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Abstract
The human organism is an integrated network where complex physiological systems, each with its
own regulatory mechanisms, continuously interact, and where failure of one system can trigger a
breakdown of the entire network. Identifying and quantifying dynamical networks of diverse
systems with different types of interactions is a challenge. Here we develop a framework to probe
interactions among diverse systems, and we identify a physiological network. We find that each
physiological state is characterized by a specific network structure, demonstrating a robust
interplay between network topology and function. Across physiological states, the network
undergoes topological transitions associated with fast reorganization of physiological interactions
on time scales of a few minutes, indicating high network flexibility in response to perturbations.
The proposed system-wide integrative approach may facilitate the development of a new field,
Network Physiology.

Physiological systems under neural regulation exhibit high degree of complexity with non-
stationary, intermittent, scale-invariant and nonlinear behaviours1,2. Moreover, physiological
dynamics transiently change in time under different physiological states and pathologic
conditions3–5, in response to changes in the underlying control mechanisms. This
complexity is further compounded by various coupling6,7 and feedback interactions8–10

among different systems, the nature of which is not well-understood. Quantifying these
physiological interactions is a challenge as one system may exhibit multiple simultaneous
interactions with other systems where the strength of the couplings may vary in time. To
identify the network of interactions between integrated physiological systems, and to study
the dynamical evolution of this network in relation to different physiological states, it is
necessary to develop methods that quantify interactions between diverse systems.
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Recent studies have identified networks with complex topologies11–13, and have focused on
emergence of self-organization and complex network behaviour out of simple
interactions14–17, network robustness18–20, and, more recently, critical transitions due to
failure in the coupling of interdependent networks21. Growth dynamics of structural
networks have been investigated in network models11,13, and in physical systems13,22, and
various structural and functional brain networks have been explored22,23. However,
understanding the relationship between topology and dynamics of complex networks
remains a challenge, especially when networks are comprised of diverse systems with
different types of interaction, each network node represents a multicomponent complex
system with its own regulatory mechanism, the output of which can vary in time, and when
transient output dynamics of individual nodes affect the entire network by reinforcing (or
weakening) the links and changing network topology. A prime example of a combination of
all these network characteristics is the human organism, where integrated physiological
systems form a network of interactions that affects physiological function, and where
breakdown in physiological interactions may lead to a cascade of system failures24.

We investigate the network of interactions between physiological systems, and we focus on
the topology and dynamics of this network and their relevance to physiological function. We
hypothesize that during a given physiological state, the physiological network may be
characterized by a specific topology and coupling strength between systems. Further, we
hypothesize that coupling strength and network topology may abruptly change in response
to transition from one physiological state to another. Such transitions may also be associated
with changes in the connectivity of specific network nodes, that is, the number of systems to
which a given physiological system is connected can change, forming subnetworks of
physiological interactions. Probing physiological network connectivity and the stability of
physiological coupling across physiological states may thus provide new insights on
integrated physiological function. Such a system-wide perspective on physiological
interactions, tracking multiple components simultaneously, is necessary to understand the
relationship between network topology and function.

Results
Time delay stability and network of physiological interactions

The framework we propose is based on a complex networks approach to quantify
physiological interactions between diverse physiological systems, where network nodes
represent different physiological systems and network links indicate the dynamical
interaction (coupling) between systems. This framework allows to quantify the topology and
the associated dynamics in the links strength of physiological networks during a given
physiological state, taking into account the signal output of individual physiological systems
as well as the interactions among them, and to track the evolution of multiple interconnected
systems undergoing transitions from one physiological state to another (Fig. 1). We
introduce the concept of time delay stability (TDS) to identify and quantify dynamic links
among physiological systems. We study the network of interactions for an ensemble of key
integrated physiological systems (cerebral, cardiac, respiratory, ocular and muscle activity).
We consider different sleep stages (deep, light, rapid eye movement (REM) sleep and quite
wake) as examples of physiological states. While earlier studies have identified how sleep
regulation influences aspects of the specific control mechanism of individual physiological
systems (for example, cardiac or respiratory3,4,25,26) or have focused on the organization of
functional connectivity of electroencephalogram (EEG) networks during sleep27 and under
neurological disorders such as epilepsy28, the dynamics and topology of a physiological
network comprised of diverse systems have not been studied so far. Further, the relationship
between network topology and function, and how it changes with transitions across distinct
physiological states is not known. We demonstrate that sleep stages are associated with
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markedly different networks of physiological interactions (Fig. 2) characterized by different
number and strength of links (Figs 3 and 4), by different rank distributions (Fig. 5) and by
specific node connectivity (Fig. 6). Traditionally, differences between sleep stages are
attributed to modulation in the sympatho-vagal balance with dominant sympathetic tone
during wake and REM25: spectral, scale-invariant and nonlinear characteristics of the
dynamics of individual physiological systems indicate higher degree of temporal
correlations and nonlinearity during wake and REM compared with non-REM (light and
deep sleep) where physiological dynamics exhibit weaker correlations and loss of
nonlinearity3,26. In contrast, the network of physiological interactions shows a completely
different picture: the network characteristics during light sleep are much closer to those
during wake and very different from deep sleep (Figs 2 and 3). Specifically, we find that
network connectivity and overall strength of physiological interactions are significantly
higher during wake and light sleep, intermediate during REM and much lower during deep
sleep. Thus, our empirical observations indicate that while sleep-stage-related modulation in
sympathovagal balance has a key role in regulating individual physiological systems, it does
not account for the physiological network topology and dynamics across sleep stages,
showing that the proposed framework captures principally new information.

To quantify the interaction between physiological systems and to probe how this interaction
changes in time under different physiological conditions, we study the time delay with
which modulations in the output dynamics of a given physiological system are consistently
followed by corresponding modulations in the signal output of another system. Periods of
time with approximately constant time delay indicate a stable physiological interaction, and
stronger coupling between physiological systems results in longer periods of TDS. Utilizing
the TDS method, we build a dynamical network of physiological interactions, where
network links between physiological systems (considered as network nodes) are established
when the TDS representing the coupling of these systems exceeds a significance threshold
level, and where the strength of the links is proportional to the percentage of time for which
TDS is observed (Methods).

Transitions in network topology with physiological function
We apply this new approach to a group of healthy young subjects (Methods). We find that
the network of interactions between physiological systems is very sensitive to sleep-stage
transitions. In a short time window of just a few minutes, the network topology can
dramatically change—from only a few links to a multitude of links (Fig. 1)—indicating
transitions in the global interconnectivity between physiological systems. These network
transitions are not associated with random occurrence or loss of links but are characterized
by certain organization in network topology where given links between physiological
systems remain stable during the transition while others do not—for example, brain–brain
links persist during the transition from deep sleep to light sleep while brain–periphery links
significantly change (Fig. 1c). Further, we find that sleep-stage transitions are paralleled by
abrupt jumps in the total number of links leading to higher or lower network connectivity
(Fig. 1c,d). These network dynamics are observed for each subject in the database, where
consecutive episodes of sleep stages are paralleled by a level of connectivity specific for
each sleep stage, and where sleep-stage transitions are consistently followed by transitions in
network connectivity throughout the course of the night (Fig. 1d). Indeed, the network of
physiological interactions exhibits a remarkable responsiveness as network connectivity
changes even for short sleep-stage episodes (arrows in Fig. 1d), demonstrating a robust
relationship between network topology and function. This is the first observation of a real
network evolving in time and undergoing topological transitions from one state to another.

To identify the characteristic network topology for each sleep stage, we obtain group-
averaged TDS matrices, where each matrix element represents the percentage of time with
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stable time delay between two physiological systems, estimated over all episodes of a given
sleep stage throughout the night. Matrix elements above a threshold of statistical
significance (Fig. 7, Methods) indicate stable interactions between physiological systems
represented by network links (Fig. 2). We find that matrix elements greatly vary for different
sleep stages with much higher values for wake and light sleep, lower values for REM and
lowest for deep sleep. This is reflected in higher network connectivity for wake and light
sleep, lower for REM and significantly reduced number of links during deep sleep (Fig. 3a).
Further, the TDS matrices indicate separate subgroups of interactions between physiological
systems—brain–periphery, periphery–periphery and brain–brain interactions—that are
affected differently during sleep stages and form different subnetworks. Specifically, matrix
elements representing interactions between peripheral systems (cardiac, respiratory, chin,
eye and leg) and the brain as well as interactions among the peripheral systems are very
sensitive to sleep-stage transitions, leading to different network topology for different sleep
stages (Fig. 2). We find subnetworks with high number of brain–periphery and periphery–
periphery links during wake and light sleep, lower number of links during REM and a
significant reduction of links at deep sleep (Fig. 3c). In contrast, matrix elements
representing brain–brain interactions form a subnetwork with the same number of brain–
brain links (Fig. 3e), and stable topology is consistently present in the physiological network
during all sleep stages (Fig. 2). Sleep-stage-related transitions in network connectivity and
topology are not only present in the group-averaged data but also in the physiological
networks of individual subjects, suggesting universal behaviour (Fig. 2). Notably, we find a
higher number of brain–periphery links during REM compared with deep sleep despite the
inhibition of motoneurons in the brain leading to muscle atonia during REM29. The
empirical observations of significant difference in network connectivity and topology during
light sleep compared with deep sleep are surprising, given the similarity in spectral, scale-
invariant and nonlinear properties of physiological dynamics during light sleep and deep
sleep3,4,25,26 (both stages traditionally classified as non-rapid eye movement sleep
(NREM)), and indicate that previously unrecognized aspects of sleep regulation may be
involved in the control of physiological network interactions.

Physiological states and network link strength stratification
Networks with identical connectivity and topology can exhibit different strength of their
links. Network link strength is determined as the fraction of time when TDS is observed
(Methods). We find that the average strength of network links changes with sleep-stage
transitions: network links are significantly stronger during wake and light sleep compared
with REM and deep sleep—a pattern similar to the behaviour of the network connectivity
across sleep stages (Fig. 3a,b). Further, subnetworks of physiological interactions exhibit
different relationship between connectivity and average link strength. Specifically, the
subnetwork of brain–periphery and periphery–periphery interactions is characterized by
significantly stronger links (and also higher connectivity) during wake and light sleep, and
much weaker links (with lower network connectivity) during deep sleep and REM (Fig.
3c,d). In contrast, the subnetwork of brain–brain interactions exhibits very different patterns
for the connectivity and the average link strength—while the group average subnetwork
connectivity remains constant across sleep stages, the average link strength varies with
highest values during light sleep and deep sleep, and a dramatic ≈40% decline during REM.
The observation of significantly stronger links in the brain–brain subnetwork during NREM
compared with REM sleep is consistent with the characteristic of NREM as EEG-
synchronized sleep and REM as EEG-desynchronized sleep29. During NREM sleep,
adjacent cortical neurons fire synchronously with a relatively low-frequency rhythm30

leading to coherence between frequency bands in the EEG signal, and thus to stable time
delays and strong network links (Fig. 3f). In contrast, during REM sleep cortical neurons are
highly active but fire asynchronously30, resulting in weaker links (Fig. 3f). Our findings of

Bashan et al. Page 4

Nat Commun. Author manuscript; available in PMC 2012 December 11.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



stronger links in the brain–brain subnetwork during non-REM sleep (Figs 3f and 4) indicate
that bursts (periods of sudden temporal increase) in the spectral power of one EEG-
frequency band are consistently synchronized in time with bursts in a different EEG-
frequency band, thus leading to longer periods of TDS and correspondingly stronger
network links. This can explain some seemingly surprising network links—for example, we
find a strong link between α and δ brain activity during non-REM sleep (Fig. 2) although α
waves are greatly diminished and δ waves are dominant29. As the spectral densities of both
waves are normalized before the TDS analysis (Methods), the presence of a stable α–δ link
indicates that a relative increase in the spectral density in one wave is followed, with a stable
time delay, by a corresponding increase in the density of the other wave—an intriguing
physiological interaction that persists not only during deep sleep but is also present in light
sleep, REM and quiet wake (Fig. 2). Notably, the average link strength of the brain–brain
subnetwork is by a factor of ≈5 higher compared with all other links in the physiological
network (Fig. 3d,f).

The finding of completely different sleep-stage stratification patterns in key network
properties of the brain–brain subnetwork compared with the periphery–periphery/brain–
periphery subnetworks suggests a very different role these subnetworks have in coordinating
physiological interactions during sleep. The similarity in the brain–brain subnetwork during
deep sleep and light sleep indicates that the proposed TDS approach is sensitive to quantify
synchronous slow-wave brain activity during NREM sleep that leads to stronger brain–brain
links during light sleep and deep sleep (≈50–60% TDS) compared with REM (≈35% TDS),
as shown in Figs 3f and 4. The significant difference between light sleep and deep sleep
observed for the periphery–periphery/brain–periphery subnetwork in the number of links (t-
test: P<10−12) as well as in the average link strength (t-test: P<10−11) indicates that the
interactions between physiological dynamics outside the brain are very different during
these sleep stages.

Our finding that the average link strength exhibits a specific stratification pattern across
sleep stages (Fig. 3) raises the question whether the underlying distribution of the network
links strength is also sleep-stage dependent. To this end we probe the relative strength of
individual links, and we obtain the rank distribution of the strength of network links for each
sleep stage averaged over all subjects in the group (Fig. 5a). We find that the rank
distribution corresponding to deep sleep is vertically shifted to much lower values for the
strength of the network links, while the rank distribution for light sleep and wake is for all
links consistently higher than the distribution for REM. Thus, the sleep-stage stratification
pattern we find for the average strength of the network links (Fig. 3d) originates from the
systematic change in the strength of individual network links with sleep-stage transitions.
Notably, while the strength of individual network links changes significantly with sleep
stages, the rank order of the links does not significantly change. After rescaling the rank
distributions for light sleep and REM (by horizontal and vertical shifts), we find that they
collapse onto the rank plots of deep sleep and wake, respectively, following two distinct
functional forms: a slow and smoothly decaying rank distribution for REM and wake, and a
much faster decaying rank distribution for deep sleep and light sleep with a characteristic
plateau in the mid rank range indicating a cluster of links with similar strength (Fig. 5b). We
note that, although the form of the rank distributions for deep sleep and light sleep as well as
for wake and REM are, respectively, very similar, the average strength of the links is
significantly different between deep sleep and light sleep and between wake and REM (Fig.
3d).

Local topology and connectivity of the physiological network
Our observations that physiological networks undergo dynamic transitions where key global
properties significantly change with sleep-stage transitions raise the question whether local
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topology and connectivity of individual network nodes also change during these transitions.
Considering each physiological system (network node) separately, we examine the number
and strength of all links connecting the system with the rest of the network. Specifically, we
find that the cardiac system is highly connected to other physiological systems in the
network during wake and light sleep (Fig. 6). In contrast, during deep sleep we do not find
statistically significant TDS in the interactions of the cardiac system, which is reflected by
absence of cardiac links (Fig. 6). Further, we find that the average strength of the links
connected to the cardiac system also changes with sleep stages: stronger interactions (high
% TDS) during wake and light sleep, and significantly weaker interactions below the
significance threshold during deep sleep (Fig. 6). Such ‘isolation’ of the cardiac node from
the rest of the network indicates a more autonomous cardiac function during deep sleep—
also supported by earlier observations of breakdown of long-range correlations and close to
random behaviour in heartbeat intervals in this sleep stage3. Transition to light sleep, REM
and wake, where the average link strength and connectivity of the cardiac system is
significantly higher indicating increased interactions with the rest of the network, leads to
correspondingly higher degree of correlations in cardiac dynamics3. Similarly, respiratory
dynamics also exhibit high degree of correlations during REM and wake, lower during light
sleep and close to random behaviour during deep sleep26. We also find such transitions in
the number and strength of links across sleep stages for other network nodes (Fig. 6).
Moreover, the sleep-stage stratification pattern in connectivity and average link strength for
individual network nodes (Fig. 6) is consistent with the pattern we observe for the entire
network (Fig. 3). Our findings of significant reduction in the number and strength of brain–
periphery and periphery–periphery links in the corresponding subnetworks during deep
sleep indicate that breakdown of cortical interactions, previously reported during deep
sleep31, may also extend to other physiological systems under neural regulation. Indeed, the
low connectivity in the physiological network we find in deep sleep may explain why people
awakened during deep sleep do not adjust immediately and often feel groggy and disoriented
for a few minutes. This effect is not observed if subjects are awakened from light sleep29

when we find the physiological network to be highly connected (Fig. 2). Further, as risk of
predation modifies sleep architecture32–34 and as abrupt awakening from deep sleep is
associated with increased sleep inertia, higher sensory threshold, and impaired sensory
reaction and performance35,36 that may lead to increased vulnerability, the fact that deep
sleep (lowest physiological network connectivity) dominates at the beginning of the night
and not close to dawn, when many large predators preferably hunt, may have been
evolutionarily advantageous.

Discussion
Introducing a framework based on the concept of TDS, we identify a robust network of
interactions between physiological systems, which remains stable across subjects during a
given physiological state. Further, changes in the physiological state lead to complex
network transitions associated with a remarkably structured reorganization of network
connectivity and topology that simultaneously occurs in the entire network as well as at the
level of individual network nodes, while preserving the hierarchical order in the strength of
individual network links. Such network transitions lead to the formation of subnetworks of
physiological interactions with different topology and dynamical characteristics. In the
context of sleep stages, network transitions are characterized by a specific stratification
pattern where network connectivity and link strength are significantly higher during light
sleep compared with deep sleep and during wake compared with REM. This cannot be
explained by the dynamical characteristics of the output signals from individual
physiological systems, which are similar during light sleep and deep sleep as well as during
wake and REM. The dramatic change in network structure with transition from one
physiological state to another within a short time window indicates a high flexibility in the
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interaction between physiological systems in response to change in physiological regulation.
Such change in network structure in response to change in the mechanisms of control during
different physiological states suggests that our findings reflect intrinsic features of
physiological interaction. The observed stability in network topology and rank order of links
strength during sleep stages, and the transitions in network organization across sleep stages
provide new insight into the role that individual physiological systems as well as their
interactions have during specific physiological states. While our study is limited to a data-
driven approach, these empirical findings may facilitate future efforts on developing and
testing network models of physiological interaction. This system-wide integrative approach
to individual systems and the network of their interactions may facilitate the emergence of a
new dimension to the field of systems physiology7 that will include not only interactions
within but also across physiological systems. In relation to critical clinical care, where
multiple organ failure is often the reason for fatal outcome24,37, our framework may have
practical utility in assessing whether dynamical links between physiological systems remain
substantially altered even when the function of specific systems is restored after treatment38.
While we demonstrate one specific application, the framework we develop can be applied to
a broad range of complex systems where the TDS method can serve as a tool to characterize
and understand the dynamics and function of real-world heterogeneous and interdependent
networks. The established relationship between dynamical network topology and network
function has not only significant medical and clinical implications, but is also of relevance
for the general theory of complex networks.

Methods
Data

We analyse continuously recorded multichannel physiological data obtained from 36 healthy
young subjects (18 female, 18 male, with ages between 20–40, average 29 years) during
night-time sleep39 (average record duration is 7.8 h). This allows us to track the dynamics
and evolution of the network of physiological interactions during different sleep stages and
sleep-stage transitions (Fig. 1). We focus on physiological dynamics during sleep as sleep
stages are well-defined physiological states, and external influences due to physical activity
or sensory inputs are reduced during sleep. Sleep stages are scored in 30 s epochs by sleep
lab technicians based on standard criteria. In particular, we focus on the EEG, the
electrocardiogram, respiration, the electrooculogram, and the electromyogram of the chin
and leg. In order to compare these very different signals with each other and to study
interrelations between them, we extract the following time series from the raw signals: the
spectral power of five frequency bands of the EEG in moving windows of 2 s with a 1 s
overlap: δ waves (0.5–3.5 Hz), θ waves (4–7.5 Hz), α waves (8–11.5 Hz), σ waves (12–15.5
Hz) and β waves (16–19.5 Hz); the variance of the electrooculogram and electromyogram
signals in moving windows of 2 s with a 1 s overlap; heartbeat RR intervals and interbreath
intervals are both re-sampled to 1 Hz (1 s bins) after which values are inverted to obtain
heart rate and respiratory rate. Thus, all time series have the same time resolution of 1 s
before the TDS analysis is applied.

Utilizing sleep data as an example, we demonstrate that a network approach to physiological
interactions is necessary to understand how modulations in the regulatory mechanism of
individual systems translate into reorganization of physiological interactions across the
human organism.

TDS method
Integrated physiological systems are coupled by feedback and/or feedforward loops with a
broad range of time delays. To probe physiological coupling, we propose an approach based
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on the concept of TDS: in the presence of stable/strong interactions between two systems,
transient modulations in the output signal of one system lead to corresponding changes that
occur with a stable time lag in the output signal of another coupled system. Thus, long
periods of constant time delay indicate strong physiological coupling.

The TDS method we developed for this study consists of the following steps:

To probe the interaction between two physiological systems X and Y, we consider their
output signals {x} and {y} each of length N. We divide both signals {x} and {y} into NL-
overlapping segments v of equal length L = 60 s. We choose an overlap of L/2 = 30 s, which
corresponds to the time resolution of the conventional sleep-stage-scoring epochs, and thus
NL = [2N/L] − 1. Before the analysis, the signal in each segment v is normalized separately
to zero mean and unit standard deviation, in order to remove constant trends in the data and
to obtain dimensionless signals. This normalization procedure assures that the estimated
coupling between the signals {x} and {y} is not affected by their relative amplitudes.

Next, we calculate , which is the cross-correlation function
within each segment v = 1,…,NL by applying periodic boundary conditions. For each
segment v, we define the time delay  to correspond to the maximum in the absolute value

of the cross-correlation function  in this segment . Time periods of
stable interrelation between two signals are represented by segments of approximately
constant τ0 (light shade region in Fig. 1b) in the newly defined series of time delays,

. In contrast, absence of stable coupling between the signals corresponds to large
fluctuations in τ0 (dark shade region in Fig. 1b).

We identify two systems as linked if their corresponding signals exhibit a time delay that
does not change by more than ±1 s for several consecutive segments v. We track the values
of τ0 along the series : when for at least four out of five consecutive segments v
(corresponding to a window of 5×30 s) the time delay remains in the interval [τ0 − 1, τ0 +
1], these segments are labelled as stable. This procedure is repeated for a sliding window
with a step size one along the entire series . The % TDS is finally calculated as the
fraction of stable points in the time series .

Longer periods of TDS between the output signals of two systems reflect more stable
interaction/coupling between these systems. Thus, the strength of the links in the
physiological network is determined by the percentage of time when TDS is observed:
higher percentage of TDS corresponds to stronger links. To identify physiologically relevant
interactions, represented as links in the physiological network, we determine a significance
threshold level for the TDS based on comparison with surrogate data: only interactions
characterized by TDS values above the significance threshold are considered.

The TDS method is general, and can be applied to diverse systems. It is more reliable in
identifying physiological coupling compared with traditional cross-correlation and cross-
coherence analyses (Fig. 8), which are not suitable for heterogeneous and non-stationary
signals, and are affected by the degree of auto-correlations in these signals40.

To compare interactions between physiological systems that are very different in strength
and vary with change of physiological state (for example, transitions across sleep stages), we
define the significance threshold as the percentage of TDS for which all links included in the
physiological network are statistically significant. To identify statistical significance of a
given link between two physiological systems, we compare the distribution of TDS values
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for this link obtained from all 36 subjects in our database with the distribution of TDS
values obtained for 100 surrogates of this link where the signal outputs from the same two
physiological systems taken from different subjects are paired for the analysis in order to
eliminate the endogenous physiological coupling. A Student t-test was performed to
determine the statistical significance between the two distributions. This procedure is
repeated for all pairs of systems (links) in the network, and network links are identified as
significant when the t-test P-value <10−3. The significance threshold level for TDS is then
defined as the value above which all network links are statistically significant, and thus
represent endogenous interactions between physiological systems. We find that a threshold
of ~7% TDS is needed to identify networks of statistically significant links for all sleep
stages (Fig. 7).

Surrogate tests
To confirm that the TDS method captures physiologically relevant information about the
endogenous interactions between systems, we perform a surrogate test where we pair
physiological signals from different subjects, thus eliminating physiological coupling.
Applying the TDS method to these surrogate data, we obtain almost uniform rank
distributions with significantly decreased link strength (Fig. 5a) due to the absence of
physiological interactions. Further, all surrogate distributions conform to a single curve,
indicating that the sleep-stage stratification we observe for the real data reflects indeed
changes in physiological coupling with sleep-stage transitions. In contrast, the same
surrogate test applied to traditional cross-correlation analysis does not show a difference
between the rank distributions from surrogate and real data (Fig. 8).

We find that the TDS method is better suited than the traditional cross-correlation analysis
in identifying networks of endogenous physiological interactions. Rank plots obtained from
cross-correlation analysis (Fig. 8) show that the cross-correlation strength Cmax (global
maximum of the cross-correlation function) is consistently lower for all links during deep
sleep, higher for light sleep and REM, and highest during wake—a stratification related to
the gradual increase in the strength of autocorrelations in the signal output of physiological
systems3,26, which in turn increases the degree of cross-correlations40. Surrogate tests based
on pairs of signals from different subjects, where the coupling between systems is abolished
but physiological autocorrelations are preserved, show no statistical difference between the
surrogate (open symbols) and original (filled symbols) rank distributions of Cmax,
suggesting that in this context cross-correlations do not provide physiologically relevant
information regarding the interaction between systems. Indeed, even for uncoupled systems,
high autocorrelations in the output signals lead to spurious detection of cross-correlations40.
In contrast, the TDS method is not affected by the autocorrelations—surrogate rank plots for
different sleep stages collapse and do not exhibit vertical stratification as shown in Fig. 5a.

To test the robustness of the stratification pattern in network topology and connectivity
across sleep stages (shown in Figs 2 and 3), we repeat our analyses for two additional
thresholds: 5% TDS and 9% TDS. With increasing the threshold for TDS from 5 to 9%, the
overall number of links in the network decreases (compare Fig. 9a,c,e with Fig. 9b,d,f).
However, the general sleep-stage stratification pattern is preserved with highest number of
links during light sleep and wake, lower during REM, and significant reduction in network
connectivity during deep sleep (Fig. 9). The stability of the observed pattern in network
connectivity for a relatively broad range around the significance threshold of 7% TDS
indicates that the identified network is a robust measure of physiological interactions.
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Figure 1. Transitions in the network of physiological interactions
(a) Dynamical network of interactions between physiological systems where ten network
nodes represent six physiological systems—brain activity (EEG waves: δ, θ, α, σ and β),
cardiac (HR), respiratory (Resp), chin muscle tone, leg and eye movements. (b) Transition
in the interactions between physiological systems across sleep stages. The time delay
between two pairs of signals, (top) α-brain waves and chin muscle tone, and (bottom) HR
and eye movement, quantifies their physiological interaction: highly irregular behaviour
(blue dots) during deep sleep is followed by a period of TDS during light sleep indicating a
stable physiological interaction (red dots for the HR–eye and orange dots for the α–chin
interaction). (c) Transitions between physiological states are associated with changes in
network topology: snapshots over 30-s windows during a transition from deep sleep (dark
grey) to light sleep (light grey). During deep sleep, the network consists mainly of brain–
brain links. With transition to light sleep, links between other physiological systems
(network nodes) emerge and the network becomes highly connected. The stable α–chin and
HR–eye interactions during light sleep in (b) are shown by an orange and a red network link,
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respectively. (d) Physiological network connectivity for one subject during night sleep
calculated in 30-s windows as the fraction (%) of present links out of all possible links
(brain–brain links not included, see Fig. 3e). Red line marks sleep stages as scored in a sleep
lab. Low connectivity is consistently observed during deep sleep (0:30–1:15 h and 1:50–
2:20 h) and REM sleep (1:30–1:45 h and 2:50–3:10 h), while transitions to light sleep and
wake are associated with a significant increase in connectivity.

Bashan et al. Page 13

Nat Commun. Author manuscript; available in PMC 2012 December 11.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2. Network connectivity across sleep stages
Group-averaged time delay stability (TDS) matrices and related networks of physiological
interactions during different sleep stages: (a) wake; (b) REM sleep; (c) light sleep (LS); (d)
deep sleep (DS). Matrix elements are obtained by quantifying the TDS for each pair of
physiological systems after obtaining the weighted average of all subjects in the group: %
TDs=(∑i si/∑iLi) × 100 where Li indicates the total duration of a given sleep stage for subject
i, and si is the total duration of TDS within Li for the considered pair of physiological
signals. Colour code represents the average strength of interaction between systems
quantified as the fraction of time (out of the total duration of a given sleep stage throughout
the night) when TDS is observed. A network link between two systems is defined when their
interaction is characterized by a TDS of ≥7% (arrow), a threshold determined by surrogate
analysis (see Methods). The physiological network exhibits transitions across sleep stages—
lowest number of links during deep sleep (d), higher during REM (b), and highest during
light sleep (c) and quiet wake (a)—a behaviour observed in the group-averaged network as
well as for each subject. Network topology also changes with sleep-stage transitions: from
predominantly brain–brain links during deep sleep to a high number of brain–periphery and
periphery–periphery links during light sleep and wake.
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Figure 3. Sleep-stage stratification pattern in network connectivity and network link strength
Group-averaged number of links (a) and averaged link strength (b) are significantly higher
during wake and light sleep compared with REM and deep sleep (Student t-test P<10−3 for
both quantities when comparing REM and deep sleep with wake and light sleep). There is
no significant difference between wake and light sleep (P>5×10−2). This pattern is even
more pronounced for the subnetwork formed by the brain–periphery and periphery–
periphery links shown in (c) and (d) (P<10−6 for both quantities when comparing REM and
deep sleep with wake and light sleep). In contrast, the number of brain–brain links remains
practically unchanged with sleep-stage transitions (e), and the average brain–brain link is ≈5
times stronger in all sleep stages compared with the other network links (f). The group-
averaged patterns in the number of network links and in the average link strength across
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sleep stages (black bars) are consistent with the behaviour observed for individual subjects
(red bars in all panels represent the same subject). The group-averaged number of links for
each sleep stage is obtained from the corresponding group-averaged network in Fig. 2. The
average link strength is measured in % TDS and is obtained by taking the mean of all
elements in the TDS matrix for each sleep stage (Fig. 2); it represents the average strength of
all links in a network obtained from a given subject during a specific sleep stage, which then
is averaged over all subjects. Error bars indicate s.d. obtained from a group of 36 subjects
(Methods).
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Figure 4. Network connectivity and link strength of the brain–brain subnetwork for different
sleep stages
While the topology of the brain subnetwork does not change, the strength of network links
significantly changes with strongest links during light sleep and deep sleep (brown and dark
red colour), intermediate during wake (red and orange colour) and weakest links during
REM sleep (yellow colour).
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Figure 5. Rank distributions of the strength of network links
Group-averaged strength of individual physiological network links for different sleep stages.
Rank 1 corresponds to the strongest link in the network, that is, highest degree of time delay
stability (TDS) (shown are all periphery–periphery and brain–periphery links). (a) The rank
distributions for different sleep stages are characterized by different strength of the network
links measured in % TDS—consistently lower values for most links during deep sleep,
higher values during REM and highest during light sleep and wake, indicating that the
stratification pattern in Fig. 3d is present not only for the average link strength (when
averaging over different types of links in the network) but also for the strength of individual
links. Indeed, links from all ranks are consistently stronger in light sleep compared with
deep sleep and REM: such rank-by-rank comparison of links across sleep stages is possible
because the rank order of the links does not change significantly from one sleep stage to
another (Wilcoxon signed-rank test for all pairs of rank distributions yields 0.77≤P≤0.93). A
surrogate test based on TDS analysis of signals paired from different subjects, which
eliminates endogenous physiological coupling, leads to significantly reduced link strength
(P<10−3) and close to uniform rank distributions with no difference between sleep stages
(open symbols), indicating that the TDS method uncovers physiologically relevant
information. Error bars for the original and surrogate data indicate the standard error for a
specific link when averaged over all 36 subjects or over 36 surrogate pairs respectively. (b)
Rescaling the plots reveals two distinct forms of rank distributions: a slow decaying
distribution for wake and REM, and a fast decaying distribution for light sleep and deep
sleep with a pronounced plateau in the middle rank range corresponding to a cluster of links
with similar strength, most of which are related to the cardiac system.
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Figure 6. Transitions in connectivity and link strength of individual network nodes across sleep
stages
The number of links to specific network nodes significantly changes, with practically no
links during deep sleep, a few links during REM and much higher connectivity during light
sleep and wake. Notably, the average strength of the links connecting a given network node
is also lowest during deep sleep and highest during light sleep and wake. Shown are
connectivity and average link strength for two network nodes: (a) heart and (b) chin. This
sleep-stage stratification pattern in individual node connectivity and in the average strength
of the links connecting a specific network node is consistent with the transitions of the entire
network across sleep stages shown in Fig. 3 c,d. Networks for (a) heart and (b) chin are
obtained by averaging the corresponding networks for all subjects. During deep sleep, no
links to the heart are shown as the strength of each link averaged over all subjects is below
the significance threshold (Figs 2 and 7, Methods). Right bars in the panels represent for
different sleep stages the group mean of the average strength of network links connecting
the heart and chin, respectively, and error bars show the s.d. obtained from a group of 36
subjects (Methods). Left bars represent an individual subject. Note that the absence of a link
between heart rate and respiration in the physiological network does not indicate absence of
cardio–respiratory coupling but rather that this coupling as represented by time delay
stability (TDS) is rarely stable for periods longer than 2–4 min (where 2 min is the minimum
window over which TDS is determined; Method section), and that cardio–respiratory TDS
episodes form <7% of the recordings, which is the significance threshold level (Method
section). Such ‘on’ and ‘off’ intermittent interaction between these two systems is observed
also in other independent measures of cardio–respiratory coupling—respiratory sinus
arrhythmia (RSA)41,42 and the degree of phase synchronization6—where relatively short
‘on’ episodes are separated by periods of no interrelation as quantified by these measures.
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Figure 7. Determining significance threshold for the strength of network links
With increasing the time delay stability (TDS) threshold level that allows only stronger links
with higher TDS values to be considered in the physiological network, the fraction of
statistically significant network links that carry physiologically relevant information also
increases, and at a significance threshold of ≈7% TDS (marked by a vertical dashed line) all
network links (100%) are statistically significant. Periphery–periphery and brain–periphery
links during all sleep stages are considered when determining this threshold. Statistical
significance of a specific physiological link is estimated by comparing the strength
distribution of this link across all subjects in the group with a distribution of surrogate links
representing ‘interactions’ between the same systems paired from different subjects. Based
on this surrogate test, a P-value <10−3 obtained from the Student t-test indicates statistically
significant strength of a given link.
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Figure 8. Cross-correlation and surrogate analysis
Rank plots obtained from cross-correlation analysis show no statistically significant
differences between real and surrogate data, indicating that cross-correlation is not a reliable
measure to identify physiological interactions.
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Figure 9. Stability of sleep-stage stratification pattern in network connectivity
Group-averaged number of network links for two different thresholds (Th) during wake,
REM, light and deep sleep. Results for threshold of Th = 5% time delay stability (TDS) are
shown in a, c and e, and results for threshold of Th = 9% TDS are shown in b, d and f. The
sleep-stage stratification pattern observed for the significance threshold of 7% TDS (shown
in Fig. 3) is preserved also for thresholds of 5 and 9% TDS, indicating stability of the
results. Note that the number of links in the brain–brain subnetwork remains unchanged for
different sleep stages (e, f) as the strength of all links in this subnetwork is well above 9%
TDS (Fig. 3f).
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