations observed is correct, then an
improvement in transcript-protein correlation would be expected as a time lag is introduced
in analysis of the correlation of the temporal transcript to the protein data. Indeed this was
observed across all three strains when transcript and protein response to temperature shift
were compared by calculating Pearson correlations with and without a 1h time lag (Suppl.
Figure 4). For YPCO a transcript-protein correlation improvement of 0.28 to 0.57 was
observed. Similarly for YPTS and YPPF a transcript-protein correlation improvements of
0.49 and 0.33 to 0.56 and 0.62, respectively, are observed.

Considering the improvement in global transcript-protein correlations associated with time,
genome-scale instances of apparent post-transcriptional regulation in response to
temperature shift were examined by performing an ANOVA analysis. The goal of this
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analysis was to identify genes with transcript response significantly different from protein
response to temperature shift across all time points. The ANOVA analysis identified 173
YPCO genes with a significant difference (p<0.05) between mRNA and proteins responses
to temperature shift across all time points, with similar numbers of differences for YPPF
(194) and YPTS (128) (Figure 3 and Suppl. Table 5). The Database for Annotation,
Visualization and Integrated Discovery (DAVID) 56 was used to identify enriched
functionally-related genes representing particular biological processes from each of these 3
different gene lists with the following criteria: Benjamini-Hochberg corrected p-value < 0.05
and gene count ≥ 5. Biological processes functionally enriched in the list of genes are shown
in Table 1. Observing apparent post-transcriptional control of biological processes across
multiple organisms increases the confidence in their assignment. Thus the data were
examined for those inferred biological processes under potential post-transcriptional control
that were conserved across at least two of the three Yersiniae under investigation (see Table
1; bolded text). Among these post-transcriptional controlled proteins were purine
metabolism, pyrimidine metabolism, and amino-acyl tRNA biosynthesis which showed
conservation across all three organisms. Pyruvate metabolism and glycolysis/
gluconeogenesis were conserved across YPCO and YPPF while ribosomes were conserved
across YPPF and YPTS. Interestingly, previous work in the bacterial pathogen Salmonella
Typhimurium has also suggested that general metabolism (including purine and pyrimidine
metabolism, glycolysis/gluconeogenesis, the TCA pathway, and pyruvate metabolism) and
the translational machinery (including aminoacyl-tRNA synthetases) are under post-
transcriptional control, mediated to a large extent by the global post-transcriptional regulator
Hfq which is required for Salmonella virulence 57–59. Post-transcriptional regulation of
general metabolism and the translational machinery, among other processes, is speculated to
similarly play an important role in Yersinia adaptation to the mammalian host intracellular
environment and in pathogenesis. Indeed the global post-transcriptional regulator Hfq has
been shown to be required for virulence in Yersinia 60, 61.

Metabolomics analyses suggest post-translational control of glutamate levels
Advances in mass spectrometry and nuclear magnetic resonance (NMR) techniques in the
past decade now allow for global, high throughput profiling of metabolites produced by
bacteria. Here, NMR was used to analyze spent media samples derived from two YP strains
(YPCO and YPPF) and the YPT strain PB1/+ (YPTS) grown at the flea vector and
mammalian host temperatures and sampled at 4hr post-culturing. These samples were
prepared from the cultures used for transcriptomics and proteomics analyses. A striking
observation from this analysis was the difference in glutamate concentrations across the
three strains. Glutamate concentration in the YPCO sample was significantly higher than in
either YPTS or YPPF samples (data not shown). As an orthogonal measure of the observed
differences in this metabolite across the three strains, whole cell cultures of YPCO, YPPF
and YPTS (grown at both flea vector and mammalian host temperatures and sampled at 1hr,
2hr, 4hr and 8hr post-culturing) were analyzed by gas chromatography-mass spectrometry
(GC-MS). In support of the NMR results, the GC-MS data showed that glutamic acid, which
was not an ingredient of the culture media (i.e. an endogenous metabolite), accumulated to
high levels in the YPCO cell culture with time, while remaining at background levels in
YPTS and YPPF (Suppl. Figure 5). Interestingly, the level of glutamate in YPCO sample
grown at mammalian host temperature reached maximum at the 4hr time point, and dropped
significantly at 8hr time point. In contrast, there was little difference in glutamate
concentration in YPCO sample grown at flea vector temperature at the 4hr and 8hr time
points. These data were confirmed with the measurement of glutamate by using Amplex Red
Glutamic Acid/Glutamate Oxidase fluorescence assay kit from Invitrogen (data not shown).
It was observed previously, that during adaptation of YP to the flea gut environment, plague
bacterium may catabolize L-glutamate group of amino acids, such as glutamine, histidine,
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arginine, and proline, to give rise to L-glutamate and the TCA cycle intermediates succinate,
formate, and α-ketoglutarate 62. We have not detected differences in expression of genes
involved in uptake and catabolism of these amino acids between three Yersinia strains, as
well as in concentrations of histidine, arginine, proline, succinate, and formate. The example
of this comparison for the transcript and protein levels of key enzymes in glutamate
metabolism of YPCO relative YPPF and YPTS is shown on Figure 4. No significant
differences were observed in the expression patterns of glutamate dehydrogenase, glutamate
synthase alpha and beta subunits, or other key enzymes in glutamate metabolism across all
three strains. Given that the difference in glutamate levels between the three strains were not
reflected at the level of gene transcription or protein translation, these results implicate post-
translational control as a previously unappreciated additional regulatory mechanism
involved in modulating glutamate levels in vivo. Interestingly, a recent study of nitrogen
metabolism in Mycobacterium smegmatis investigated the transcription and specific enzyme
activity of glutamine synthetase and glutamate dehydrogenase. The authors found that
glutamate dehydrogenase activity was not reflected at the level of gene transcription, thereby
implicating post-transcriptional modification as a regulatory mechanism in response to
nitrogen availability 63.

Conclusions
The molecular mechanisms underlying the enhanced pathogenesis of YP relative to YPT
(~97% sequence identity) remain elusive despite several comparative genomic studies. Here
using a systems biology approach using sample-matched transcriptomic and proteomic
profiling appear to support the hypothesis that differential expression of genes common to
both YP and YPT, as opposed to the mere presence or absence of species-specific genes,
contributes to the striking difference in the diseases caused by these pathogens; and that
similar mechanisms may also contribute to the virulence-restricted phenotype of the non-
epidemic YP microtus biovar. Of particular interest, the matched omics profiling of multiple
Yersinia strains also revealed conserved post-transcriptional control of metabolism and the
translational machinery including the modulation of glutamate levels in Yersiniae.
Additionally, statistical inference modeling methods were able to predict novel Yersinia
virulence factors. This work highlights the utility of a systems approach incorporating
multiple omics measurements and computational analyses to provide novel insights into
Yersinia biology; and provides an important resource for the Yersinia research community
that should aid the understanding of the markedly different pathogenicities of YP and YPT.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Heat map illustration of pCD1-encoded proteins, detected by both proteomics and
transcriptomics, preferentially up-regulated in YPCO relative to YPTS in response to
temperature elevation. Time represents sampling points at 1hr, 2hr, 4hr, 8hr. YPCO,
Yersinia pestis CO92; YPTS, Yersinia pseudotuberculosis PB1/+.
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Figure 2.
Association network inferred from integrated proteomic and transcriptomic data. The CLR
method was used to infer association relationships between proteins on the basis of their
abundance profiles (Z score > 3.0). The resulting network was extended by combining with
association relationships inferred from transcriptomics data (Z score > 5.0). The network
was visualized in Cytoscape. Examples of significantly enriched functional clusters are
indicated in the figure.
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Figure 3.
Heat map illustration of_genes with transcript response to temperature shift across all time
points significantly different from protein response to temperature shift across all time
points as determined by ANOVA analysis (p<0.05) for each organism. Time represents
sampling points at 1hr, 2hr, 4hr, 8hr. YPCO, Yersinia pestis CO92; YPTS, Yersinia
pseudotuberculosis PB1/+; YPPF, Yersinia pestis Pestoides F.
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Figure 4.
Pathway diagram illustrating comparison of transcript and protein levels of key enzymes in
glutamate metabolism across all three strains. Inset panel provides a key/legend for
interpreting the pathway elements. YPCO, Yersinia pestis CO92; YPTS, Yersinia
pseudotuberculosis PB1/+; YPPF, Yersinia pestis Pestoides F.
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Table 1
Post-transcriptionally regulated biological process

Biological processes functionally enriched in the list of genes with a significant difference (p<0.05) between
mRNA and proteins responses to temperature shift across all time points for YPCO, YPPF and YPTS.

Organism Biological Process Gene Count Fold Enrichment Benjamini PValue

YPCO

Pyrimidine metabolism 11 13 1.47E-06

Purine metabolism 9 7 1.70E-03

Aminoacyl-tRNA biosynthesis 6 13 3.12E-03

Glycolysis/Gluconeogenesis 6 12 4.06E-03

Pyruvate metabolism 6 10 4.72E-03

Citrate cycle (TCA cycle) 5 11 1.46E-02

Glutathione metabolism 4 16 2.55E-02

Fatty acid biosynthesis 4 15 2.97E-02

Arginine and proline metabolism 5 8 4.82E-02

YPPF

Ribosome 12 9 3.44E-06

Pyruvate metabolism 9 15 3.04E-06

Purine metabolism 9 7 9.27E-04

Aminoacyl-tRNA biosynthesis 6 13 1.79E-03

Glycolysis/Gluconeogenesis 6 12 2.58E-03

Pyrimidine metabolism 7 8 2.91E-03

Alanine, aspartate and glutamate metabolism 5 11 1.40E-02

Glyoxylate and dicarboxylate metabolism 4 13 3.16E-02

YPTS

Ribosome 13 13 6.44E-09

Purine metabolism 9 9 1.15E-04

Pyrimidine metabolism 7 11 7.38E-04

Peptidoglycan biosynthesis 5 18 1.91E-03

Aminoacyl-tRNA biosynthesis 5 14 4.85E-03

Bolded text indicates biological process conserved across at least two of the three Yersiniae strains. YPCO, Yersinia pestis CO92; YPTS, Yersinia
pseudotuberculosis PB1/+; YPPF, Yersinia pestis Pestoides F.
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