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Abstract
Orphan nuclear receptors regulate diverse biological processes. These important molecules are
ligand-activated transcription factors that act as natural sensors for a wide range of steroid
hormones and xenobiotic ligands. Because of their importance in regulating various novel
signaling pathways, recent research has focused on identifying xenobiotics targeting these
receptors for the treatment of multiple human diseases. In this review, we will highlight these
receptors in several physiologic and pathophysiologic actions and demonstrate how their functions
can be exploited for the successful development of newer drugs.
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INTRODUCTION
Nuclear receptors (NRs) define the largest superfamily of ligand-dependent transcription
factors. They are involved in a wide variety of biological functions, including cell
proliferation, differentiation, development and homeostasis (1, 2). Since the discovery of the
first NR in the 1970s (3), several more structurally similar receptors were discovered,
defining a new class of NRs called the “orphan nuclear receptors” (ONRs) (Fig. 1) (1).
ONRs are defined by a lack of identifiable ligands controlling their physiological functions
in vivo. In recent years, low affinity ligands have been discovered for some of the orphans
and were subsequently classified as “adopted” ONRs (1, 2). The ligand-binding pocket of
these adopted receptors (e.g. pregnane X receptor (PXR; NR1I2), liver X receptor (LXR;
NR1H2 and NR1H3), farnesoid X receptor (FXR; NR1H4), constitutive androstane receptor
(CAR; NR1I3 and NR1I4), peroxisome proliferator activated receptor (PPAR; NR1C2,
NR1C3, and NR1C4), etc.) are larger than classical NRs and bind to a large diversity of
molecules with lower affinity (1).

Functionally, ONRs are very similar to classical NRs. The classical function of NRs is to
transcriptionally regulate expression of target genes by the recruitment of co-activators or
co-repressors. Ligand binding to these receptors recruits the co-activators (activation) or co-
repressors (repression), thereby regulating the coordinate expression of their target genes
(Fig. 2) (4, 5). Generally, NRs bind to co-repressors in their un-liganded apo-form with
histone deacetylase (HDAC) activity and act as a transcriptional suppressor (6, 7). With
agonist ligand binding, conformational change in the helix 12 (H12) of the ligand-binding
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domain creates an open conformation of the NR holo-form favoring co-activator binding
with histone acetyltransferase (HAT) activity for its activation properties (7). Discovery of
antagonist molecules has been targeted to this H12 structure with the hypothesis that
molecules that inhibit folding of H12 can act as antagonist for the corresponding NR (7).
Though the classical mechanism of NR action is called transactivation, alternative
mechanisms of NR action have also been reported (e.g., transrepression, where NRs, instead
of binding directly to DNA, interact with other promoter-specific transcription factors to
deactivate the target gene (8, 9), and non-genomic mechanisms, such as the very fast actions
of NRs via membrane-associated signal transduction machineries (10, 11)).

Structurally, classical NRs contain four distinct functional domains: (1) AF1 or ligand-
independent activation domain or A/B domain at the amino-terminal end, (2) DBD or DNA-
binding domain containing two conserved C4-type zinc-finger motifs, (3) a highly variable
flexible hinge region connecting the DBD with the (4) LBD or ligand-binding domain that is
associated with second activation domain (AF2) at the extreme carboxy-terminal end (Fig.
3) (12). NRs bind to the target gene DNA response element using their conserved DBD.
These response elements contain conserved hexameric sequences that can be arranged in
several configurations, such as inverted or direct repeats (13, 14). Though the majority of
ONRs possess all the functional domains common to the classical NRs, diversity is present
in some ONR structures (1, 15). The structures of ONRs within the LBD in general and
highly diverse (e.g. the ligand-binding pocket of PXR is very large and flexible due to the
presence of two additional strands of β sheet, which explains the promiscuous nature of
PXR binding to diverse range of compounds) (16–18). Some orphan receptors contain only
one of the two characteristic domains (DBD or LBD) of the NR superfamily. In vertebrates,
DAX-1 (NR0B1) and small heterodimer partner (SHP/SHP-1; NR0B2) contain only a LBD
and lack a classic DBD (19, 20). In other species, such as Drosophila Knirps, KNRL and
EGON (NR0A1, 2, 3) lack either of these domains (21, 22). The size of the domains in
ONRs also varies, e.g., the A/B domain of some receptors is short (e.g., RORβ (NR2F2) and
TLX (NR2E1)), whereas the same domain is quite large for NGFI-B/NR4A group members
(15). The diversity of ONRs is also present in the modes of their DNA binding. While most
of them bind to DNA as homodimers on direct repeat elements (e.g. HNF4 (NR2A1, A2,
A3), COUP-TFs (NR2F1, F2, F3), TLX, and TR2/4 (NR2C1, C2)), some bind to DNA by
interacting with retinoid X receptor (RXR) as a heterodimer partner (e.g. PXR, CAR, FXR,
LXR and PPAR) (23), some oligomerize (e.g. GCNF (NR6A1)) on binding to a direct repeat
(24), whereas several other orphan receptors (e.g. Rev-erbs (NR1D1, D2), RORs (NR2F1,
F2, F3), SF-1 (NR5A1), NURR1 (NR4A2), NOR1 (NR4A3) and ERRs (NR3B1, B2, B3))
have been shown to bind DNA as a monomer to a half-site sequence (25). Additionally,
estrogen receptor α, a ligand-activated NR, contains an additional carboxy-terminal F
domain with unknown function (26). Furthermore, the NR diversity is also evident in their
expressions in different species both vertebrates and invertebrates, such that there are 21 and
more than 270 NR-like genes identified in Drosophila melanogaster and in Caenorhabditis
elegans, respectively (27, 28). A list of vertebrate ONRs is presented in Table I, information
that will be very useful to study individual receptor in these research animals for drug design
and in vivo testing (1).

Because of this structural and functional diversity, promiscuous nature of DNA and ligand-
binding properties (e.g. CAR and PXR) and their ability to bind to a broad range of
molecules, thereby regulating a vast array of target genes, ONRs have become an attractive
target for drug development. In this review, we will discuss how individual ONRs can be
exploited (using agonist and antagonist molecules of these receptors) for a successful drug
discovery in various human diseases (Table II).
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NUCLEAR RECEPTOR DRUG DISCOVERY TOOLS
Identification of potential drug candidates for NRs traditionally has been done by using
several drug development strategies (Fig. 4). The various strategies are described below.

In cell-based reporter assays where NR LBD is fused with DBD of yeast transcription factor
Gal4, cells are transfected with this construct along with a reporter construct containing
Gal4 upstream activation sequences (UAS) upstream of a reporter gene (e.g., luciferase, β-
galactosidase). The activation and/or inactivation of the NRs by binding of a ligand is
monitored by the expression of the reporter gene. Multiple modifications of this assay have
been made since its discovery to allow for the measurement of receptor activation or
inhibition by compounds and also to determine compound selectivity and potency (29).

In vitro ligand binding assays (e.g., scintillation proximity and fluorescent polarization
assays) screen potential ligands by their competition with radiolabeled known ligands for the
LBD of respective NR (30, 31).

Yeast and mammalian are two hybrid assays in which ligand-dependent NR-coactivator
interactions are determined to identify potential compounds that augment/inhibit NR-
coactivator interactions (32, 33).

Similarly, NR-coactivator interaction properties are exploited for more specific, sensitive
and high-throughput assays, such as the fluorescence resonance energy transfer (FRET, or
more specifically time-resolved FRET or TR-FRET) (34), ligand-sensing assay (LiSA) (35)
and AlphaScreen assay (Amplified Luminescent Proximity Homogenous assay) (36). In
FRET assays, NR and coactivator are labeled with proper fluorescent donor-acceptor probes
(e.g., europian cryptate [Eu (K)]-cross linked conjugate of allophycocyanin (XL665) or cyan
fluorescent protein (CFP)-yellow fluorescent protein (YFP)), and ligand-induced NR-
coactivator interactions are measured by the energy transfer between the fluorophores. In
TR-FRET assay, this energy transfer is time-gated in order to reduce short-lived fluorescent
background, thereby increasing the sensitivity of the detection (37, 38). Additionally, the
rapid fashion in which TR-FRET assay is accomplished gives the advantage of screening
large drug samples in high-throughput format. In LiSA, similar to FRET assay, biotin-
streptavidin interaction properties are used for fluorophore labeling of NR and coactivator.
AlphaScreen is a bead-based assay where NR is coupled to donor beads and coactivator to
acceptor beads. Ligand-induced conformation change in NR and hence its binding to co-
activator triggers the donor-acceptor beads to come in proximity with subsequent generation
of a signal.

Another assay, known as amide hydrogen/deuterium exchange, coupled with proteolysis and
liquid chromatography-mass spectrometry (H/D-Ex), is gaining popularity as a drug
development tool for the analysis of NR-ligand interactions (39). In this assay, the rate of
amide hydrogen exchange depends on local fluctuations in the protein structure, and, for this
reason, the rate of H/D-Ex exchange is a good indicator of protein conformational change.
Hence, H/D-Ex is used to detect differences of protein dynamics in apo and holo forms of
NR LBD.

Structural detailing of NR LBD has triggered the development of in silico approaches, like
virtual ligand screening (VLS) for NR drug development. VLS is a knowledge-driven
approach based on the structural information of either ligand (ligand-based approach) or NR
target (receptor-or target-based approach). This method expands the concept of central
similarity-property principle, which depicts that similar molecules exhibit similar properties.
Based on this, similarity calculations can be performed, and molecules from large chemical
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libraries can be screened and subsequently scored and ranked using computational methods
(40).

Computational methods have become an extremely powerful tool not only to provide
insights into novel agonist-antagonist interactions with NRs but also have facilitated the
identifications of off-target interactions of NRs responsible for undesirable side effects (41).
Results from computational methods have shown that NRs undergo significant
conformational changes upon ligand binding or release, and the key factor of such NR-
ligand interaction depends on the quaternary state of the receptor (41, 42). Computational
studies have also been helpful to understand and characterize the structural domains of NR
required for the recognition and specificity of interacting partners for its transcriptional
activities (43, 44). Similarly, computational analysis of the three-dimensional coordinates of
NR protein structure has helped to identify newer functional residues using the evolutionary
trace computational methods, which are important for NR-coregulator interactions (45, 46).

Combined in silico-in vitro approaches have also shown their importance in studying
evolutionary change in the LBD of different NRs responsible for their varying ligand
specification across species (47). Finally, docking studies with structural similarity
comparison methods have been helpful to understand the molecular mechanisms of adverse
drug effects. This in silico approach, therefore, can be used to identify early off-target side
effects of newly discovered drugs. This approach can also be expanded to drug repurposing
or repositioning, where newer related therapeutic applications of older marketed drugs are
exploited while eliminating the activity at the original target, thereby reducing the cost and
time associated with the drug development processes (48, 49).

LIMITATIONS OF ONR-BASED PHARMACOLOGIC THERAPY
Drug adverse effects are a common cause of morbidity and mortality world-wide, and it is
estimated that 20% of all adverse drug effects are due to drug-drug interactions (50, 51).
Drug-drug interactions are a process by which administration of one drug alters the systemic
drug levels (i.e. increasing or decreasing effective concentration) of another co-administered
drug. Among the mechanisms of drug-drug interactions, drug metabolism and transport are
considered to be most important, since they directly affect the therapeutic plasma
concentrations of drugs administered, thereby determining drug toxicity or loss of drug
response (52, 53).

Tissues that are mostly responsible for drug metabolism and transport are liver and the
intestine. In these tissues, oxidative metabolism of drugs occurs through CYP450 group of
enzymes, and drug efflux transport is mediated via MDR1 (also known as p-glycoprotein,
ABCB1, ATP binding cassette subfamily B member 1) (52, 54). ONRs are critical in
regulating these important mediators. Arguably, the most important ONR involved in drug-
drug interaction is PXR, since it can be activated by a wide array of chemicals because of its
promiscuous nature of ligand binding. Moreover, PXR regulates expression of the two most
important drug metabolizing proteins—CYP3A4 (cytochrome P450 family 3 subfamily A
member 4, the most abundant of the CYP450 isozymes in the liver and intestine) and MDR1
—and is thereby responsible for the metabolism of ~50% of marketed drugs (55, 56). CAR
is activated by fewer compounds than PXR but is responsible for similar effects on drug
interactions via CYP3A4 and MDR1 (57). Additionally, FXR has also become an important
ONR involved in drug interactions, since functional FXR response elements have been
identified in CYP3A4 and another drug transporter MRP2 (58, 59). Since any given drug
can activate more than one receptor and NR themselves regulate each other, this complex
drug-drug interaction network regulated by ONRs should be very carefully exploited for
safer pharmaceutical applications (60, 61).
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While the numbers of compounds that can activate orphans have rapidly increased over the
last decade, a few prescription drugs also cause clinically relevant drug-interactions. Drugs
in these categories are anticonvulsants (e.g. phenobarbital, carbamazepine, phenytoin,
valproic acid), antibiotics (e.g. rifampicin, nafcillin, rifabutin), human immunodeficiency
virus protease inhibitors (ritonavir, nelfinavir, tipranavir) and non-nucleoside reverse
transcriptase inhibitors (e.g. nevirapine, efavirenz) (62–66). Additionally, several herbal
medicines (e.g. St. John’s Wort, Ginkgo biloba) similarly affect drug-drug interactions
through ONR signaling pathways (67, 68). In several disease conditions (e.g. tuberculosis,
HIV infection, epilepsy) where chronic treatment is required, drugs used for these purposes
can also activate ONRs as an off-target effect causing multiple side effects. For example,
anticonvulsants and rifampicin (anti-tuberculosis drug) can cause hypothyroidism by
increasing thyroid hormone turnover in liver via induction of glucuronidation, sulfation and
biliary excretion (69, 70). Rifampicin treatment results in bone-loss and osteomalacia by
interfering with vitamin D signaling via PXR (71). Additionally, HIV protease inhibitors by
activating PXR and CAR are associated with the development of fatty liver (72).

Classical estrogen receptor exerts its effect on various tissues, and synthetic estrogens have
shown its potential to act in tissue-specific manner (e.g. selective estrogen receptor
modulators) (73, 74). While this effect is beneficial for receptor drug targeting to prevent
off-target adverse effects, unfortunately, no tissue-specific pharmacologic agents targeting
ONR have been described to date.

Since ONRs are very crucial as a drug development target, predictions of in vivo drug
interactions have become very important for successful drug discovery. Several
experimental systems have been employed that include cultured primary human hepatocytes,
humanized mouse models, transformed cell lines (e.g. DPX-2, a derivative of HepG2 cells,
that harbors human PXR and luciferase-linked CYP3A4 promoter and Fa2N-4 immortalized
human hepatocyte clone), reporter gene assays, coactivator recruitment assays and receptor
binding assays (55, 75–78).

Therefore, it is evident that both ONR agonist/antagonist therapies and prescription drugs
causing off-target ONR effects could affect the therapeutic outcomes of treatment. Hence,
serious considerations should be given while designing ONR-based pharmaceutics to avoid
drug adverse effects.

PREGNANE X RECEPTOR (PXR): AGONIST AND ANTAGONIST—
IMPLICATION FOR MULTITUDE OF DISEASES

Pregnane X Receptor (PXR) is an ONR encoded by the NR1I2 gene. It is involved in drug
metabolism, bile acid transport, cancer, cholesterol metabolism and inflammation (79–81).
While it is highly expressed in the liver and proximal small intestine, reduced levels of
expression are seen in the large intestine (80, 82). PXR ligands, such as rifampicin,
pregnenolone and phenobarbitone, are typically activators, although a small number of
antagonists have also been identified, such as the ketoconazole (and related azoles),
suphoraphane, ecteinascidin (ET-743) and coumesterol (83, 84).

Crystal structure of PXR LBD has shown that the ligand binding pocket of PXR is highly
unrestricted because of its larger volume (more than 1,600 Å). Hence, it is able to function
as a broad-specificity sensor of lipophilic xenobiotics and therefore regulate a vast array of
target genes (16).

PXR has a substantial cross-species difference in terms of ligand binding. PXR LBD amino
acid sequence identity has shown only 75% identity among human and rodents and 50%
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among human and chicken or zebrafish sequences (85). Since PXR and CAR (discussed
later in the article) play a major role in drug metabolism and they show interspecies
sequence variation in terms of ligand-mediated gene transcription, drug bioavailability
testing, efficacy and toxicity evaluations become difficult in animal models of human
disease. To address these issues better, humanized mouse models of PXR, CAR and double
humanized (both PXR and CAR) models have been created, where mouse PXR and CAR
genes have been exchanged with their human counterparts (75, 86, 87).

PXR Functions and Therapeutic Implications
The metabolism of xenobiotics via CYP3A4 and MDR1 pathways are regulated by PXR
(88, 89). By binding to the promoter region of CYP3A4 gene, PXR brings about its
activation, leading to enhanced xenobiotic metabolism. Possible roles of PXR antagonist
(e.g., ketoconazole) are that they may bind to PXR LBD and inhibit its interaction with its
coactivator (SRC-1, steroid receptor coactivator 1), thereby inhibiting target gene activation
(90). Inhibition of PXR causes decreased metabolism and, hence, increased bioavailability
of bioactive compounds. This provides a novel mechanism (PXR antagonist) to increase
bioavailability of the chemotherapeutic drugs, while induction of PXR by agonists can lead
to drug resistance (91, 92).

Recent investigations have shown that PXR has an anti-apoptotic role in colon cancer cells,
implicating its role in tumorigenesis. Anti-apoptotic role of PXR is independent of the
xenobiotic metabolizing role. Instead, it is associated with up-regulation of multiple anti-
apoptotic genes, including BAG3 (BAG family molecular chaperone regulator 3), BIRC2
(Baculoviral IAP repeat-containing protein 2) and MCL-1 (Induced myeloid leukemia cell
differentiation protein), and down-regulation of pro-apoptotic genes, such as BAK1 (Bcl-2
homologous antagonist/killer) and TP53/p53 (Tumor protein 53/protein 53) (93). This
antiapoptotic role is also seen in normal colonic epithelial cells. For the treatment of colon
cancer, this information will be very useful in developing PXR antagonist. PXR
transcriptionally activates organic anion transporter OATP1A2 (mediates cellular uptake of
estrogen metabolites), and this effect leads to increased proliferative potential of estrogen in
breast tissues. Specific PXR antagonists have been shown to inhibit proliferative effects of
estrogen (94). Additionally, PXR activation has been shown to increase proliferative
potentials of ovarian cancer cell-lines, further strengthening the basis for finding novel non-
toxic inhibitors of PXR activation to control cell growth (91).

PXR transcriptionally activates dehydroepiandrosterone (DHEA) sulfotransferase
(SULT2A1; phase II drug conjugating enzyme) and regulates bile acid metabolism by
facilitating elimination of lithocholic acid from the body (95). Additionally, a complex
network of ONRs (PXR, FXR, CAR, LRH-1(liver receptor homolog/NR5A2), HNFs, SHP)
regulates genes involved in organic anion uptake (NTCP, OATPs), bile canalicular export
(BSEP, MRP2) and alternative basolateral export (MRP3, MRP4) in liver (96–98).
Furthermore, PXR has also been shown to inhibit cholesterol 7α hydroxylase (CYP7A1,
rate-limiting enzyme in bile acid biosynthetic pathway) transcription via a complex
regulatory mechanism involving HNF4α (hepatocyte nuclear factor α) and PGC-1α
(peroxisome proliferators-activated receptor γ coactivator) (99). This describes a novel
protective mechanism of PXR activation against bile acid-induced cholestasis. SULT2A1
also has a role in energy and lipid homeostasis, and this involvement may highlight
treatment potentials for many metabolic disorders targeting PXR.

PXR also activates fatty acid uptake transporter CD36 (in a complex interregulatory network
involving PXR/LXR/PPARγ) and several accessory lipogenic enzymes, such as stearoyl
CoA desaturase-1 (SCD-1) and long-chain free fatty acid elongase (FAE) (100). This is
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related to fat accumulation in the liver cells. It indicates that antagonism of PXR-related
pathways may be utilized to treat alcoholic and non-alcoholic hepatic steatosis (101).

Other examples where PXR anatagonism would be beneficial are in disease conditions such
as osteomalacia and acetaminophen-induced hepatotoxicity. PXR activators lead to
osteomalacia by increased clearance of 1, 25 dihydroxyvitamin D3 (102). Similarly,
activation of hepatic PXR increases conversion of acetaminophen to hepatotoxic metabolites
(103, 104).

Intestine-specific PXR/CYP27A1/LXRα pathway regulates intestinal cholesterol efflux and
high-density lipoprotein (HDL) assembly, targeting mitochondrial sterol 27-hydroxylase
(CYP27A1), which catalyzes oxidative cleavage of the sterol side chain in the bile acid
biosynthetic Orphan Nuclear Receptor and Drug Development 1447 pathway in the liver
and 27-hydroxylation of cholesterol in most tissues. PXR transcriptionally activates
CYP27A1 to produce 27-hydroxycholesterol in intestine, which in turn activates liver X
receptor α (LXRα) to induce cholesterol efflux transporters ABCA1 and ABCG1 in
macrophages (105). Therefore, this provides the evidence of PXR as a target for regulation
of cholesterol efflux and HDL assembly, indicating its role in hyperlipidemia.

Vitamin K2 plays an important role in bone formation. It has been found that vitamin K2
binds to and transcriptionally activates PXR. PXR mRNA is expressed in osteosarcoma cell
lines, and vitamin K2 with known PXR agonists induces the expression of the prototypical
PXR target gene CYP3A4 in these cells (106). Thus, PXR is likely to be involved in the
maintenance of bone homeostasis. This reveals a novel biological function of PXR and
indicates that PXR agonists can function as effective therapeutic agents in the treatment of
osteoporosis.

An inverse relationship was found between the PXR level and estrogen receptor (ER) status
in breast cancer cells. It has been shown that PXR level is lower in ER+ breast cancer cells
than in ER− cells. However, the level is the same in ER− cells as in normal cells. But there
is no relation between the progesterone receptors. This may point to the fact that PXR has a
role in breast cancer and may be utilized for the treatment for ER− tumor cells (107).

Promoter region of inducible nitric oxide synthase (iNOS) gene contains responsive
elements for PXR. Since an iNOS-induced production of nitric oxide (NO) is known to
influence inflammation and apoptosis, a PXR-regulated iNOS activity may explain a
modulatory effect of steroids and xenobiotics on these cellular processes (108).

Besides that, PXR has also been shown to down-regulate NF-κB activation to inhibit
inflammatory processes (109). Thus, potent PXR agonists can be used for the treatment of
inflammatory diseases.

CONSTITUTIVE ANDROSTANE RECEPTOR (CAR): DRUG TREATMENT FOR
LIVER CANCER AND METABOLISM

Constitutive androstane/active receptor is another NR from the same subfamily of NR1I as
PXR. Apart from its lower levels of expression in heart, muscle, kidney and lung, it is
predominantly expressed in the liver and small intestine. CAR can be activated by a wide
variety of xenobiotics and is involved in phase I and II detoxification of drugs, steroid
hormones, thyroid hormones and bilirubin. What sets it apart from classical NRs is that it is
constitutively active even without any ligand, and ligand binding modulates its activity (12,
110). Other ONRs that show similar constitutive activities are RORα, LXRα, LRH-1,
HNF4, NR4A subfamily of receptors and ERR (111–116). CAR remains sequestered in the
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cytoplasm by binding to chaperone proteins, and after binding to its agonist, it translocates
to the nucleus to bind (as a dimer with RXR) to its target gene regulatory element (62).

Discovery of the crystal structure of CAR LBD provides information about its constitutive
activity and the molecular basis for inverse agonism. Additionally, it was also found that
CAR ligand binding pocket is smaller (~675 Å) and less flexible than in PXR, making it less
promiscuous (117). The structure of CAR bound to androstenol (inverse agonist) showed
that this androstenol binding sterically blocks the constitutive active position of helix 12
(110, 118). While phenobarbitone (PB) and TCPOBOP (1, 4-Bis [2-(3, 5-
dichloropyridyloxy)] benzene) are well known activators of CAR, there is a good number of
CAR antagonists also available, including clotrimazole and androstenol (57, 110, 119). PB
is not an agonist but a well-known activator of CAR. It facilitates nuclear translocation of
CAR with subsequent activation but without directly binding to CAR (120). PB exerts its
tumorigenic effects by causing sustained activation of CAR (121, 122). Besides PB and
TCPOBOP, steroid hormones also modulate the CAR-mediated regulation of target gene
transcription. Estrogens activate mouse CAR and induce the CYP2B10 gene in mouse liver,
whereas androgens and progesterone repress estrogen-activated mouse CAR (123).

Similar to PXR, CAR also shows species specificity in regards to some of its agonists. For
example, human CAR, unlike mouse CAR, does not respond to steroid hormones, and a
single residue difference in the C-terminal region of the mouse versus human CAR (T350M)
has been shown to be responsible for this species specificity (110, 117).

CAR receptor associates itself with many other NRs to exert its effects via many cross-
regulatory pathways, some of which are discussed as follows with possible implications for
drug discovery: PB causes liver cell growth and tumor promotion and regulates glucose
metabolism, steroid and thyroid hormone metabolism, drug metabolism and bile acid
synthesis. Upon activation by PB and numerous PB-type inducers, the orphan receptor CAR
mediates those pleiotropic actions by regulating various target genes, utilizing multiple
regulatory mechanisms. This provides an idea about the pleiotropic effects of CAR (124).
Tumorigenesis by PB is induced by the DNA methylation, which is mediated by CAR as
well. This methylation may have a role in the carcinogenesis. Hence, similar to PXR, CAR
is also a potential candidate for tumor drug development, especially for
hepatocarcinogenesis (125).

CAR induces metabolism of the thyroid hormones T4 and T3. With CAR agonist therapy, it
was found that both T4 and T3 levels dropped. CAR participates in the molecular
mechanisms contributing to homeostatic resistance to weight loss by regulating lipid and
glucose metabolism (126–128).

Activation of CAR suppresses lipid metabolism by reducing lipogenic transcription factor
SREBP-1 (sterol regulatory element binding protein 1) protein levels (129). CAR induces
Insig-1, a protein with anti-lipogenic properties, which lead to reduced levels of active
SREBP-1 with subsequent reduction in target gene expression involved in triglyceride
synthesis (130). Hence, this information implies that CAR represents a novel therapeutic
target to uncouple metabolic rate from food intake and has implications in obesity and its
associated disorders. Through a multiplex promoter spanning 218 kb, the phase II UDP-
glucurono-syltransferase 1A (UGT1A1) gene encodes at least eight differently regulated
mRNAs whose protein products function as the principal means to eliminate a vast array of
steroids, heme metabolites, environmental toxins, and drugs. It was found that CAR, in
association with PXR, activates this pathway of metabolism as well, in addition to the P450
system (131). UGT1A1 is also associated with many genetic diseases associated with
bilirubin clearance, like Crigler Najjar syndrome and Gilbert’s disease. These findings may
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provide new dimensions to the understanding of these disorders with newer treatment
options.

LIVER X RECEPTOR (LXR): ROLE IN CHOLESTEROL HOMEOSTASIS AND
INFLAMMATION

LXR is a member of the NR1H NR subfamily involved in the regulation of cholesterol, fatty
acid and glucose homeostasis (132). Two isoforms of LXR have been described as LXRα
and β. LXRα is expressed in the liver, kidney, intestine, fat tissue, macrophage, lung and
spleen, while LXRβ is expressed in almost all tissues (hence, earlier it was called as
ubiquitous receptor) (132, 133). Both LXRα and LXRβ can be activated by endogenous
oxidized derivatives of cholesterol, oxysterols (132).

X-ray crystal structures of both isoforms of LXR are reported in complex with synthetic
LXR agonist T0901317 (can also activate FXR, PXR and CAR). LXRβ LBD shows that
T0901317 can adopt two distinct conformations in the ligand binding pocket because of the
pockets larger size (~830Å). This explains the molecular basis of LXR activation by a wide
range of endogenous ligands. The conservation of amino acid sequence among human LXR
isoforms is also very high, which makes it difficult to design isoform-selective agonists
(134, 135).

LXR Functions and Pharmacological Implications
LXR activates fatty acid synthase (FAS) gene expression through binding to a direct-repeat
4 (DR-4) element in the promoter. Another orphan receptor, LRH-1 binds to a distinct
element of FAS gene 21 bases downstream to DR-4 element, which is critical for the
maximal response of LXR towards FAS expression, and this binding of LRH-1 is blocked
by SHP (136). Hence, LXR plays a role in fatty acid synthesis along with two other orphan
receptors, LRH-1 and SHP. Fatty acids serve many specialized functions, including
cholesterol esterification, lung surfactant production, mammary gland secretions, signaling
molecules and many others, including energy storage. Fatty acid biosynthesis is regulated
mainly through two enzymes: acetyl-CoA carboxylase (ACC, the rate-limiting enzyme in
fatty acid biosynthesis) and FAS. Besides being regulated by LXR, FAS can also be
independently regulated by a large number of signals, including insulin, fatty acids, thyroid
hormone, sterols, oxysterols, glucocorticoids, growth factors and cyclic AMP. These signals
exert effects via FAS promoter with binding sites for E-box binding proteins USF1 & 2,
sterol regulatory element binding proteins (SREBPs), thyroid hormone receptor (TR), LXR
and carbohydrate response element binding protein. Additionally, LXR activation by
oxysterols has been shown to up-regulate transcription of SREBPs (particularly SREBP-1c),
which explains a mechanism of coordinate regulation of homeostatic balance between fatty
acids and sterols (137).

It has been found that LXR promotes reverse cholesterol transport and inhibits
atherosclerosis. In the presence of LXR agonists T0901317 and 22(R) hydroxycholesterol,
fluid phase pinocytosis of low-density lipoprotein (LDL) by the macrophages are suppressed
(138). Recently, it has also been observed that NAD-dependent deacetylase SIRT1 (sirtuin
1, silent mating type information regulation 2 homolog) deacetylates and activates LXR,
thereby potentially regulating reverse cholesterol transport (139). This shows that there are
mechanisms to inhibit macrophage cholesterol accumulation and atherosclerosis, by
inhibiting macrophage uptake of LDL by activated LXR. Hence, as a transcriptional
regulator of genes, such as the ABC transport proteins and genes involved in fatty acid and
cholesterol metabolism, LXR has become an attractive target for the development of drugs
for atherosclerotic disorders.
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However, though the desirable therapeutic effects of increasing reverse cholesterol transport
and cholesterol catabolism on activating LXR-mediated gene transcription can be achieved,
the undesirable side effect of increasing hepatic lipogenesis can occur in the presence of
LXR agonists. Therefore, searching for a LXR antagonist has identified fenofibrate esters
(not fenofibric acid), which represses LXR activation-mediated lipogenesis but without
negating the beneficial roles of LXR in increasing reverse cholesterol transport and
cholesterol secretion (140).

Androgen ablation therapy is the mainstay therapy for certain prostate cancers. But many
patients who receive the ablation therapy develop androgen-independent tumors. It has been
found that androgen paradoxically inhibits the Orphan Nuclear Receptor and Drug
Development 1449 proliferation of these cells partially by down-regulating c-myc and
inducing the CDK-inhibitor p27kip1, which causes cell-cycle growth arrest (141). It was
also found that LXR agonists decrease proliferation of both androgen-dependent and -
independent prostate cancer cells. This effect of LXR is mediated by the ATP binding
cassette transporter A1 (ABCA1) as well as by LXR signaling (LXR/ABCA1/27-
hydroxylase) in the retardation of progression of prostate cancer growth (142). This
indicates that LXR may be involved in the prostate cancer progression in vivo and suggests
LXR signaling may be a useful target for prostate cancer treatment.

Similarly, LXR may also play a role in breast cancer. LXR controls estrogen homeostasis by
regulating the basal and inducible hepatic expression of estrogen sulfotransferase (EST or
SULT1E1), which is critical for metabolic estrogen deactivation. Estrogen has an important
role in normal physiology, as well as in breast cancer and other hormonal disturbances.
Therefore, this represents LXR to be a novel target for drug development in the treatment of
breast cancer (143). Recently, it has been shown that LXR activation suppresses colon
cancer proliferation in a β-catenin-dependent pathway, further implicating its role in the
regulation of cancer development (144).

Macrophages have a central role in innate immunity, by functioning as a scavenger for
pathogens and apoptotic cells as well as by coordinating inflammatory response through
production of cytokines and inflammatory mediators. It has been found that LXR inhibits
genes involved in innate immune response and stimulate those involved in lipid metabolism,
serving as a link between these two pathways. Additionally, LXR in macrophages can be
transcriptionally activated by oxidized lipoproteins. LXR then acts to promote cholesterol
efflux (via ATP-binding cassette transporters ABCA1 and ABCG1) from the cell to prevent
lipid overload and limit the production of inflammatory mediators (145, 146). Thus, LXR
may function to integrate metabolic and immune signaling. Many of the genes inhibited by
LXR are established targets of NF-κB signaling (e.g., iNOS, COX-2 (Cycloxygenase-2),
MMP-9 (Matrix metallopeptidase 9) etc.) (145). This role may be important in
atherogenesis. Oxidized lipids may act as inducers or inhibitors of inflammatory gene
expression, depending upon the context—the inhibitory effects being mediated via LXR.
Since the anti-inflammatory effect of LXR is not limited to promoting cholesterol efflux
(which has a direct implication in atherosclerosis) but to decrease the inflammatory
mediators as well, LXR agonists may have the utility in the treatment of other chronic
inflammatory disease where macrophages play an important role (e.g., osteoarthritis, contact
dermatitis, etc.).

Cholesterol is an important constituent of mammalian cell membranes and is a major
constituent of myelin. It plays an important role in central nervous system (CNS) synapto-
genesis and is essential for optimal neurotransmitter release. Most of the cholesterol is
synthesized in situ, and to maintain homeostasis, cholesterol leaves CNS in the form of
24(S)-hydroxycholesterol, which is secreted across blood-brain barrier in high
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concentrations. It was found that patients with Alzheimer’s disease have high circulating
levels of 24(S)-hydroxycholesterol, which might be a reflection of ongoing
neurodegeneration. LXR, which has a close relationship with cholesterol metabolism, is
expressed in the brain and is related to cholesterol efflux from CNS. Therefore, it has been
suggested that LXR may have an implication in neurodegenerative diseases as well by
modulating CNS cholesterol content, cholesterol efflux and inflammation. In fact, it was
found that astrocytes treated with synthetic LXR ligands exhibit enhanced cholesterol efflux
and increased expression of LXR target genes (ABCA1, ABCG1 and apoE) (147), whereas
loss of the two isoforms of LXR in mice led to degenerative processes in brain characterized
by enhanced lipid accumulation, astrocyte proliferation and disorganized myelination (148).

FARNESOID X RECEPTOR (FXR): IMPLICATING TREATMENT OPTIONS
FOR HYPERTRIGLYCERIDEMIA

Farnesoid X Receptor is a nuclear hormone receptor encoded by the NR1H4 gene. It is
similar in form to PPAR, LXR and RXR. When activated by its ligands, such as
chenodeoxycholic acid, it translocates to the cell nucleus. One important function of FXR is
to suppress the expression of cholesterol alpha hydroxylase (CYP7A1), which is a rate-
limiting enzyme in bile acid synthesis (37).

Crystal structure of FXR LBD (~720 Å) has been reported in complex with coactivator
peptide (GRIP-1) and two different bile acids. With the availability of FXR crystal
structures, newer potent therapeutic bile acids and non-steroidal FXR modulators can be
designed for the treatment of hyperlipidemia and cholestasis, where FXR plays a major
regulatory role (149). FXR is highly expressed in the liver, gut, kidney, and adrenal cortex
and at low levels in heart, lung, stomach, and adipose tissue.

FXR Functions and Therapeutic Implications
It has been found that bile acids repress the transcription of CYP7A1, which catalyzes the
rate-limiting step in bile acid biosynthesis. It was shown that bile acids activate FXR, which
leads to the expression of orphan receptor SHP-1. SHP-1 in turn inhibits LRH-1, which is
another orphan receptor known to regulate CYP7A1 expression positively. Therefore, FXR
plays an important role in the coordinated regulation of cholesterol and bile acid synthesis in
FXR/SHP-1/LRH-1 cascade (150).

FXR is a good therapeutic target for cholesterol gall stone disease, and this effect is
mediated by the FXRmediated expression of bile acid transporter ABCB11 and ABCB4
(151). A new class of FXR agonist, 1, 1-bis-phosphonate esters has been discovered that up-
regulates the bile acid transporter intestinal bile acid binding protein (I-BABP), which, like
other agonists, increases the degradation of HMG-CoA reductase leading to
hypocholesterolemia in normal animals (37).

In another study, FXR has been found to negatively regulate serum HDL and apolipoprotein
A-I (apoA-I) levels. Ligand-activated FXR directly binds to apoA-I promoter and decreases
its expression (152). As serum levels of HDL and risk of coronary heart disease (CHD) are
inversely correlated, potent FXR antagonists could be promising in the treatment of CHD by
raising serum HDL levels.

Syndecan-1 (SDC1) is a member of the family of transmembrane heparan sulfate
proteoglycans, which are widely expressed in many cell types and tissues and has a
significant contribution to the lipoprotein metabolism. Their principal function is to
modulate the ligand-dependent activation of primary signaling receptors at the cell surface,
leading to an increase in binding and/or internalization of extracellular ligands. It is highly
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expressed in the liver. In liver heparan sulfate proteoglycans (HSPGs) bind to lipoproteins
via several accessory proteins, such as the lipoprotein-lipase, apoE, and hepatic lipase,
which are crucial for binding and sequestering of lipoprotein remnants before transfer to
specific receptors (such as the LDL receptor) with subsequent endocytosis. It has been found
that hepatic SDC1 is induced in a FXR-dependent manner. Therefore, increased expression
of SDC1 may be one mechanism by which administration of chenodeoxycholic acid
(naturally occurring FXR ligand) and synthetic FXR ligand GW4064 leads to
hypotriglyceridemic effect (153).

The plant sterol guggulsterone, which has been used to treat hyperlipidemia, has been found
to be an antagonist of FXR and to decrease expression of FXR target genes (154). Although
acting as an antagonist, it enhances FXR agonist-induced transcription of bile salt export
pump (BSEP), which is a major hepatic bile acid transporter. It has been proposed that it
mediates its effects via SHP, a known FXR target. Therefore, guggulsterone defines a novel
class of FXR ligands characterized by antagonistic activities by coactivator association
assays but at the same time can enhance the action of agonists on BSEP expression in vivo.

Human kininogen belongs to plasma kallikrein-kinin system. High molecular weight
kininogen is the precursor of two-chain kinin-free kininogen and bradykinin. The former has
properties of anti-adhesion, anti-platelet aggregation, anti-thrombosis, while the latter is a
potent vasodilator and mediator of inflammation. It has been found that human kininogen
gene is strongly up-regulated by agonists of the FXR. FXR response element (inverse repeat,
IR-1) was also found in the promoter of kininogen at −66/−54, where FXR-RXR
heterodimer binds. Hence, it means that FXR and its agonists (e.g., bile acids) may play a
role in vasodilatation and anti-coagulation process (155).

FXR directly regulates the expression of FGF-19 (FGF-15, mouse ortholog), which is a
member of the fibroblast growth factor family of signaling molecules (156). FGFs bind to
the extracellular domain of their cognate cell surface receptor (FGFRs) and induce receptor
dimerization and tyrosine kinase phosphorylation, which, in turn, leads to the activation of a
number of intracellular pathways. This FXR/FGF-19 pathway is also involved in the bile
acid homeostasis. In mice lacking apical ileal bile acid transporter (Asbt −/− mice, animal
model of bile acid malabsorption), it was found that the FXR/FGF-15 pathway is disrupted.
With the treatment of Asbt −/− mice with either FXR agonist or FGF-15 peptide, CYP7A1
expression becomes less. This suggests that FXR agonist (and/or FGF-15 peptide) could be
used in the treatment of patients of bile acid malabsorption to decrease excessive bile acid
synthesis (157). It is understood that the FGFs regulate cell growth, differentiation, and
morphogenesis; however, it is now apparent that some of these proteins are also important
components of specific homeostatic pathways (e.g., bile acid homeostasis). It means that
FXR has more implications than previously thought which expands its importance in drug
discovery targeting FXR/FGF-19 pathway. FXR has also been shown to play a role in tumor
formation. It was also observed that FXR deficiency results in increased colon cell
proliferation and tumorigenesis, which is accompanied by the up-regulation of the genes
involved in cell-cycle progression and inflammation (e.g. cyclin D1 and interleukin-6)
(158). Additionally, in breast cancer cells, FXR plays a pro-apoptotic role by regulating the
expression of genes involved in the transport of bile acids, amino acids and xenobiotics
(159). Hence, activation of FXR could be a novel intervention strategy for the protection of
intestinal and breast carcinogenesis.

FXR also regulates the expression of various transport proteins and biosynthetic enzymes
crucial to the physiological maintenance of lipids, cholesterol and bile acid homeostasis
(38).
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PEROXISOMAL PROLIFERATOR-ACTIVATED RECEPTOR (PPAR): DRUG
TREATMENT FOR DIABETES, LIPID DISORDERS, ACNE AND
INFLAMMATION

PPAR is another class of ONR which has been very well studied. It was initially described
in Xenopus frogs, where it leads to the proliferation of peroxisomes (160). PPAR was shown
to increase peroxisomes in the rodent liver apart Orphan Nuclear Receptor and Drug
Development 1451 from improving insulin sensitivity; hence, they were called peroxisome
proliferator activator receptors. There are three types of PPAR described so far: PPARα, γ
and δ/β, the latter two being closely related (161).

X-ray crystal structures of the PPARα, γ and δ ligand binding domains (LBDs) have
revealed that the receptors contain a much larger ligand binding pocket (~1,300 Å)
compared to other NRs (162–165).

The size of this pocket may explain the ability of the PPARs to bind a variety of naturally
occurring and synthetic lipophilic acids. Known endogenous ligands for PPARs are free
fatty acids and eicosanoids (166). Leukotrienes B4 is specific for PPARα, while
prostaglandin J2 (PG-J2) is specific for PPARγ (167). Each class of PPAR has its own
modulators targeting their functions. PPARα is targeted by the fibrates, such as clofibrate,
fenofibrates, gemfibrozil, etc., which are used in the treatment of hyperlipidemias. PPARγ
modulators include thiazolidinediones (TZD), which are used as anti-diabetic drugs,
although some interactions with NSAIDs have been demonstrated as well (168–170).
PPARδ modulators, still in the experimental stage, include GW501516 (171). A new
experimental class of PPAR modulators that affect more than one class of PPARs includes
muraglitazar and tesaglitazar, which are being developed for metabolic syndromes (172).
PPARα is distributed mainly in the liver, kidney, heart, muscle, and adipose tissue. PPARδ/
β are mainly expressed in the brain, adipose tissue and skin. PPARγ has a very wide
distribution in the body and is found in three forms formed by alternate splicing in the same
gene. PPARγ1 is expressed in heart, muscle, kidney, colon, pancreas and spleen, while
PPARγ2 is expressed mainly in adipose tissue, and PPARγ3 is expressed in macrophages
and adipose tissue (161).

PPAR Functions and Therapeutic Implications
Cannabinoids (CB) are a group of terpenophenolic compound present naturally in nervous
and immune systems of mammals (173). CB activate G-protein coupled receptor CB1
(cannabinoid receptor) to inhibit calcium-induced neurotoxicity (174). Studies in CB
receptor knock-out mice have revealed non-CB receptor-mediated responses both in CNS
and periphery (175). These non-CB responses are shown to be mediated via PPARs (176).
The monounsaturated analog of the endocannabinoid anandamide oleoylethanolamide
regulates feeding and body weight, stimulates fat utilization and has neuroprotective effects
mediated through activation of PPARα. Other CBs, like palmitoylethanolamide,
anandamide, virodhamine and noladin, also act via PPARα to regulate lipid metabolism.
Few (anandamide and 2-arachidonoylglycerol) act on PPARγ to exert anti-inflammatory
activities. This opens a new domain of application of PPARs as a target of naturally
occurring CB. This also supports the importance of PPARs as a target for lipid disorders and
also for neuroprotective and cardioprotective tretaments (177).

PPARγ agonist TZDs are used clinically to treat insulin resistance and diabetes, disease
conditions strongly associated with obesity (178). It is believed that elevated fatty acids
produced by adipose tissues promote insulin resistance, resulting in increased hepatic
gluconeogenesis and decreased glucose utilization in the periphery (179). TZDs induce the
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expression of genes involved in adipocyte differentiation and lipogenesis through PPARγ
activation, and these mechanisms are responsible for the insulin-sensitizing actions of these
drugs in the treatment of type II diabetes (180, 181). Additional mechanisms of TZD action
in diabetes have also been discovered, where TZDs target adipocyte gluconeogenesis (182).
Gluconeogenesis is a process, where glycerol-3-phosphate is produced from precursors other
than glycerol or glucose in adipose tissue when glucose utilization is reduced during fasting.
Hence, gluconeogenesis in adipocytes acts as a fatty acid homeostatic pathway that allows
the re-esterification of fatty acids (FAs) from glycerol-3-phosphate for triacylglycerol
synthesis at the time when their breakdown is occurring through lipolysis. This action
therefore prevents the release of FAs into the blood. Phosphoenol pyruvate carboxy kinase
enzyme (PEPCK) is the central regulator of gluconeogenesis and is being closely coupled
with cytosolic aspartate transaminase (cAspAT) in the liver. It was found that TZD
responsiveness of cAspAT is dependent on PPARγ and protein synthesis. This effect of
TZD on PEPCK and cAspAT leads to hypolipidemia by inducing gluconeogenesis, which is
a novel mechanism of anti-diabetic drug therapy by TZDs (179, 182).

Recently, many NRs expressed in skeletal muscle have been shown to improve glucose
tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and NRs are rapidly
emerging as critical targets in the battle against cardiovascular disease risk factors. It has
also been found that estrogen receptor-related receptor (ERR) stimulates PPARα-mediated
energy metabolism in cardiac and skeletal muscle cells via activation of medium chain acyl-
CoA dehydrogenase (183). Understanding the function of NRs in skeletal muscle has
enormous pharmacological utility for the treatment of cardiovascular disease and for obesity
(184).

Activation of orphan receptors, in particular activation of PPARα and PPARγ, can regulate
lipogenesis in human sebaceous glands. PPARγ activation induces COX-2 expression in
sebocytes, which leads to sebocyte proliferation and/or lipogenesis (185). As suppression of
sebum secretion is associated with reduced acne activity, the NRs involved may open new
avenues in the development of novel acne treatments.

Both PPARα and PPARγ receptor subtypes have been reported to regulate inflammatory
responses, both in vivo and in vitro. Leukotriene B4 (LTB4) is an endogenous ligand for
PPARα, which leads to transcription of genes of the ω- and β-oxidation pathways that can
catabolize LTB4 itself. Activation of PPARα by NSAIDs contributes to the anti-
inflammatory, antipyretic, and analgesic properties of these drugs through stimulation of
oxidative pathways involved in the catabolism of eicosanoids. PPARγ regulates the activity
of iNOS, and activation of this PPAR subtype controls inflammation by diminishing nitric
oxide production. PPARγ has shown involvement in other inflammatory pathways as well.
This provides a new avenue to develop treatment for autoimmune diseases, which has not
been well explored so far (186).

All-trans retinoic acid (ATRA) leads to activation of apoptotic pathways via its interaction
with RAR/RXR dimers. But it was also found to bind to PPARβ/δ with nanomolar affinity,
modulating the conformation of the receptor, promoting interaction with the coactivator
SRC-1, and efficiently activating PPARβ/δ-mediated transcription, leading to activation of
growth promoting and antiapoptotic pathways. While the current use of retinoids as
chemotherapeutic agents is due to its growth-inhibitory effects mediated via RAR, it can
also promote growth via activation of PPARβ/δ (187).

PPARδ has a wide expression pattern in adult animal and is expressed very early during
embryogenesis (188). PPARδ gene disruption is lethal due to placental defect. The surviving
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knock-out mice are smaller than their control, and they have reduced body fat mass, skin
defects and alterations in myelinisation (189).

PPARδ also plays important role in lipid absorption in the intestine by directly regulating
genes involved in lipid uptake, such as fatty acid binding protein and fatty acid translocase
(190). Furthermore, activation of PPARδ has been shown to regulate lipid metabolism by
activating fatty acid oxidation (191). Consistent with this role, it was observed that PPARδ
expression increases in muscle during physical exercise with subsequent increase in fatty
acid burning (192). Hence, PPARδ agonist treatment could have therapeutic usefulness in
metabolic syndromes to increase insulin sensitivity and obesity (193).

Human immunodeficiency virus long terminal repeat (HIV-1 LTR)-driven transcription is
regulated by NR-responsive element (NRRE) located in its promoter. This NRRE contains
tightly clustered binding sites for RXRα, RARα, apolipoprotein AI regulatory protein,
HNF-4, NGFI-B and PPAR. These findings suggest that a complex network of NR signaling
pathways that include 9-cis- and all-trans-retinoic acid, fatty acids, peroxisome proliferators,
growth factors, membrane depolarization, and possibly other signals, converge onto the
HIV-1 NRRE and may participate in modulation of viral gene expression (194). PPARγ
activation has also been shown to suppress HIV-1 replication in an animal model of
encephalitis, further implicating the role of PPARs in anti-viral drug treatment (195).

NURR1: ROLE IN DOPAMINERGIC DYSFUNCTION AND SYNOVIAL
INFLAMMATION

NURR1 belongs to the NR4A subfamily of ONRs and is expressed predominantly in the
CNS, especially in the substantia nigra, the ventral tegmental area, the midbrain and limbic
areas (196, 197). Recent reports have indicated its essential role in the development and
survival of dopaminergic neurons (198). The purine anti-metabolite 6-mercaptopurine is
reported to act as an agonist of NURR1, and it activates NURR1 transcription (199). Crystal
structure of the NURR1 LBD has been reported and shows its two distinctive features. First,
the NURR1 lacks a classic ligand binding pocket because of the tight packing of side chains.
Second, NURR1 lacks a classical binding site for coactivators. Despite these features, the
structure shows that NURR1 can be transcriptionally activated in a ligand-independent
fashion (200).

Biological Importance of NURR1 as a Drug Target
Studies with NURR1 knock-out mice have shown that NURR1 deficiency results in
impaired dopaminergic activity and apoptosis in midbrain dopaminergic neurons, which
degenerate in Parkinson’s disease (PD). Mutations in the gene encoding NURR1 and
decreased NURR1 expression have been associated with disorders related to dopaminergic
dysfunction, including PD, schizophrenia and manic depression (201, 202). Therefore,
selective NURR1 agonist with high potency could be exploited for the prevention and
treatment of PD.

Additionally, NURR1 is found to be expressed in inflamed synovial tissue. It was shown
that enhanced binding of NF-κB and cAMP response element binding protein (CREB) to
NURR1 promoter by inflammatory mediators (e. g., IL-1β, TNF-α, PG-E2) increases local
production of NURR1 in the inflamed joints. NURR1 in turn acts as the mediator of an
autocrine regulatory inflammatory cascade to amplify the inflammatory response by
increasing synovial corticotrophin-releasing hormone (CRH) expression (203, 204). Hence,
NURR1 transcriptional regulation can be selectively modulated using antagonist compounds
for the prevention of inflammatory joint diseases.
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NUR77: CANCER TREATMENT OPTIONS
Another member of the NR4A superfamily of ONRs, nerve growth factor IB (NGFIB or
Nur77), is involved in many Orphan Nuclear Receptor and Drug Development 1453
biological processes, such as cell-cycle regulation, apoptosis and inflammation (205).
However, a physiological ligand for Nur77 has not been identified. The octaketide cyto-
sporone B (Csn-B) has been found to be a naturally occurring agonist for Nur77. Csn-B
specifically binds to the LBD of Nur77 (modeling is based on the crystal structure of Nur77,
PDB code 2QW4) and stimulates Nur77-dependent transactivation (206).

Csn-B has been found to elevate blood glucose levels in fasting mice by inducing multiple
genes involved in gluconeogenesis pathway. These biological effects were not observed in
Nur77-null mice, indicating that Csn-B regulates gluconeogenesis through Nur77 (206).

Nur77 has been shown to induce cytochrome c release and apoptosis through interaction
with anti-apoptotic protein Bcl-2. Nur77 binding to Bcl-2 induces a conformational change
in Bcl-2, resulting in conversion of Bcl-2 from a protector (anti-apoptotic) to killer
(apoptotic) protein (207, 208). This suggests that Nur77 could be a new target for novel
therapeutic applications for cancer.

Very recently it was also shown that a short Nurr77-derived peptide NuBCP-9 has a
protective role in drug-resistant breast tumors (209). Novel compounds with Nur77 agonistic
activity, such as 1, 1-bis (3′-indolyl)-1-(phenyl) methane (DIM-C-Ph) and 1, 1-bis (3′-
indolyl)-1-(p-anisyl) methane (DIM-C-pPhOCH3) have been discovered recently and have
been shown to act as anti-colon-cancer drugs (210).

TLX (HUMAN HOMOLOG OF DROSOPHILA TAILLESS GENE):
INVOLVEMENT IN NEURODEGENERATION AND RETINAL DEGENERATION

Orphan receptor TLX, encoded by the NR2E1 gene, is specifically expressed in the brain
and has an important role in vertebrate brain and eye functions (211–213). It is the human
homolog of Drosophila tailless gene. It plays an essential role in the maintenance of neural
stem-cell proliferation and self-renewal in the adult mouse brain (214, 215). Additionally,
TLX is a key component of retinal development and is essential for vision (216). Though the
crystal structure of TLX is not available to date, identification of endogenous and synthetic
TLX ligands are under investigation using novel affinity/GC-MS technology, chemical
screening and cell-based assays.

Targeting TLX for Neuro- and Retino-degenerative Therapeutics
TLX is important for the formation of superficial cortical layers in embryonic brains,
regulation of neurogenesis and patterning of lateral telencephalic progenitor domains during
development. TLX-expressing neural cells can proliferate, self-renew and differentiate into
all neural cell types, whereas TLX-null neural cells show a significant reduction of cell
proliferation (217). This shows the importance of TLX in neural development (214).

TLX is also found to be expressed in retinal progenitor cells in the neuroblastic layer during
the period of retinal layer formation and is crucial for controlling the generation of
appropriate numbers of retinal progenies. The TLX knock-out neural retinas were
significantly thinner than controls (218). It is well known that malformations in the eye can
be caused by either an excess or deficiency of retinoids, by regulating the expression of its
early target gene, retinoic acid receptor β (RARβ). A TLX response element has been
identified in RARβ promoter, which is important for retinoic acid-mediated induction of
RARβ. These results show an important role for TLX in autologous regulation of the RARβ
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gene in the eye, critical for its development (219). TLX-Pax2 (paired box homeodomain
transcription factor) regulatory network has also been identified as involved in vertebrate
eye development. It has been shown that TLX by binding to Pax2 gene promoter represses
its expression, which is essential for retinal development and vision (216).

RETINOIC ACID RECEPTOR-RELATED ORPHAN RECEPTOR (ROR):
MAINTENANCE OF CHOLESTEROL HOMEOSTASIS

ROR is a member of NR1F subfamily of ONRs. The RORs are somewhat unusual in that
they appear to bind as monomers to hormone response elements as opposed to the majority
of other NRs which bind as dimers (1, 220). There are three subtypes of ROR: RORα, β and
γ. RORα is expressed in specific areas of the brain, including purkinje cells in the
cerebellum and the suprachiasmatic nucleus of the hypothalamus. It is also expressed in the
spleen, thymus and macrophages (220, 221).

Crystal structure of RORα has been solved in complex with cholesterol-3-O-sulphate,
suggesting that cholesterol sulphate could regulate RORα functions in vivo (222). Despite
the high homology between RORα and RORβ LBD, cholesterol is not a ligand of RORβ;
instead, RORβ LBD has been shown to bind all-trans retinoic acid (ATRA) in crystal
structure (223). ATRA has been shown to work as an antagonist for the constitutively active
RORβ.

ROR Disease Associations
RORα knock-out mice, which show a stagger phenotype, exhibit ataxia resulting from
neurodegeneration in the cerebellum involving the purkinje cells (224). Furthermore, the
staggerer mice display lowered plasma apoAI/II levels, decreased plasma HDL cholesterol
and triglycerides, and develop hypo-α-lipoproteinemia and atherosclerosis (225).

It has been shown that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters
are directly regulated by RORα, implying that RORα could play an important role in the
control of lipid homeostasis in skeletal muscle (226). It has also been reported that
cholesterol and its sulfonated derivatives might function as RORα ligands. Additionally, it
was shown that oxysterol 7α-hydroxylase (CYP7B1), which plays a critical role in
cholesterol homeostasis, is a RORα target gene. Studies in RORα- and LXR-deficient mice
have revealed an interesting functional crosstalk between them in endobiotic metabolic gene
regulation (227). These data suggest that RORα could have an important role in the
maintenance of cholesterol homeostasis and thus could be used for the treatment of
cholesterol-related diseases (222, 228).

RORβ is expressed in areas of CNS that are involved in the processing of sensory
information and the circadian rhythm. Therefore, it could be possible that target genes of
RORβ play an important role in sensory input integration and maintenance of biological
clock. Besides, RORβ knock-out mice display a duck-like gait, disrupted reproduction in
males, blindness and abnormal circadian rhythm (229, 230). These observations suggest that
RORβ ligands can become very useful for RORβ-related CNS disorders.

In contrast to other ROR genes, RORγ is not expressed in the CNS. Instead, RORγ is found
at high levels in skeletal muscle and thymocytes. RORγ knock-out mice lack peripheral and
mesenteric lymph nodes and peyer’s patches (231). Though the functional role of RORγ is
not fully characterized, its role in lymphoid organogenesis could be exploited for
thymopoiesis and the maintenance of T cell homeostasis.
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DOSAGE-SENSITIVE SEX REVERSAL-ADRENAL HYPOPLASIA
CONGENITA CRITICAL REGION ON THE X CHROMOSOME GENE 1
(DAX-1): BONE DEVELOPMENT AND GLUCOCORTICOID RECEPTOR
MODULATOR

DAX-1 is a member of the NR0B subfamily of ONRs. It acts by inhibiting the activity of
other NRs, such as steroidogenic factor 1 (SF-1), estrogen receptor and androgen receptor by
heterodimerization, thereby acting as a negative regulator of steroidogenesis. It is involved
in controlling the development of the hypothalamic-pituitary axis, as well as in gonadal
development and sex determination (232). DAX-1 is expressed primarily in reproductive
tissues (ovary, testis, and uterus), endocrine tissues (adrenal gland) and the CNS (pituitary
and hypothalamus) (232). While the crystal structure of DAX-1 is unavailable, DAX-1 LBD
homology model have been constructed to get an idea about the position of mutations and
deletions in DAX-1 gene that are responsible for gonadal dysfunction (233). It was found
that missense mutations and codon deletion in DAX-1 all mapped to the predicted
hydrophobic core of its LBD (233, 234).

DAX-1 is involved in various disease states, such as X-linked adrenal hypoplasia congenita
(AHC), which is caused by mutations in the NR0B1 gene. More than 90 NR0B1 mutations
that cause AHC have been identified, and several of these mutations delete all or part of the
NR0B1 gene, preventing the production of DAX-1 protein. Loss of DAX-1 function leads to
adrenal insufficiency and hypogonadotropic hypogonadism, which are the main
characteristics of this disorder (235). DAX-1 knock-out mice are associated with delayed
testis development and male sterility.

Additionally, DAX-1 expression has been detected in totipotent murine embryonic stem
cells, which suggests an important function of DAX-1 in early embryonic development,
which is independent of its role in steroidogenesis (236).

DAX-1 expression was found to increase with osteoblast differentiation and in a variety of
tumor tissues (e.g. adrenal and pituitary adenomas, breast, ovarian and prostate cancer),
implicating its potential role in bone cell development and malignancy (237).

Another important aspect of DAX-1 function is that it has been shown to physically interact
with glucocorticoid receptor (GR) and thus acts as a novel selective GR modulator. It
specifically inhibits ligand-dependent GR transactivation with little effect on GR-mediated
transrepression. Clinically, glucocorticoids are extensively prescribed for their anti-
inflammatory or immune-suppressive effects (i.e. transrepression). However, long-term use
of steroids is often associated with a wide range of adverse effects. It is well known that GR-
mediated transrepression of target genes, particularly pro-inflammatory cytokines and
cytokine receptors are responsible for the beneficial effects of glucocorticoids in preventing
inflammation, whereas the side effects are associated with GR-mediated transactivation.
Therefore, selective GR modulators, like DAX-1 that enhances or has no effect on GR-
mediated transrepression but reduce transactivation, are expected to have great a therapeutic
value due to improved benefit-torisk ratio in various inflammatory conditions (238).

SMALL HETERODIMER PARTNER (SHP): DRUG TREATMENT FOR
OBESITY

SHP belongs to the NR0B subfamily of ONRs. It is expressed primarily in endocrine organs
(adrenal, pancreas), gastrointestinal organs (stomach, duodenum, ileum, colon and gall
bladder), metabolic organs (liver, kidney), Orphan Nuclear Receptor and Drug Development
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1455 reproductive organs (ovary and testis), cardiopulmonary organs (heart and lung), and
CNS (cerebrum) (239). No crystal structure of SHP has been determined yet.

SHP dysfunction is associated with mild early-onset obesity, and early-onset type II diabetes
(240, 241). Loss of SHP in mice causes abnormal accumulation and increased synthesis of
bile acids due to de-repression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes
in the bile acid biosynthetic pathway (242, 243).

SHP has also been shown to act as a transcriptional inhibitor of adipogenesis through
inhibition of adipogenic transcription factors C/EBP alpha and PPARγ2 and other
adipogenic stimulators Ebf3 and Stat5a (244). This property of SHP could be exploited
(SHP agonists) for the treatment for obesity.

STEROIDOGENIC FACTOR 1 (SF-1): ROLE IN PROSTATE CANCER AND
ADRENOCORTICAL TUMOR FORMATION

SF-1 is a member of the NR5A subfamily of ONR transcription factors that is essential for
the development of adrenals and gonads and plays a role in sexual development. SF-1 is
expressed primarily in the adrenal gland, hypothalamus, ovary and testes and acts by
regulating the secretion of steroid hormones (245, 246). Crystal structure of SF-1 LBD has
been solved in complex with non-bacterial phospholipids, and these phospholipids were
shown to readily exchange bacterial phospholipids fortuitously bound to SF-1 ligand binding
pocket (247–250).

SF-1 knock-out mice develop loss of pituitary gonadotrope function and fail to develop
adrenal gland and gonads (245). Abnormalities in SF-1 function have been implicated in
adrenocortical insufficiency, sex reversal, cryptorchidism, insulin resistance and type II
diabetes (251, 252). Tandem Mass spectrometry and cell-based receptor selection and
amplification technology (R-SAT) assays have identified sphingosine and 4-(heptyloxy)
phenol (AC45594) as negative regulators of SF-1 activity, respectively (248, 253, 254).
These properties of SF-1 modulators can be exploited to suppress both adrenal androgen and
gonadal testosterone synthesis in the treatment of prostate cancer and in adrenocortical
tumors (255, 256).

ESTROGEN RECEPTOR-RELATED RECEPTOR (ERR): TREATMENT
OPTIONS FOR POSTMENOPAUSAL OSTEOPOROSIS, BREAST TUMOR
AND TYPE II DIABETES

ERR is a member of the NR3B orphan subfamily of the NR superfamily of transcription
factors. While ERR is structurally homologous to estrogen receptors and binds estrogen
response elements, it is not activated by estrogens. It functions as a metabolic regulator by
modulating the expression of enzymes involved in adipogenesis, energy metabolism, and
lipid, eicosanoid, and steroid synthesis (257). It has three subtypes: ERRα, ERRβ and
ERRγ. ERRα is expressed robustly in tissues in all major physiological systems (CNS,
endocrine, metabolic, gastrointestinal, immune, reproductive, cardiovascular and
respiratory) with particularly high levels in the olfactory bulb, jejunum, ileum, kidney,
brown adipose tissue, heart and skeletal muscle. ERRβ is expressed specifically in the
placenta, and ERRγ is expressed in brain, kidney, testis, lung, adrenal gland, pancreas,
placenta and bone marrow (258–261).

Crystal structure of apo ERRα has revealed that it has a very small ligand binding pocket
(~100Å) and shows constitutive activity (222, 262). Searches for ERRα ligand have mostly
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identified inverse agonists, namely 4-hydroxytamoxifen and diethylstilbestrol (263). Crystal
structures of the ERRγ LBD were determined in three distinct states: unliganded, inverse
agonist bound (with 4-hydroxytamoxifen), and agonist bound (with GSK4716) (264). For
ERRβ, also, crystal structure of ERRβ LBD with 4-hydroxytamoxifen has been reported
(265).

Disease Conditions and Possible Clinical Interventions
Postmenopausal osteoporosis is a condition where serum estrogen levels decrease, resulting
in decreased bone mineralization. Estrogen receptors (ERs) are expressed in osteoblasts.
Strikingly, mice lacking ER show only minor skeletal deformities, suggesting other
mechanisms or receptors (additional to ER) are involved in this process. ERRα is more
widely distributed in osteoblast and osteoblast-like cells than ERs. It has also been shown to
positively regulate osteopontin gene (extracellular matrix molecule secreted by osteblast)
expression and thereby regulate bone remodeling (266).

ERR transcriptionally regulates estrogen-responsive breast cancer marker pS2, and it has
been shown that ERR-responsive element in pS2 promoter is required for both estrogen and
ERR response on pS2 expression. Transcriptional response of pS2 is completely abolished
by diethylstilbestrol (DES) treatment, which is an inhibitor of ERR function, showing that
DES treatment completely abolishes both ER+ and ER− breast tumor growth through ERR
pathway (267). Several reports have shown that diabetics as well as individuals with a
family history of diabetes have reduced mitochondrial oxidative phosphorylation
(OXPHOS) capacity in muscle. OXPHOS genes are downstream targets of the
transcriptional coactivator, PGC-1α. ERRα is an early target gene of PGC-1α. When
activated by PGC-1α, ERRα expression is induced in an autocrine loop leading to increased
OXPHOS target gene expression, as both ERRα and PGC-1α (they directly interact with
one another) bind to promoter of OXPHOS target genes. Thus, as an ONR, targeting of
ERRα with small molecules is an attractive strategy to increase mitochondrial OXPHOS
function in type II diabetic patients. Moreover, because ERRα is involved in the regulation
of fatty acid β-oxidation, activating ERRα can ameliorate the lipid accumulation in skeletal
muscle, which is believed to contribute to insulin resistance (268).

ERRβ is specifically expressed in the chorion, suggesting that ERRβ may play a role in
early placental development. The ERRβ knockout embryos have severely impaired placental
formation and die owing to a lack of nutrients. The synthetic estrogen diethylstilbestrol
(DES) has been shown to act as an inverse agonist of ERRβ, thereby affecting normal
placental development (269).

ERRγ has been shown to play an anti-proliferative role in both androgen-sensitive and -
insensitive prostate cancer by directly inducing cyclin-dependent kinase inhibitors p21 and
p27, which results in cell-cycle arrest at G1-S transition. Therefore, by selectively activating
ERRγ by its synthetic agonist DY131, growth proliferation of prostate cancer cells can be
prevented (270).

HEPATOCYTE NUCLEAR FACTOR 4 (HNF4): TARGET FOR ANTI-DIABETIC
DRUG DISCOVERY

HNF4 is a member of the NR2A orphan subfamily of the NR transcription factors that is
required for the development of liver (271, 272). Three subtypes of HNF4 are known: α, β
and γ. Crystal structure of HNF4 LBD shows that it is structurally similar to other ONR
LBD and can bind fatty acids (273). HNF4 is highly expressed in the gastrointestinal tract,
liver, and kidney, with lower levels in adipose tissue and pancreas (274, 275).
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While little is known about HNF4β and HNF4γ, HNF4α has been shown to constitutively
bind fatty acids, and its dysfunction has been implicated in the development of maturity
onset diabetes of the young (MODY) type I, adult onset type II diabetes mellitus, high serum
lipid levels and chronic kidney failure (276). HNF4α knock-out mice show defects in
embryonic, liver, biliary system and CNS development. It has been previously published
that missense mutations of HNF4α LBD result in MODY-1, which can be rescued by fatty
acid agonist activation of HNF4α (276). Hence, this property of HNF4α could be utilized
for the treatment of MODY-1 patients by selective HNF4α agonist.

HNF4α also regulates coordinate nuclear-receptormediated response to xenobiotics and is
involved in the PXR and CAR-mediated gene activation of CYP3A4, a drug-metabolizing
enzyme with possible implications in drug metabolism (277).

GERM CELL NUCLEAR FACTOR (GCNF) AND LIVER RECEPTOR
HOMOLOG (LRH-1)

GCNF (NR6A1) is a member of the NR6A subfamily of NR transcription factors and acts as
a transcriptional repressor. It plays an important function in vertebrate embryogenesis and is
highly expressed in oocytes and spermatogenic cells (278). In the absence of a GCNF crystal
structure, very little is known about its ligand or any heterodimerization partner and
cofactor.

It is predicted that GCNF regulates protamine gene expression in response to an unknown
ligand, which is critical for testicular development. In the absence of a ligand, it is a
repressor of transcription, and part of its repression is mediated by the corepressor N-CoR
(279). Germ-cell-specific expression of GCNF, thereby regulating gametogenesis, could be
exploited as a contraceptive target (280). The complex temporal and spatial expression
pattern of GCNF suggests its involvement in different developmental processes in addition
to its role in gametogenesis (281). Functional gene targeting studies have shown that GCNF
knock-out mice are embryonic-lethal, and death is found to be due to severe cardiovascular
and posterior developmental defects, suggesting its role in embryogenesis (282).

LRH-1 is a member of the NR5A subfamily of ONRs. It is expressed in liver, intestine and
pancreas, where it is involved in bile acid metabolism, cholesterol homeostasis and liver
development. LRH-1 transcriptionally up-regulates ATP binding cassette half-transporters
ABCG-5 and ABCG-8 to facilitate biliary and intestinal removal of neutral sterols (283). It
is also expressed in the preadipocytes, adrenal and sex glands including ovaries and placenta
(284). Crystal structure of LRH-1 LBD has shown that it can exist in active conformation as
a monomer without a ligand (285). But later findings from different groups have shown that
ligand binding pocket of LRH-1 can be occupied by phospholipids (247, 248).

This receptor plays a role in cell proliferation by inducing the expression of cyclins D1 and
E1 through both direct and indirect interactions with β-catenin (286). LRH-1 also regulates
the transcription of genes responsible for hormone synthesis, including the expression of the
estrogen-synthesis enzyme CYP19 in the pre-adipocytes of cancerous breast tissue (287).

LRH-1 has also been identified to play a role in colon cancer. It was shown that LRH-1
synergizes with β-catenin/T-cell factor 4 signaling to stimulate intestinal crypt cell renewal.
LRH-1 happloinsifficiency thereby blunts intestinal tumorigenesis in APCmin/+ mouse and
chemical carcinogen (azoxymethane) models of intestinal cancer (288). LRH-1 has also
been shown to promote breast tumorigenesis by activating aromatase II promoter (CYP19
gene) activity. Hence, selective inhibition of LRH-1 Orphan Nuclear Receptor and Drug
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Development 1457 may represent a novel strategy for the discovery of selective aromatase
modulators (289).

Additionally, it has been observed that LRH-1 has a protective role in mouse models of
inflammatory bowel disease by triggering local production of glucocorticoids (290).
Structural and functional studies have shown that phospholipids bind to LRH-1 and regulate
its downstream transcriptional events. GSK8470, a small-molecule high-affinity ligand for
LRH-1, and SF-1 have been discovered by FRET-based biochemical assays to increase
LRH-1 target gene SHP expression (113).

It has been found that both GCNF and LRH-1 compete for the same Oct-4 (member of POU
homeodomain family of transcription factors) promoter elements during embryonic cell (ES)
differentiation. LRH-1 induces expression of Oct-4 for the induction of ES cell
differentiation, whereas GCNF represses Oct-4 to maintain the pluripotency of ES cells.
Hence, agonist for LRH-1 and antagonist for GCNF could be used to maintain ES cell
pluripotency and selfr-enewal for large scale culture of ES cells; similarly, LRH-1
antagonist and GCNF agonist could be used to silence pluripotency genes like Oct-4 for
differentiation of ES cells to target cells for therapeutic purposes (291).

PHOTORECEPTOR-SPECIFIC NUCLEAR RECEPTOR (PNR): INVOLVEMENT
IN AGE-RELATED MACULAR DEGENERATION (AMD)

PNR (NR2E3) is a member of the NR2E subfamily of ONRs which plays a role in retinal
differentiation and degeneration. It is exclusively expressed in the rod photoreceptor cells of
retina (not expressed in other tissues, including brain) (292). PNR gene was first identified
through a search for genes related to TLX, which is involved in the development of
midbrain and eye. In vitro assays have shown that PNR is capable of binding to a subset of
TLX target sequences. TLX gene knock-out experiments in mouse revealed specific defects
in forebrain derivatives; however, other regions, such as eye, develop normally, thus
implicating compensation of loss of TLX function by other proteins in mice (211). Analysis
of human PNR gene at the gene locus 15q24, a region susceptible for retinal degeneration,
has supported a role for this receptor in retinal cell function (292, 293). Mutation of PNR
gene gives rise to retinal degeneration in mice that resulted in abnormal development of rods
and cones, enhanced S-cone and Goldmann-favre syndromes (inherited vitreoretinal
dystrophy) (294, 295). The rd7 mice containing a sporadic deletion in PNR gene have
abnormal development of rods and cones, leading to the development of age-related macular
degeneration (AMD), the leading cause of blindness world-wide (296). Similarly, PNR gene
mutations in humans have been correlated with various retinal diseases.

Based on the evidence regarding the involvement of PNR in retinal degeneration, agonist of
PNR has become an attractive drug target for the treatment and prevention of AMD. It is
noteworthy that 13-cis-retinoic acid, a receptor in retinal epithelium, has been found to be a
weak PNR agonist in cell-based assays. While in the absence of a crystal structure of PNR
LBD, recent high throughput screening has identified a new class of PNR agonist based on
2-phenylbenzimidazole core. This identification thus opens the door for future research into
the development of PNR ligands (297).

CONCLUSIONS
ONRs are a group of important biological molecules, whose functions can be modified by
the application of potent receptor-specific agonist and antagonist to regulate diverse
biological processes. Discoveries of various ligands to these receptors will help us to
modulate various important physiological processes for therapeutic purposes for various
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human disease states. Thus, drug targeting of these ONRs is an important and viable means
of treatment for various human disorders, and this will act as a challenge for better
development of therapeutics to the pharmacological and pharmaceutical research.
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Fig. 1.
Classification of NR superfamily based on the identification of their respective ligands. This
includes the classical NRs with known high affinity hormonal ligands, orphan receptors with
no known identifiable ligands and adopted orphan receptors with low affinity dietary
ligands.
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Fig. 2.
Schematic diagram describing classical NR function: NR binds to its ligand in the
cytoplasm, which leads to its translocation into the nucleus. Ligand-bound NR dimerizes
with its obligate partner to bind to the target gene regulatory element, with further
recruitment of coactivators and RNA polymerase complex in the nucleus. This leads to
target gene transcription with more protein production in the cytoplasm for gene specific
activity.
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Fig. 3.
Structural domain of the NR superfamily: extreme amino terminal domain is called the A/B
domain that contains the AF1 region, followed by the conserved DNA binding domain
(DBD), and linked by a hinge region with the ligand binding domain (LBD). The extreme
carboxy terminal end of LBD is called the AF2 region.
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Fig. 4.
Schematic diagrams of various drug discovery tools. Detailed descriptions of each can be
found in the text.
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Table I

Known Vertebrate Orphan Nuclear Receptors

NR Subtypes Nomenclature Species References

PXR NR1I2 h, m, x (81,88,298)

CAR α, β NR1I3 (α), h, m (299,300)

NR1I4 (β)

FXR NR1H4 h, m, r (301,302)

LXR α, β NR1H3 (α), h, m, r (301,303–306)

NR1H2 (β)

PPAR α, β/δ, γ NR1C1 (α), h, m, r, k, l, (166,307–314)

NR1C2 (β/δ), b, p, g, x

NR1C3 (γ)

NURR1 NR4A2 h, m, r (196,315,316)

Nur77 NR4A1 h, m, r, x (317–319)

TLX NR2E1 h, m, c, x, f (212,320,321)

DAX-1 NR0B1 h, p, m, r (19,322)

ROR α, β, γ NR2F1 (α), h, m, r (323–326)

NR2F2 (β),

NR2F3 (γ)

SHP NR0B2 h, m, r (20,327)

SF-1 NR5A1 h, m, c, b (328–331)

ERR α, β, γ NR3B1 (α), h, m, r (257,259,332)

NR3B2 (β),

NR3B3 (γ)

HNF4 α, β, γ NR2A1 (α), h, m, r, x (272,333,334)

NR2A3 (β),

NR2A2 (γ)

GCNF NR6A1 h, m, x (19,322)

LRH-1 NR5A2 h, m, r, c (335–338)

PNR NR2E3 h, m, r, c (211,292,339,340)
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