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Abstract
A key quantity describing the dynamics of complex systems is the first-passage time (FPT). The
statistical properties of FPT depend on the specifics of the underlying system dynamics. We
present a unified approach to account for the diversity of statistical behaviors of FPT observed in
real-world systems. We find three distinct regimes, separated by two transition points, with
fundamentally different behavior for FPT as a function of increasing strength of the correlations in
the system dynamics: stretched exponential, power-law, and saturation regimes. In the saturation
regime, the average length of FPT diverges proportionally to the system size, with important
implications for understanding electronic delocalization in one-dimensional correlated-disordered
systems.

I. INTRODUCTION
The dynamics of various complex systems are traditionally investigated by mapping them
onto one-dimensional (1D) generalized random walks. The fundamental characteristics of
random walks are represented by the statistical properties of first-passage time (FPT) [1],
e.g., the functional form of its probability distribution and its average length. Empirical
studies have reported a variety of forms for the probability distribution of FPT, including (i)
pure exponential forms for random uncorrelated processes [2]; (ii) stretched exponential
forms for a diverse group of natural and social complex systems ranging from neuron firing
[3], climate fluctuations [4], or heartbeat dynamics [5], to Internet traffic [6,7] and stock
market activity [8,9]; and (iii) a power-law form for certain on-off intermittency processes
related to nonlinear electronic circuits [10] and anomalous diffusion [11–14]. Such diverse
behavior is traditionally attributed to the specifics of the individual system. Identifying
common factors responsible for similar behaviors of FPT across different systems has not
been a focus of investigations. Indeed, these systems exhibit different scale-invariant long-
range correlated behaviors, and how the degree of correlations embedded in the system
dynamics relates to the statistical properties of FPT is not known. Here, we hypothesize that
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correlations are the unifying factor behind a class of complex systems of a diverse nature
exhibiting similar statistical properties for FPT, and conversely, systems that belong to the
same class of FPT properties possess a comparable degree of correlations. We investigate
how the degree of correlations in the system dynamics affects key properties of FPT—the
shape of the probability distribution P(ℓ) and the FPT average length 〈ℓ〉.

To investigate how the statistical properties of FPT depend on the degree of correlations in
processes with scale-invariant dynamics, we use the inverse Fourier filtering method [15] to
generate fractal signals with zero mean, unit standard deviation and the desired degree of
long-range power-law correlations. The algorithm first generates a random signal in real
space, then Fourier transforms it to the frequency (f) domain to obtain a white noise,
multiplies this noise by a power law of the type f−(2α−1)/2, and, finally, Fourier transforms
the signal back into real space. Correlations in the resulting real-space signal are quantified
by the exponent α, which, by construction, corresponds to the detrended fluctuation analysis
(DFA) [16] scaling exponent (Fig. 1). The power spectrum S(f) of the resulting signal will
be a power law of the form S(f) = 1/fβ, with β = 2α − 1. Given such a one-to-one
relationship between the power spectrum exponent β and the DFA exponent α, we could
have chosen any of them as our reference. However, we prefer to use as our reference the
DFA exponent α, since the DFA method has become the standard when studying such long-
range correlated time series [17–22], and can also be applied to real-world nonstationary
signals. For uncorrelated random signals, α = 0.5; for anticorrelated signals, α < 0.5; and for
positively correlated signals, α > 0.5. Processes with 0 < α < 1 are fractional Gaussian
noises (fGns) and processes with 1 < α < 2 are fractional Brownian motions (fBms). In
particular, α = 1.5 corresponds to the classical random walk. We will consider processes
with α in the range 0 < α < 3, and for all such processes, the length ℓ of the FPT is defined as
the distance between two consecutive zero crossings of the process (Fig. 1). Although,
strictly speaking, the terminology of FPT is reserved for fBms (1 < α < 2), we will use it in
the whole range of α (0 < α < 3) for simplicity.

II. FPT DISTRIBUTIONS
We obtain three different regimes [Fig. 2(a)] for the probability density p(ℓ) of the FPT
length ℓ depending on the degree of correlations in the signal.

A. Stretched exponential regime
For α < 1, we find that the probability density p(ℓ) behaves like a stretched exponential,

(1)

The stretching parameter ε depends on α: for the well-known case α = 0.5 (white noise), we
find that ε = 1, corresponding to a pure exponential behavior. For α < 0.5, we find that ε >
1, and increases as α decreases. In this case, p(ℓ) decays faster than exponentially. For α >
0.5, we find that ε < 1, and decreases as α increases. In this case, p(ℓ) is a real stretched
exponential and the tail of p(ℓ) becomes fatter as α increases. This result matches
experimental observations for a great variety of phenomena [4,5,8,9] in this range of
correlations, and is in agreement also with previous works in which fractal processes within
this range of correlations are simulated and studied, as in Ref. [4], where the general result ε
= 2 − 2α is numerically derived. Although the exact analytical derivation of the stretched
exponential behavior in this regime is lacking, in Ref. [23], it was found that the stretched
exponential form is an upper bound for the zero-level crossings (or the FPTs, as we name
them here) in fGns, i.e., in the range 0 < α < 1.

Carretero-Campos et al. Page 2

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2012 December 11.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



B. Power-law tail regime
For 1 < α < 2, the model (1) is not valid, and we find that p(ℓ) behaves as

(2)

where the function f (ℓ) only affects the short-scale regime (small ℓ values), and tends to an
unimportant constant as ℓ increases. Actually, f (ℓ) is responsible for the curvature of p(ℓ),
which is appreciable at very short scales [Fig. 2(b)], and prevents the power-law divergence
of (2) in the limit of small ℓ. However, the tail of the distribution behaves as a power law of
exponent δ. We find numerically that the exponent δ and the correlation exponent α are
related by δ = 3 − α. These results are in agreement with previous findings for the FPT
distribution in this regime: although the exact analytical form of p(ℓ) is unknown, scaling
arguments presented in [10], and a heuristic derivation shown in [12] based on results about
the maximum value of a fBm [24], lead to a tail behavior such as the one in (2).

We find that the form of p(ℓ) and the relation between δ and α for the regime 1 < α < 2
generalize the particular well-known result corresponding to the FPT distribution of a
random walk [2] (α = 1.5), where

(3)

For α = 1, corresponding to 1/f noise, we find a transition between both regimes, where p(ℓ)
presents an intermediate behavior and decays slower than (1) but faster than (2), as shown in
Fig. 2(b).

C. Saturation regime
For α > 2, we should obtain δ = 3 − α < 1, and in this situation the probability density p(ℓ)
cannot be normalized in the limit of large system size N. In this regime, p(ℓ) flattens for
increasing α (Fig. 3) and tends to the constant probability density p(ℓ) = 1/N, shown with a
shaded rectangle in Fig. 3. However, finite-size effects are very important, and a peak at ℓ =
N/2 appears in p(ℓ), which becomes more pronounced as α increases. In practice, many of
the FPTs are of the order of the system size and, correspondingly, the cumulative probability
1 − P(ℓ) is essentially flat independently of α [Fig. 2(a)].

III. BEHAVIOR OF THE MEAN FPT
An important property that characterizes the distribution P(ℓ) is the average FPT, 〈ℓ〉. The
behavior of 〈ℓ〉 as a function of the system size N is also different in the three regimes
reported above (Fig. 4).

In the stretched exponential regime (α < 1), 〈ℓ〉 tends asymptotically to a finite constant
value in the limit of large system size N [Fig. 4(a)]. In this regime, the behavior of 〈ℓ〉 as a
function of N is well fitted [Fig. 4(a)] by a model of the type

(4)

where b and c are positive constants, and 〈ℓ〉∞ represents the asymptotic value. Note that for
increasing α, the convergence to the asymptotic value 〈ℓ〉∞ is slower with the system size N,
and the values of 〈ℓ〉∞ also increase with α.
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In the power-law tail regime (1 < α < 2), we find, in contrast [Fig. 4(b)], that 〈ℓ〉 diverges
with the system size N as a power law,

(5)

This is in agreement with the fact that the tail of p(ℓ) follows a power law (2). Indeed, if (2)
holds, then

(6)

Thus, γ = 2 − δ, and since δ = 3 − α, we obtain γ = α − 1. Our numerical fits to the power
laws in Fig. 4(b) provide γ values in agreement with this relation.

A phase transition from a convergent to a divergent behavior in the mean FPT 〈ℓ〉 is
observed at α = 1 (Fig. 4). At this transition point, 〈ℓ〉 neither converges to a finite value, as
in the stretched exponential regime, nor diverges as a power law with N, as in the power-law
tail regime. We find that 〈ℓ〉 diverges logarithmically in the thermodynamic limit N → ∞:
〈ℓ〉 ~ log N.

In the saturation regime (α > 2), 〈ℓ〉 also diverges with the system size N as a power law, but
with a constant exponent γ = 1 for all α values [Fig. 4(b)], i.e., 〈ℓ〉 ~ N. Note that 〈ℓ〉 cannot
grow faster than the system size N, thus precluding γ > 1 values.

At the transition point between the power-law tail and the saturation regime (α = 2), we find
that 〈ℓ〉 ~ N / log N. This behavior is intermediate between both regimes: 〈ℓ〉 increases faster
than any power law with γ < 1, but slower than a power law with γ = 1 [Fig. 4(b)].

The behavior of 〈ℓ〉 in the thermodynamic limit can be summarized in a phase diagram as
shown in Fig. 5. In the stretched exponential regime (left panel in Fig. 5), where 〈ℓ〉
converges in the thermodynamic limit, the natural choice of the order parameter is the
asymptotic value 〈ℓ〉∞, which increases with α and diverges when α → 1−. In the other two
regimes (right panel in Fig. 5), as 〈ℓ〉 diverges with N as 〈ℓ〉 ~ Nγ, a convenient order
parameter to describe the behavior of 〈ℓ〉 is the exponent γ, which tends to zero as α → 1+

and converges to γ = 1 as α → 2−. In the saturation regime α > 2, the order parameter
remains constant: γ = 1. The main properties of 〈ℓ〉 and the probability density p(ℓ) in the
three regimes are also summarized in Table I.

The results we obtain for the behavior of 〈ℓ〉 in the three regimes can also be understood in
terms of the finite-size effects of the distribution P(ℓ) (Fig. 6). For processes with α < 1, P(ℓ)
is essentially independent of the system size N. Thus, the mean FPT 〈ℓ〉 is well defined and,
for large enough N, there are no appreciable size effects, giving rise to a finite asymptotic
value 〈ℓ〉∞ [Fig. 4(a)]. At the transition point α = 1, where the 〈ℓ〉 diverges logarithmically
[Fig. 4(a)], the system-size effects on P(ℓ) become more pronounced (Fig. 6, middle panel).
Above the transition point α > 1, for any finite realization, there is a cutoff in the power-law
tail of P(ℓ) which scales with the system size N (Fig. 6, bottom panel), ensuring the power-
law tail of the distribution even in the thermodynamic limit N → ∞, and thus 〈ℓ〉 diverges as
a power law of N [Fig. 4(b)].

Another important quantity related to the dependence of the FPT statistics with the system
size N is the average number of FPT segments, 〈n〉. Segments are defined as continuous
parts of the process with constant sign, the borders of which are the zero crossings (Fig. 1).
We find that the behavior of 〈n〉 in the three regimes (not shown) is essentially the inverse of
〈ℓ〉: in the stretched exponential regime, 〈n〉 diverges as 〈n〉 ~ N independently of α. In the
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power-law tail regime, 〈n〉 diverges more slowly 〈n〉 ~ Nλ, where the exponent λ = 2 − α
decreases when α → 2−. Finally, in the saturation regime (α > 2), 〈n〉 converges with N →
∞ to an asymptotic constant value 〈n〉∞, which decreases with increasing α.

In conclusion, correlations can be seen as the unifying factor controlling the statistical
properties of FPTs in a large class of fractal processes, irrespective of the specifics of the
particular dynamical system considered. When correlations are in the range α < 1 (such as in
climate records [4] or stock market activity [8,9]), FPTs probability density p(ℓ) behaves as
stretched exponentials, with a finite mean value even for diverging system sizes. In contrast,
when correlations are in the range 1 < α < 2, as, for example, in anomalous diffusion
processes [11–14], p(ℓ) follows a power law in the tail, p(ℓ) ~ ℓ−δ with δ = 3 − α, generalizing
the results for the classical random walk (α = 3/2), for which δ = 3/2. In this case, the FPT
mean value increases as a power law of the system size with an exponent smaller than one.
For the case of processes with extreme correlations (2 < α < 3), which can be seen as
integrations of fBms, the probability densities p(ℓ) are essentially flat, and the FPT mean
value diverges with the system size.

IV. IMPLICATIONS TO CORRELATED-DISORDERED SYSTEMS
The results obtained here are closely related to the behavior of binary signals: a standard
technique to generate binary correlated fractal processes is to simply consider the sign of the
underlying continuous fractal process. In this way, binary sequences are obtained that are
composed of segments of only two possible values, either +1 or −1. The sizes of these
segments are the FPTs of the original signal (Fig. 1). This kind of binary sequence occurs in
systems of diverse nature, such as seismic signals [25], membrane transport [26], DNA
chains [19,27], and disordered binary solids [28,29].

In particular, our findings for the statistical properties of FPTs can explain earlier
observations for the electronic properties of correlated 1D disordered systems. It has been
observed that the strength of the long-range correlations in such systems can control their
electronic properties, as the localization length [30–32] or the level statistics [33]. For 1D
binary systems, α = 0.5 corresponds to the random binary alloy [34], where the electronic
states are exponentially localized. However, when positive correlations (α > 0.5) are
introduced in binary systems, a delocalization effect is observed [29]. This latter effect can
be understood in terms of our results presented here, as we explain below.

In 1D binary systems, the FPTs correspond to the sizes of ordered regions —patches with
the same type of atoms. Since electrons are typically able to move within these patches, we
expect the average localization length 〈λ〉 to be proportional to the average patch size 〈ℓ〉:
〈λ〉 ~ 〈ℓ〉. Therefore, in the stretched exponential regime α < 1, the localization length 〈λ〉 ~
〈ℓ〉∞ is essentially constant and independent of the system size N, which is a typical feature
of localized electrons in disordered systems corresponding to insulating behavior [29]. In the
power-law tail regime (1 < α < 2), we expect 〈λ〉 ~ Nγ, where γ = α − 1. Since the
localization length increases as a power law of the system size N, there is a correlation-
induced delocalization effect. However, the fraction of the system occupied by the state,
〈λ〉/N, behaves as 〈λ〉/N ~ Nα−2 and tends to zero (1 < α < 2) in the thermodynamic limit,
i.e., the wave functions are still localized.

In contrast, in the saturation regime α > 2, we find ℓ ~ N [Fig. 3(b)]. In this case, the system
consists of a finite number of patches 〈n〉∞, which is independent of the system size N, and
the patches are macroscopically large in the thermodynamic limit, N → ∞. In this regime,
we expect 〈λ〉 ~ N, and the electronic wave function to be extended (typically within one of
the macroscopic patches), giving rise to a conducting behavior. Thus, at the critical point α
= 2, we expect a transition from a localized to an extended electronic behavior.
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Such a localized-extended transition was presented in [29], where the localization length λ
as a function of the correlations present in the binary sequence was studied. In [29],
correlations were measured with the DFA scaling exponent calculated directly in the binary
sequences (αbinary), and not with the scaling exponent α of the underlying continuous fractal
process. The transition presented in [29] was reported to occur at αbinary ≃ 1.45, and was
interpreted as a metal-insulator transition driven by the degree of correlations in disordered
1D binary systems, which is in contradiction to the Anderson localization theory that asserts
that 1D disordered solids can behave only as insulators.

However, a value of αbinary ≃ 1.45 as measured by the DFA method in the binary sequence
corresponds to a value of α = 2 that is embedded in the underlying continuous fractal
process from which the binary sequence has been obtained (Fig. 7). Thus, the critical point
reported in [29] corresponds to the transition presented here at α = 2 from the power law to
the saturation regime (Fig. 5), and thus the conducting phase reported in [29] obtained for
αbinary > 1.45 corresponds to the saturation regime presented here (α > 2), where the system
is actually not disordered but is composed of a finite and fixed number (〈n∞〉; see Fig. 7) of
patches, which will be macroscopically large in the thermodynamic limit, giving rise to an
ordered state with conducting behavior. Therefore, at the critical point α = 2 (or αbinary =
1.45), the system is not a disordered system undergoing an insulator-metal transition driven
by the correlations (as claimed in [29]), but a system which undergoes a disordered-ordered
transition driven by the correlations.
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FIG. 1.
(Color online) Examples of three scale-invariant processes (solid black line), each of system
size N = 29, and with different degree of correlations as quantified by the scaling exponent α
obtained using the DFA method [16]. Increasing values of α indicate a higher degree of
correlations. The first-passage time (FPT), defined as the interval ℓ between two consecutive
zero crossings of the process, is indicated as segments of constant sign +1 or −1 (gray line).
Note the change in the profile of the processes with increasing correlations leading to longer
ℓ and to a corresponding change in the statistics of FPT.
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FIG. 2.
(Color online) (a) Cumulative probability distribution 1 − P(ℓ) of FPT intervals ℓ for scale-
invariant processes with system size N = 224 and different degree of correlations quantified
by the scaling exponent α. (b) Probability density p(ℓ) for small values of ℓ for processes
close to the transition point α = 1. Dashed lines correspond to fittings with model (1) for α =
0.9, and with model (3) for α = 1.5.
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FIG. 3.
(Color online) Probability densities p(ℓ) for processes with different α values in the
saturation regime. The results correspond to a system size of N = 214 and have been
obtained with 105 realizations for each α value. The shaded rectangle corresponds to the
uniform distribution p(ℓ) = 1/N.
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FIG. 4.
(Color online) (a)Convergent behavior of 〈ℓ〉 as a function of the system size N in the
stretched exponential regime (α < 1). Dashed lines represent fittings with (4). (b)
Dependence of 〈ℓ〉 on N for scale-invariant processes with different correlations for the three
regimes we identified for P(ℓ) in Fig. 2. Note that panel (a) is a magnification of the bottom
part of panel (b). Dashed lines in the power-law tail regime correspond to power-law fittings
〈ℓ〉 ~ Nγ, with γ = α − 1.
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FIG. 5.
(Color online) Phase diagram of the transitions from stretched exponential to power-law tail
to saturation regime. Symbols correspond to numerical results, and the dashed line
corresponds to the curve γ = α − 1. For α < 1 (left panel), the order parameter is the
asymptotic value 〈ℓ〉∞ [Fig. 3(a)], while for α > 1 (right panel), the order parameter is the
exponent γ of Eq. (5).
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FIG. 6.
(Color online) Dependence of the cumulative distributions 1 − P(ℓ) on the system size N.
The transition from the stretched exponential to the power-law regime is stable and
independent of N. The distributions shown in all panels are obtained by Monte Carlo
simulations with 232/N realizations.
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FIG. 7.
(Color online) We show the DFA scaling exponent αbinary (red circles) obtained in binary
sequences mapped from real-valued long-range correlated processes as a function of the α
values of the latter. For the case α > 2, we also show the asymptotic average number of
patches (black squares) forming the system, 〈n〉∞ (right axis). All the numerical results have
been obtained for a system size of N = 222, and with 1024 realizations. The vertical dotted
lines show the transition between the three different regimes, at α = 1 and α = 2. The
horizontal dashed line close to αbinary = 1.5 corresponds to αbinary = 1.45, and is the value
reported in [29] at which a metal-insulator transition was observed. Note how the
dependence of αbinary on α is different in the three regimes presented here.
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TABLE I

Properties of the probability density p(ℓ) and the average FPT length 〈ℓ〉 in the three different regimes that we
find as a function of the DFA correlation exponent α.

α p(ℓ) 〈ℓ〉

Regime I (stretched exp.) ~exp[−(ℓ/ℓ0)2−2α] limN→∞〈ℓ〉 = 〈ℓ〉∞, constant for fixed α

0 < α < 1 〈ℓ〉∞ increases with α

Regime II (power-law tail) ~1/ℓ3−α ~Nα−1

1 < α < 2

Regime III (saturation) flattens with α ~N

2 < α < 3 strong size effects at ℓ = N/2
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