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Abstract
Defects in microtubule-based transport are implicated in many neuropathologies. The filamentous
fungi Aspergillus nidulans and Ustilago maydis are valuable models for studying transport due to
their yeast-like genetic and biochemical tractability and metazoan-like dependence on
microtubule-based transport for cellular trafficking. In these organisms the role of microtubules in
nuclear positioning is well studied, but recent work has expanded the range of cargos to include
endosomes, messenger RNA, secretory vesicles, peroxisomes, and nuclear pore complexes,
reflecting the diversity of metazoan systems. Furthermore, similarities in transport mechanisms
exist between filamentous fungi and metazoan neurons, demonstrating the suitability of A.
nidulans and U. maydis for studying the molecular basis of transport-related neuropathologies
such as lissencephaly, motor neuron disease, and Perry syndrome.

Introduction
The size and polarization of many eukaryotic cells demands a system of fast, directed, and
long-range transport of cellular cargos that typically occurs along microtubules. Defects in
microtubule-based transport are pervasive in neurodegenerative and neurodevelopmental
disorders [1], necessitating the development of tractable model systems to study transport
processes. Several species of filamentous fungi have emerged as powerful model organisms
for such purposes, due to their long hyphal compartments that grow via microtubule-
dependent transport of cellular cargos that include endosomes, peroxisomes, nuclei, and
mRNA. In this review we focus in on the fungal species Ustilago maydis and Aspergillus
nidulans. U. maydis is a plant pathogen that exhibits both yeast-like cell division by budding
and dikaryotic hyphal growth. In contrast, A. nidulans grows only as long polarized hyphae
that can be maintained in either haploid or diploid states. Importantly, both systems have
genetic tractability on par with that of S. cerevisiae [2,3] and fully sequenced and annotated
genomes [4,5]. Exploitation of these traits in recent years has yielded significant advances in
our understanding of transport regulation, demonstrating the broad utility of filamentous
fungi in understanding microtubule-based transport.

Microtubule-based motors and their cargos
Like the dendrites and axons of metazoan neurons, both U. maydis and A. nidulans have
discrete regions in which polarized microtubules are oriented in either anti-parallel or
uniform arrays (Figure 1). Kinesin motors carry out plus-end-directed (anterograde)
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transport, while minus-end-directed (retrograde) transport is mediated by dynein. Humans
encode 45 kinesins, of which 15 are members of the kinesin-1, -2, or -3 families used for
transport of organelles and other cargo [6,7]. The genomes of filamentous fungi typically
contain between 10 and 12 kinesins with 2–3 members of the kinesin-1 and -3 families
participating in transport [8]. While multiple kinesin motors are used for anterograde
motility, nearly all retrograde cytoplasmic movement in both metazoans and filamentous
fungi is driven by a single cytoplasmic dynein motor (referred to here as dynein). Dynein
activity is regulated by an array of associated proteins and protein complexes, including
dynactin, Lis1, Nudel, and dynein-associated subunits, perhaps in order to achieve
functional diversity [9]. Although S. cerevisiae encodes the basic dynein machinery (used
exclusively for nuclear migration), it uses actin-based transport for most cellular trafficking
[10] and lacks cargo-transporting kinesins along with several components of the dynactin
complex and some dynein light chains that are shared between filamentous fungi and
metazoans (Figure 2). Thus, filamentous fungi are ideal model systems for investigating the
conserved microtubule-based transport processes of complex multicellular eukaryotes.

Nuclei were the first microtubule-dependent cargo described in filamentous fungi [11] and
studies in these organisms continue to provide important insight into the mechanism of
nuclear distribution. The list of cellular cargos transported by microtubule-based motors in
filamentous fungi has since grown considerably, and it is likely that additional fungal cargos
remain to be discovered. Here, we highlight the expanding diversity of known cargos for
dynein and kinesin in A. nidulans and U. maydis.

Endosomes
It is well established that dynein and kinesin-3 support the motility of early endosomes in
filamentous fungi, which is thought to facilitate long-range communication between the
nucleus and the growing hyphal tip [12–16]. This makes endosome trafficking a valuable
tool in dissecting bi-directional transport and its regulation. In U. maydis hyphae, which
contain both unipolar and anti-parallel microtubules arrays (Figure 1), recent work shows
that dynein moves endosomes through unipolar regions, while kinesin-3 is used in anti-
parallel regions for further transport toward the nucleus [17**]. Thus, cooperation between
opposite-polarity motors supports the transport of endosomes across the entire length of the
cell. In A. nidulans, which also uses dynein and kinesin-3 for endosome transport [13**–
16], the p25 subunit of the dynactin complex is required for the physical interaction of
dynein with early endosomes [15**], demonstrating a cargo adaptor role for dynactin in
filamentous fungi that is consistent with reported roles for dynactin as a cargo adaptor in
metazoans [18,19]. Post-translational tubulin modifications may provide another layer of
regulation for endosome traffic. In A. nidulans, endosome-transporting kinesin-3/UncA was
found to prefer a subpopulation of detyrosinated microtubules [20,21]. Intriguingly, a
similar preference for detyrosinated microtubules allows kinesin-1, but not kinesin-3, to
discriminate between axons and dendrites in mammalian neurons [22,23].

Messenger RNA
Microtubule motor-driven transport and subsequent localized translation of mRNA is an
important feature of eukaryotic biology. Recently, microtubule-based mRNA transport was
also reported in U. maydis, where the RNA binding protein Rrm4 mediates the recognition
and shuttling of target mRNAs [24]. In this study, Rrm4 recognized target mRNAs by a
‘zipcode’ sequence in the 3’-UTR of the transcript, promoting the packaging of the mRNA
into ribonucleoprotein complexes (mRNPs) for subsequent delivery [24]. This is reminiscent
of the mechanism by which β-actin mRNA is transported to the cell periphery via
microtubules in mammalian systems, reflecting the likely conservation of microtubule-based
mRNA transport mechanisms between filamentous fungi and metazoans [25]. A subsequent
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study showed that bi-directional Rrm4-mediated mRNA transport is driven by dynein and
kinesin-3 [26**]. Interestingly, Rrm4-containing mRNPs also required functional
endosomes for microtubule-based movement, suggesting that these mRNPs may hitch a ride
on dynein and kinesin-3-driven early endosomes [26**]. A similar relationship between
membrane trafficking and localized mRNA has been proposed in S. cerevisiae [27]. The
significance of this mRNA transport in U. maydis was highlighted in another recent study
demonstrating that efficient secretion of an endochitinase, Cts1, is dependent on Rrm4-
mediated mRNA shuttling [28].

Secretory vesicles
In mammalian systems, a large and diverse array of cellular cargos have been identified for
kinesin-1 [7], while in filamentous fungi organellar kinesin-1 cargos have remained elusive.
However, a recent study in U. maydis supports a direct role for kinesin-1 in polarized
secretion [29**]. Kinesin-1, along with the actin-based motor myosin-5, is needed for the
delivery of chitin-synthase-containing vesicles (CSVs) to the polarized growth region for
exocytic secretion [29**]. In this pathway, retrograde dynein activity likely functions in the
removal of excess CSVs from the region of polarized growth, therein generating a gradient
of chitin synthase for secretion [29**].

Peroxisomes
Peroxisomes are ubiquitous single membrane-bound organelles that perform important
metabolic functions. In mammalian cells, a small population of peroxisomes undergo long-
range dynein- and dynactin-dependent saltatory movements [30]. In A. nidulans, peroxisome
behavior is strikingly similar, with small populations undergoing dynein and kinesin-3
dependent bi-directional movements, while the majority remain immotile [13**]. Recent
work in A. nidulans suggests that a subpopulation of peroxisomes may act as vehicles for
transporting proteins associated with microtubule-organizing centers (MTOCs) [31*],
therefore the idea of some cargos ‘piggy-backing’ on others for transport may not be limited
to the relationship between mRNPs and endosomes. In yeast, actin-based transport of
peroxisomes to the bud neck during cell division is thought to facilitate equal inheritance of
the organelle between mother and daughter cells [10]. In filamentous fungi, peroxisome
transport likely serves a similar function, as the distribution of the organelle must keep pace
with the growing hyphal tip.

Nuclear pore complexes
Nuclear pore complexes (NPCs) were also recently identified as microtubule-based cargos
in U. maydis, which, along with other fungi, lacks nuclear lamina [32*]. The NPCs
displayed dynein- and kinesin-1-dependent movements within the nuclear envelope that
were required for both NPC and chromatin distribution [32*]. These results raise the
interesting possibility that microtubule-dependent NPC positioning may play a role in
transcriptional regulation.

Transport initiation at microtubule plus ends
In filamentous fungi, as well as in metazoans, dynamic microtubule plus ends are sites for
cargo loading and transport initiation [12,13**,33,34]. Consistent with this idea, dynein and/
or its regulators accumulate at microtubule plus ends in many cell types [9]. Here we
highlight recent progress made in filamentous fungi towards understanding how dynein gets
to and is retained at microtubule plus ends, and how it is subsequently loaded onto cargo.

In both U. maydis and A. nidulans, dynein is recruited to the dynamic plus ends of
cytoplasmic microtubules in a kinesin-1-dependent manner [12,13**,35]. In U. maydis an
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interaction between the end-binding protein, EB1, and dynactin is important for retention of
a sub-population of dynein [36**], though other mechanisms are likely to be involved (see
below). Ultimately, this plus end recruitment generates spatially confined dynein pools that
are proposed to function as ‘loading zones’ for the capture of incoming kinesin-3-driven
early endosomes [12,36**]. Evidence suggests similar spatial loading of dynein onto
endosomes at microtubule plus ends in A. nidulans [13**], though the situation in U. maydis
may be more complex, as dynein can also be loaded onto moving endosomes before they
reach the established dynein ‘loading zone’ at the hyphal tip [37**].

All of the known cellular functions of dynein, including its accumulation at the microtubule
plus end, are dependent on the largest subunit of the dynactin complex, p150Glued (referred
to here as p150). The N-terminus of p150 contains a conserved microtubule-binding region
consisting of a cytoskeleton-associated protein glycine rich (CAP-Gly) domain, immediately
followed by a region rich in basic amino acids. CAP-Gly domains have been shown to
interact directly with EEY/F-COO− motifs, which are sequence elements found in α-tubulin
and microtubule end-binding proteins, such as EB1 [38]. A recent functional analysis of A.
nidulans p150 demonstrated that the CAP-Gly domain is not required for the microtubule
plus end localization of p150 [39**]. Instead, the basic domain was necessary for the plus
end localization of both p150 and dynein, and therefore essential for normal early endosome
motility [39**]. Furthermore, the basic domain was required for the interaction of p150 with
microtubules in vivo, which may be important for the kinesin-1-dependent recruitment of
dynein and dynactin to microtubule plus ends in A. nidulans [39**].

An additional layer of regulation may be to inhibit dynein activity at microtubule plus ends
prior to cargo loading. For example, in both A. nidulans and U. maydis the orthologue of
Lis1 appears to play an important role in initiating dynein-mediated transport from the
microtubule plus end and may function in loading dynein onto cargos to initiate retrograde
motility [12,13**]. In A. nidulans, in the absence of Lis1 both dynein and its cargos leave
plus ends with a dramatically reduced frequency, but moving molecules or cargos do so at
normal speeds [13**] (Figure 3). Further support for a transport initiation role for Lis1
comes from experiments in S. cerevisiae, where dynein positions daughter nuclei by pulling
on nucleus-attached astral microtubules while anchored to the cell cortex [40]. Here, Lis1/
Pac1 is required for dynein plus end localization and subsequent ‘off-loading’ to the cell
cortex [40], a scenario that is analogous to loading dynein onto organellar cargo. Recent
work suggests a molecular mechanism for how Lis1 regulates dynein [41**]. In this work,
single-molecule motility assays and single-particle electron microscopy suggested that Lis1
binds at the junction of the dynein ATPase ring and microtubule-binding stalk. When bound
to dynein, Lis1 appeared to sever communication between these domains, causing dynein to
become anchored to the microtubule [41**]. Thus, by binding dynein, Lis1 may increase the
residence time of dynein at the microtubule plus end, and assist in the kinetics of cargo
loading [41**].

Molecular motor recycling
Many eukaryotic cell types exhibit a mutual interdependence between opposite polarity
motors for bi-directional motility (discussed recently in [13**]). How molecular motors
coordinate with each other to achieve this interdependence is an area of active inquiry, but
recent work suggests a mechanism of motor ‘recycling’ in which dynein and kinesin
themselves function as cargo for an opposite polarity motor, facilitating their return to their
respective starting points on the microtubule track. In both A. nidulans and U. maydis, as
well as in mammalian neurons, the plus end localization of dynactin, and thus proper
retrograde transport, is dependent on kinesin-1 [12,13**,35,42*]. Similarly, a Drosophila
kinesin-1 orthologue functions synergistically with plus end localized dynactin at
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presynaptic axon terminals to initiate retrograde transport [43*]. Demonstrating the
reciprocity of this relationship, the genetic absence of dynein in A. nidulans causes kinesin-3
accumulation at microtubule plus ends, while in Drosophila neurons, kinesin-1 accumulates
at axon terminals as a consequence of dynactin dysfunction [13**,43*]. Collectively, these
experiments provide compelling evidence for a kind of molecular conveyor belt on which
dyneins and kinesins are continuously recycled between opposite microtubule ends.

Filamentous fungi as models for understanding disease
Defects in microtubule-based transport are associated with several neuropathologies [1].
One such pathology, lissencephaly, is caused by dominantly inherited loss of function
mutations in the human LIS1 gene [44]. The connection between Lis1 and dynein was first
discovered in A. nidulans, in which loss-of-function mutants of the LIS1 orthologue (nudF)
phenocopies the severe nuclear distribution and growth defects of dynein loss-of-function
mutants [45]. The identification of a point mutation (R3086C) in AAA4 of the dynein motor
domain that suppressed the Lis1 null phenotype in A. nidulans provided a clue regarding the
relationship between these proteins [46,47]. In addition to mitigating the nuclear migration
defects of the Lis1 null strain, the suppressor mutation induced a dynein localization pattern
of discrete, nearly immobile puncta along microtubules [46]. When mapped onto recent
high-resolution dynein crystal structures [48,49], the mutated residue appeared to form an
‘arginine finger’ motif, which likely transmits conformational changes within the dynein
ATPase motor ring [41**]. Interestingly, analogous mutations in yeast dynein mimicked
regulation by Lis1 (see above), corroborating its proposed role in regulating allosteric
communication within the dynein motor [41**].

In addition to lissencephaly, filamentous fungi are poised to broaden our understanding of
microtubule-based transport in motor neuron diseases and the Parkinson’s-like Perry
syndrome, in which mutations in both dynein and dynactin have been identified in human
patients [1,50]. In particular, the functional integrity of the CAP-Gly domain of the dynactin
subunit p150 appears to be an important mediator of disease. Causative mutations for these
divergent disorders reside less than 15 residues apart in p150’s CAP-Gly domain, indicating
that CAP-Gly dysfunction may promote pathology by multiple mechanisms. Despite this,
the CAP-Gly domain appears to be dispensable for microtubule-based transport processes in
several experimental systems. As described above, in A. nidulans deletion of the CAP-Gly
domain yields normal growth and nuclear migration phenotypes and does not perturb the
retrograde velocities of motile endosomes, or the frequency with which they leave the
hyphal tip [39**]. Similarly, depletion of the CAP-Gly domain in non-neuronal mammalian
and Drosophila cells is not deleterious for organelle transport or distribution [51,52]. In S.
cerevisiae the CAP-Gly domain was found to be important for initiating dynein-mediated
movement of dividing nuclei into the bud neck, but dispensable for dynactin-mediated
increases in dynein processivity in vitro [53,54]. These studies suggest that the functional
role of the CAP-Gly domain may be subtle or exclusive to high load functions, such as
nuclear positioning. Consistent with its proposed role in yeast, recent studies in Drosophila
and mouse neurons suggest that the p150 CAP-Gly domain is important for retrograde
transport initiation, but not transport itself [42*,43*]. In these systems the CAP-Gly domain
is dispensable for cargo flux, velocity, and run-length within the axon but required to enrich
the dynactin complex and promote retrograde transport from synaptic terminals (Figure 3).

Thus, both dynactin and Lis1 are important for transport initiation (Figure 3). While the
connection between dynactin and Lis1 in transport initiation is currently unclear, their
mechanisms are likely different making this an exciting area for future study. One
possibility is that Lis1 and dynactin may have cell-type or organism-specific functions. In
filamentous fungi and in non-neuronal mammalian cells, both dynactin and dynein localize
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to microtubule plus ends [9,12,13**,35]. However, in mammalian neurons only dynactin
plus end localization is observed, perhaps because dynein recruitment to axon terminals is
rate limiting for transport in neurons, whereas other factors such as the availability of cargo,
may be rate limiting in other cell types [42*]. In neurons, p150 may serve to concentrate
dynactin, which is essential for dynein function in vivo, for efficient and immediate
engagement in retrograde motility once motors become available.

Another possibility is that dynactin and Lis1 are not mutually exclusive in transport
initiation, but rather cooperative. In both S. cerevisiae and A. nidulans, Lis1 is proposed to
‘prime’ dynein for cargo loading at microtubule plus ends [13**,41**]. Once loaded onto
the cell cortex in yeast (which effectively functions as dynein cargo), the activity of the p150
CAP-Gly domain is important in initiating, but not sustaining, the dynein-driven
microtubule sliding that positions the daughter nucleus [54], perhaps through the
displacement of Lis1 from the dynein complex [55,56]. This is consistent with the observed
absence of Lis1 on retrograde cargo leaving the microtubule plus ends in A. nidulans [13**].
The loading and transport of diverse cellular cargos by only a single retrograde motor are
likely to be highly regulated processes mediated by the sequential or combinatorial activities
of many factors, including Lis1 and dynactin.

Conclusion
Many questions remain regarding the regulation of microtubule-based transport and how
defects in this regulation lead to disease in humans. From the expansion of known cargos to
the elucidation of retrograde transport initiation mechanisms, recent work in both U. maydis
and A. nidulans demonstrates the utility of these organisms in understanding evolutionarily
conserved microtubule-based transport processes. Moving forward, the biochemical and
genetic tractability of filamentous fungi give them tremendous potential in understanding
motor mechanisms as well as for high-throughput screening to identify novel drug targets
and therapeutics. Recent descriptions of tetracycline-inducible expression systems for a
related Aspergillus species, A. niger, as well as protocols for the purification of
enzymatically active proteins from A. nidulans emphasize the suitability of filamentous
fungi for heterologous protein expression and in vitro characterization [57,58]. Furthermore,
the improving annotation of fungal genomes and feasibility of whole-genome sequencing
makes these organisms amenable to the identification of novel genes involved in
microtubule-based transport through genetic screens. With these strengths, future work, both
in vivo and in vitro, is likely to lean heavily on conclusions drawn from filamentous fungi.
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Highlights

• Dynein- and kinesin-driven microtubule-based transport is linked to
neuropathology.

• Filamentous fungi are valuable models to study transport by dynein and kinesin.

• The diversity of fungal cargos that use microtubule-based transport is
expanding.

• Fungal models provide insight into transport initiation at microtubule terminals.

• Knowledge of transport regulation in fungi informs efforts to understand
neurological disease.
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Figure 1. Microtubule organization and motor composition in filamentous fungal hyphae and
mammalian neurons
(A) Aspergillus nidulans grows by rapid tip extension forming polarized multinucleate
hyphae. The region from the last nucleus to the hyphal tip contains uniformly orientated
microtubule arrays, with their plus-ends pointing towards the direction of growth and their
minus ends anchored at the spindle pole body/ microtubule organizing center. Kinesin-1 and
-3 motors drive plus-end-directed movement, while dynein drives movement towards the
microtubule minus end. Regions between nuclei contain microtubules of mixed polarity. (B)
The dimorphic plant pathogenic fungus Ustilago maydis undergoes conditional filamentous
growth resulting in highly polarized uninucleate infectious hyphae. Microtubules in U.
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maydis span the length of the infectious hyphae, but only regions ~12 µm from either the
septum or the hyphal tip contain uniformly oriented microtubules. As in A. nidulans,
kinesins-1 and -3 support plus-end-directed cargo transport, while dynein moves cargo
towards the minus ends of microtubules. (C) Mammalian neurons contain unipolar
microtubules within axons, with their plus ends oriented towards the synaptic terminal.
Transport towards the synapse is mediated by kinesins-1, -2, and -3, while transport towards
the cell body is largely dynein-driven. Microtubules are anti-parallel in dendrites.
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Figure 2. Genes and subunit composition of microtubule motors and their accessory factors in S.
cerevisiae, U. Maydis, A. nidulans, and humans
The number of genes found in each organism is color-coded as shown in the legend. S.
cerevisiae lacks orthologues of 2 of the 3 dynein light chains, and 3 of the 4 dynactin
subunits that form the pointed end complex of the Arp1 filament (shown in green), likely
reflecting the fact that dynein does not participate in vesicular transport in this system. S.
cerevisae also lacks kinesin-1 and -3 motors, instead relying on actin-based myosins for
intracellular transport. In contrast, U. maydis and A. nidulans contain orthologues of most or
all human dynein and dynactin subunits with the exception of p24/p22, and use kinesin-1
and kinesin-3s for cargo transport, making them excellent systems for dissecting the
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regulation of microtubule-based transport. *The single complete dynein heavy chain in U.
maydis is encoded by two genes [59].
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Figure 3. Models for transport initiation in A. nidulans and Drosophila
(A) In wild type A. nidulans hyphae, dynein accumulates at dynamic microtubule plus ends
in a process dependent on kinesin-1. Efficient loading of dynein onto early endosomes
requires the accessory protein Lis1. (B) In the absence of Lis1, dynein and cargos
accumulate aberrantly at the hyphal tip [12,13**,35]. Reflecting a role for Lis1 in loading
dynein onto endosomes, the frequency but not velocity of endosome movements is
dramatically affected by the deletion of Lis1. (C) In Drosophila neurons the CAP-Gly
domain of the p150 subunit of the dynactin complex is required for the initiation of dynein-
dependent vesicle transport from axonal termini. (D) Introduction of a loss-of-function and
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motor neuron disease-associated mutation within the CAP-Gly domain causes accumulation
of cargo, yet axonal transport is unperturbed [43*].
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