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Global warming is not a new concern. Since
the late 1980s, scientists have described rising
surface temperatures and increased climate
variability,1---3 concurrent with mounting atmo-
spheric carbon dioxide (CO2) concentrations.

4---6

Rising surface temperatures and increasing
atmospheric CO2 levels could coexist without
one necessarily causing the other, but historical
data suggest that this is unlikely,7 and it is dif-
ficult to ascribe recent atmospheric CO2 con-
centrations approaching 400 parts per million6

to natural processes and inherent variation:
at no point did preindustrial CO2 levels exceed
300 parts per million.8

Concerns about energy scarcity and rising
energy costs are also intensifying. The current
global estimate for ultimately recoverable con-
ventional oil is between 2.0 and 4.3 trillion
barrels; this compares to cumulative produc-
tion of 1.13 trillion barrels through 2007.
That is, we have already consumed between
20% and 50% of all currently available
conventional oil.9

Health professionals have been among the
leaders of widespread advocacy for address-
ing climate change,10---16 as well as expressing
mounting concerns about the effects of
energy scarcity on public health and health
services.17---20 What, though, is the health sec-
tor’s contribution to rising atmospheric CO2

levels and dwindling energy reserves? Under-
standing the energy consumption, greenhouse
gas (GHG) emissions, and other environmental
burdens associated with health services is im-
portant both to identify opportunities to mini-
mize their environmental impact and to better
guide their adaptation to a low-carbon econ-
omy. We reviewed the extant English-language
literature on the energy burden and environ-
mental impact of health services.

METHODS

Our search strategy is shown in Box 1. We
searched all years of the PubMed, CINAHL,

and ScienceDirect databases for terms inten-
ded to be as sensitive, rather than as specific,
as possible. To supplement these searches, we
conducted a secondary search targeting the
Economics, Econometrics, and Finance subject
subset of the ScienceDirect database with
the search phrase “carbon footprint.” In addi-
tion, we manually searched the January 2009
through February 2011 tables of contents
of 12 energy and environmental journals.
Finally, we manually searched the reference
lists of all identified papers to identify addi-
tional relevant articles. Our final update of
the search was on March 4, 2011.

We classified identified articles with a me-
thod similar to that used in previous public
health---related literature surveys21,22 as origi-
nal research, brief reports and research letters,
advocacy articles and letters (including from
trade journals), government agency reports,
editorials and commentaries, and news items.
For articles that reported energy consumption
or emissions in health or medical settings,
1 author (L. H. B.) extracted and tabulated
data to enable cross-comparisons among dif-
ferent activities and services; where possible,
per patient or per event emissions were

calculated. We classified energy and emissions
inventories as scope 1, arising from direct
energy consumption; scope 2, arising from
purchased energy consumption, including
electricity and commercial travel; scope 3,
emissions arising from upstream and down-
stream production and waste disposal pro-
cesses; and complete life cycle, representing
the sum of scope 1, scope 2, and scope 3
emissions.23---25

RESULTS

Figure 1 shows the search process and
results at each step. The vast majority of the
497 articles identified for review addressed
background related to GHG emissions and
climate change or described methodological
approaches to energy and emissions account-
ing. Sixty-six unique publications addressed
energy consumption or GHG emissions by
health-related activities. Twenty-eight (42%)
of the publications were editorials, commen-
taries, nonresearch articles, or news items that
did not contain any data; 38 (58%) of the
publications provided data in some form,
which we analyzed.
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National-Level Health Service Emissions

The most aggressive attempt to quantify
health-related GHG emissions was undertaken
by England’s National Health Service (NHS).
An estimate derived from NHS expenditure
data supplemented with more detailed data on
building energy consumption and travel cal-
culated the complete life cycle carbon footprint
of the NHS for calendar year 2004 to be 21.3
million metric tons of CO2 equivalents, or
approximately 3% of all emissions in En-
gland.26 Upstream and downstream (scope 3)

emissions associated with procurement of sup-
plies and equipment and disposal of wastes
accounted for approximately 60% of the emis-
sions; acquisition of pharmaceuticals was
the greatest single contributor, accounting for
21% of total NHS emissions. A 2007 update
estimated CO2 emissions generated by the
NHS to be 21 million metric tons,27 with a
projected increase to 23 million metric tons
by 2020 in the absence of significant reductions
in energy consumption.28

In the United States, Chung and Meltzer
used published data on health expenditures
for 2007 to calculate annual health care sector
emissions.29 Complete life cycle emissions
totaled 545.5 million metric tons of CO2

equivalents, with 46% being direct (scope 1
and scope 2) emissions from energy consump-
tion and 54% being indirect (scope 3) emis-
sions associated with upstream and down-
stream processes, including procurements. US
health care sector emissions represented

approximately 8% of the country’s total GHG
emissions for that year.

Hospitals and Health Facilities

Hospitals consume energy to provide light-
ing, power medical equipment, heat water,
and supply heating and air conditioning.30---36

They also produce waste, from both single-use
disposable supplies and waste water.35,37

Finally, indirect energy and environmental
impacts are associated with their purchasing
activities.35

Hospitals consume more energy than other
nonresidential buildings per square meter of
floor space, in part because of their continuous
operation.32 The reported annual scope 1
and scope 2 energy consumption per square
meter of floor space, or energy intensity, of
hospitals, clinics, and other health facilities
is remarkably consistent over both geography
and time (Table 1), ranging roughly between
230 and 330 kilowatt hours per square

Search Strategies in Literature Review

of Environmental Impact of Health

Services

PubMed and CINAHL

1. exp greenhouse effect/

2. exp energy-generating resources/

3. 1 and 2

4. greenhouse gases.mp.

5. greenhouse gasses.mp.

6. carbon footprint.mp.

7. carbon emissions.mp.

8. 3 or 4 or 5 or 6 or 7

9. limit to English

ScienceDirect

1. TITLE-ABSTR-KEY

ambulance

or hospital

2. ALL

greenhouse gas*

or carbon footprint

or emissions

3. 1 and 2

Hand-searched tables of contents

Ecological Economics

Energy

Land Use Policy

Energy Economics

Energy Policy

Renewable Energy

Environmental Impact Assessment Review

Global Environmental Change

Journal of Cleaner Production

Journal of Environmental Economics and Management

Energy Conversion and Management

Note. ABSTR = abstract; exp = explode; mp = multiple
parameters; * = truncated (includes gas, gases,
gasses, etc.).

FIGURE 1—Search process and search results at each step in literature review of

environmental impact of health services.
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meter,2,30---34 with the exception of 1 report
from a single hospital in Spain.36 Murray et al.
estimated that in 2001, the energy consump-
tion of small health facilities in Scotland trans-
lated into 86 kilograms per square meter of
scope 1 and scope 2 CO2 emissions.33 At
that time, approximately 10% of Scotland’s
electricity production came from renewable
resources.38 Calculation of current GHG emis-
sions from those facilities and the facilities re-
presented in the other studies would have to
take into account the current local energy
mix (electricity, natural gas, etc.) and the pri-
mary fuel source used by their electricity
supplier (coal, hydro, nuclear, etc.).

Heating domestic hot water requires sub-
stantial energy in hospitals; for example, it
accounted for approximately 20% of the en-
ergy burden of 2 Polish hospitals.30 Conver-
sion to water-saving taps is one strategy for
reducing hospitals’ energy consumption and
environmental impact.39,40 Other possible me-
chanisms include purchasing equipment with
variable-speed electric motors,34 designing
spaces to accentuate natural ventilation,41

and complying with modern building energy
codes.31 Hospitals can also supplement their
energy acquisition with on-site power gene-
ration, which can both save money36,42,43

and reduce GHG emissions.42,44 Chemical---elec-
trical fuel cells42,44,45 and solar technologies44,46

have also been advocated as ways hospitals
can reduce commercial energy consumption and
lower GHG emissions. The payback time on the

initial investment, however, currently makes these
strategies economically nonviable: the most opti-
mistic estimate is11.5 years,46 and most estimates
range from 20 to 30 years,42,44 which far exceeds
the usable life of the proposed systems.

Surgery

Citing 2 multicenter trials that concluded
that surgical management of gastric reflux is
at least as efficacious—as measured by symp-
tom recurrence and quality-adjusted life years—
as medical management for gastric reflux,
Gatenby argued that patients and physicians
might consider the respective environmental
impacts of the 2 approaches.47 He used data on
expenditure-based emission intensities for the
NHS and estimated that the initial complete life
cycle carbon emissions from reflux surgery
were nearly 7 times greater than from medical
management, but that emissions from continu-
ing treatment were much lower for surgical
patients: 30 versus 100 kilograms of CO2

equivalents per year. He calculated that the
surgical approach would become “carbon-
efficient in the 9th post-operative year.”47(p73)

A 2009 study compared the paper and
plastic waste, as well as the electricity con-
sumed by specialized equipment, for the
phacoemulsification and modified phacosec-
tion techniques for cataract surgery.48 Re-
searchers also examined the number of pa-
tient visits required for the procedure and
estimated the emissions associated with pa-
tient travel. The modified phacosection

technique produced 280 grams less plastic
waste and 8 grams less paper waste and used
0.168 kilowatt hours less electricity than did
the phacoemulsification technique. Further-
more, the authors estimated that the ability to
complete the entire modified phacosection pro-
cedure in a single visit—instead of the 5-visit
strategy (referral, preoperative assessment,
and postoperative appointments) used in pha-
coemulsificaiton—reduced travel-related CO2

emissions by 29.8 kilograms per procedure.
Extrapolating these scope 1 and scope 2
findings to the 10.2 million cataract operations
performed each year worldwide, the authors
concluded,

The global impact of ophthalmology services is
much less than 1 coal-fired power station per
annum; nevertheless, ophthalmologists can re-
duce the ophthalmology carbon footprint and
the impact of their practice without jeopardizing
patient care.48(p203)

Two studies have explored the environ-
mental impact of medical gases. Gilliam et al.
evaluated direct CO2 emissions from laparo-
scopic surgeries.49 They estimated that a
C-sized cylinder of compressed CO2 should last
approximately 4 procedures and that each cyl-
inder releases only 0.0009 metric tons (;1 kg)
of CO2 into the atmosphere. They concluded
that “laparoscopic surgery uses only tiny
amounts of CO2, [and] its impact on global
warming is minimal.”49(p573) Ryan and Nielsen
determined the 20-year global warming
potentials of 3 common anesthetic gases—
sevoflurane, isoflurane, and desflurane—and
then applied them to clinical scenarios to
estimate their relative environmental im-
pacts.50 At a constant fresh gas flow rate of 2
liters per minute, sevoflurane had the lowest
CO2 equivalents emissions (6.9 kg/h), followed
by isoflurane (15.6 kg/h) and desflurane
(187.2 kg/h). However, when the different
flow rates at which the gases could be admin-
istered because of their different potencies
were taken into account, emissions from iso-
flurane were similar to those of sevoflurane
(3.9---7.8 kg/h), but emissions from desflurane
remained significantly higher (46.8 kg/h). It
is notable that neither of these studies consid-
ered the life cycle emissions associated with
producing, bottling, and distributing medical
gases, which could be substantial: approxi-
mately 4.6 metric tons of CO2 equivalents are

TABLE 1—Studies of Energy Intensity of Hospitals and Other Health Facilities

Country, Facilities, and Dates Annual Energy Intensity, kWh/m2

Greece32

Hospitals, health centers, and clinics, 1980 235

Hospitals, health centers, and clinics, 2001 233

Hospitals, health centers, and clinics, 2010 (projected) 236

Scotland33: small health buildings, 2001 310

Poland30

University hospital, heat/hot water only, 2005–2008 268

Provincial hospital, heat/hot water only, 2005–2008 327

Malaysia34: public hospital, 2008 234

Spain36

Hospital, total energy use, ;2005 494

Hospital, electricity only, ;2005 169

Thailand31: average of 79 hospitals, electricity only, 1996–2006 149
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emitted for every $1000 in purchases from US
industrial gas manufacturers.51

Water Consumption

Dialysis consumes 120 to 800 liters of fresh
water per treatment, depending on the type
(clinic vs home) and duration of the therapy
session.52---54 Much of that water is discarded in
the reverse osmosis process that creates the
dialysis fluid, and it is known as reject water. It
is essentially bacteria free, with pH, turbidity,
and electrolyte characteristics not unlike those
of municipal and industrial water supplies.52---54

Recycling of reject water for gray water uses—for
example, irrigating lawns or flushing toilets—has
been advocated and has been tried in some
settings.52 Recycling reject water is estimated
to be less costly than generating fresh water
through reverse osmosis of sea water.54 This
practice, however, is not widespread. Only 2 of
58 renal units in England, Scotland, and Wales
that participated in a survey on sustainability in
kidney care reported having facilities for recy-
cling reject water.55

Hot water production and consumption are
significant issues for hospitals. Two studies
evaluated water consumption during surgical
scrubbing. Somner et al. observed scrubbing
at 2 Scottish hospitals, one with elbow-
controlled taps and one with knee-controlled
taps; they measured the duration of tap acti-
vation with a stopwatch.40 Where the tap was
elbow activated, the water ran for a mean of
2 minutes and 23 seconds per scrub; where
the tap was knee activated, it was on for a mean
of 1 minute and 7 seconds. This translated into
a difference of 5.7 liters of water per scrub,
and the authors estimated that changing all
surgical sinks in the United Kingdom from
elbow- to knee-activated taps would save ap-
proximately 11 000 gigajoules (3 000 000
kWh) in energy for heating water each year.

Jones conducted a similar study, collecting
water from the drains of 3 different types of
scrub bays used in a standardized 5-minute
scrub routine: one with an elbow-controlled
tap, one with a spring-loaded foot-controlled
tap, and one with a motion sensor---controlled
tap.39 When the water flow was turned off
between rinses, the volume of water consumed
was similar across the 3 types of taps (6.7---7.5 L),
but only the spring-loaded foot-controlled tap
turned off automatically between rinses. When

taps ran continuously, they consumed 3 times
as much water, and if taps were left continu-
ously opened at a high flow rate, the amount
of water consumed exceeded 50 liters per
scrub. He concluded that water consumption
for surgical scrubbing could “be reduced at an
organizational level by either retrofitting older
facilities or, when building new ones, by
selecting the most water-sparing plumbing
fixtures.”39(p320)

Other Health Service and Health-Related

Activities

In 2011, a collaborative of Canadian and
US emergency medical services agencies
reported their energy consumption and carbon
footprint for 1 year.56 Ten agencies reported
scope 1 and scope 2 energy consumption to
support ground ambulance operations, with
emissions totaling 13 890 metric tons of CO2

equivalents. This equated to an average of
45.5 kilograms of CO2 equivalents per am-
bulance response, or 3.7 kilograms of CO2

equivalents per capita. Extrapolating these
results to the entire US population, these
authors estimated that emergency medical
services in the nation produce between
660 000 and 1.6 million metric tons of scope
1 and scope 2 GHG emissions each year, or
less than 1% of all health sector emissions.
Diesel and gasoline consumption were re-
sponsible for 71.6% of the emergency ser-
vices---related emissions.

The Sustainable Trials Study Group
reported the emissions associated with the
CRASH (Corticosteroid Randomisation After
Significant Head Injury) trial, which evaluated
the effect of corticosteroid administration on
outcomes of adults with head injury.57 The
5-year trial recruited 10 008 participants from
49 nations. Scope 1 and scope 2 emissions
for 1 year of the trial totaled 126 metric tons
of CO2 equivalents; the investigators extrapo-
lated emissions for the full 5-year trial to be
630 metric tons of CO2 equivalents, or ap-
proximately 63 kilograms of CO2 equivalents
per study participant. The coordination center
was responsible for 39% of the emissions,
with nearly all of its emissions arising from
electricity consumption. Distribution of study
medications and documents was responsible
for 28% of the emissions, and travel accounted
for 23%. Recently, the investigators reported

that they were able to substantially reduce
study-related emissions in the CRASH-2 trial,
primarily through increased efficiency in par-
ticipant recruitment.58

In a letter to the British Medical Journal,
Smith et al. described 3 examples of potential
GHG emission reductions from use of tele-
medicine.59 They reported annual CO2 equiv-
alents reductions of 705 kilograms for a United
Kingdom neurologist, 39 metric tons for an
Australian pediatric burns consultation service,
and 33 220 metric tons from avoided home
health visits in Canada. More recently, physicians
at the University of California, Davis described
their 5-year experience providing telemedicine
consultations, speculating that the travel avoi-
ded by offering that service resulted in savings
of 714 000 liters of gasoline and 1700 metric
tons of CO2 emissions.60 Neither of these
publications, however, reported original em-
pirical research per se. Furthermore, the Ca-
nadian data described by Smith et al. was not
referenced,59 and the cited articles describing
the experiences of the United Kingdom neu-
rologist61 and Australian burns unit62 did not
contain the emissions data reported in the
letter. These unsubstantiated reports raise
the intuitive point that telemedicine could re-
duce health care---related travel and thus emis-
sions, but more rigorous research is needed.

Several letters in the medical literature
addressed the environmental impact of atten-
dance at medical conferences, calling on orga-
nizations and individuals to purchase carbon
offsets for their meeting-related travel and to
use video conferencing to minimize travel-
related emissions.63---66 The reported emissions
from health-related activities are summarized
in Table 2.

DISCUSSION

Despite widespread advocacy for action and
leadership among physicians and other health
professionals,10---16 the health sector is poorly
represented in empirical studies of energy
consumption and GHG emissions. We found
that energy consumption by hospitals and
other health facilities is the most widely studied
aspect of health-related energy consumption
and emissions, with much of that work under-
taken by environmental, engineering, and
architectural researchers.
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The most sophisticated analysis of health-
related emissions to date was undertaken by
the NHS, demonstrating that its activities were
responsible for 21.3 million metric tons of
CO2 equivalents emissions in 2004 (426 kg/
person).26 A more cursory examination found
that US health services were responsible for
545.5 million metric tons of CO2 equivalents
emissions in 2007 (1510 kg/person).29 Some
of this difference in per capita health-related
emissions is likely an artifact of using input---
output analysis and aggregated emissions
per unit of expenditure to calculate the re-
spective carbon footprints. The difference
might also be partly attributable to the struc-
ture of health services as well as health care
consumption patterns in these 2 countries:
per capita health expenditures in the United
States are roughly 240% higher than in the
United Kingdom.67 We did not find reports
on aggregate health system emissions from
other nations; to the extent that other na-
tions’ health systems, energy infrastructures,
and economic structures differ from those of

the United States and the United Kingdom,
their health-related emissions likely differ as
well.

Perhaps the most important common finding
of the US and United Kingdom studies was the
substantial ( > 50%) contribution of indirect,
scope 3 emissions to health services’ carbon
footprint. This highlights the importance of
evaluating complete life cycle inventories, in-
cluding scope 3 emissions, when exploring
health-related emissions. The fossil energy
consumption and related emissions repre-
sented in the scope 1 and scope 2 carbon
footprints of health services do not adequately
characterize their total environmental impact,
as is true of most products and services.24,25,68

If upstream and downstream effects are not
considered in an organization’s environmental
impact, emission reduction strategies could
lower scope 1 and scope 2 emissions, and total
emissions from upstream or downstream pro-
cesses could actually rise.24 That is, direct
emissions from an organization’s activities
could decrease while total emissions into the

atmosphere, the ultimate target of GHG miti-
gation efforts, could increase.

Emissions from health services are compa-
rable to those of other important economic
sectors. In the United States, for example,
emissions from the agriculture sector total
approximately 500 million metric tons of
CO2 equivalents annually, representing around
7% of total national emissions.69 The waste
management sector is responsible for approxi-
mately 3% of total emissions in the United
Kingdom.70 Still, in light of the scale of global
emissions—49 billion metric tons of CO2

equivalents in 200471
—health services’ en-

ergy consumption and emissions may seem
negligible. A comparison of US health sector
emissions with total Australian emissions is
instructive, however. In 2007 and 2008,
Australia’s GHG emissions totaled 547 mil-
lion and 553 million metric tons of CO2

equivalents, respectively72; US health sector
emissions are of the same scale as Australia’s
total national emissions. Although reducing
health-related emissions alone would not
solve all of the problems caused by GHGs
and climate change, it could make a mean-
ingful contribution: a 10% reduction in
emissions from just the US health system
would have the same atmospheric impact as
a 10% reduction in emissions from the entire
Australian economy.

Some health systems are already taking steps
to minimize their environmental impact, most
notably the systematic efforts of the NHS.28

A recent survey of 14 directors of primary care
trusts in southwest England found that 7 were
pursuing sustainability strategies, including
the sourcing of green energy, green travel
policies such as supporting cycling to work,
procurement policies designed to minimize
packaging and waste, and sourcing of local
food products for cafeterias.73 Examples of
other logical steps that health systems could
take to reduce their energy and GHG con-
sumption are incorporating natural ventilation
and green building concepts when constructing
or renovating health facilities31,41,44 and in-
cluding more hybrid vehicles in the corporate
fleet.74 Health systems and health professionals
should not underestimate their potential in-
fluence on broader sustainability efforts; their
stature within the community makes them ideal
advocates.

TABLE 2—Reported Greenhouse Gas Emissions From Health Services

Service/Procedure Impact

Health care26,29 Emits 21.3 million metric tons CO2e/y (England)

Emits 426 kg CO2e per capita/y (England)

Emits 545.5 million metric tons CO2e/y (United States)

Emits 1510 kg CO2e per capita/y (United States)

Hospitals wards41 Emit 48–171 kg CO2e/m
2/y (varies by ventilation system)

Small health buildings33 Emit 86 kg CO2e/m
2 annually

EMS systems56 Emit 45.5 kg CO2e/ambulance response (North America)

Emit 3.7 kg CO2e per capita/y (North America)

Surgical reflux control47 Emits 1081 kg CO2e/patient, plus 30.8 kg CO2e/y thereafter

Medical reflux control47 Emits 164 kg CO2e/patient, plus 100 kg CO2e/y thereafter

Cataract surgery48 Emits 37.3 kg CO2/operation (business as usual)

Emits 7.5 kg CO2/operation (1-stop strategy)

Laparoscopic surgery49 Emits 0.23 kg CO2/operation (from CO2 gas cylinders)

Anesthetic gases50 Emit 7–187 kg CO2e/hour of administration

Clinical trials57 Emit 63kg CO2e/participant

Emit 324 kg CO2e/primary endpoint event

Telemedicine59,60 Avoids 39 kg CO2/consultation
a

Avoids 2.9 kg CO2e/home health visit avoided
a

Avoids 131 kg CO2/consultation
a

Medical meetings64,65 Emit 723 kg CO2e/participant (American Thoracic Society)
a

Emit 227 kg CO2e/participant (European Respiratory Society)
a

Note. CO2e = carbon dioxide equivalents; EMS = emergency medical services.
aAnecdotal, secondary, or inferred data.
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A more practical and perhaps more imme-
diate concern is how mounting energy scarcity,
increasing energy costs, and societal pressures
to reduce emissions might actually pose a
threat to the delivery of health services. Health
facilities depend on energy to operate,75 and
energy costs have been shown to contribute
to health care price inflation.20 Also, the plas-
tics commonly used in medical equipment
and medical supplies require petroleum feed-
stock.20,76 Understanding the energy consump-
tion and emissions associated with health
services is important not only to identify
opportunities to minimize their environmental
impact, but also to facilitate their adaptation
to a low-carbon economy. Managing GHG
emissions is managing energy consumption,
and vice versa. It is a win---win proposition.

Our findings must be considered in the
context of the limitations and biases inherent
in the included studies and the limitations of
our search and review processes. Only 2 of
the studies we identified explored emissions
from entire health systems; the remaining
studies primarily provided data from single
facilities that might not be representative
of entire health systems, disciplines, or sub-
specialties. Many of the studies relied on
existing financial or energy consumption
data that had been collected for other pur-
poses, which might have resulted in some
information bias. Finally, our search was
limited to English-language publications,
and a single investigator conducted data
abstraction.

Per patient or per event, health-related
emissions are modest; in the aggregate, how-
ever, they are considerable. The literature
provides evidence that modified practices
can reduce the energy consumption of and
emissions from some health services and
activities. Interdisciplinary studies involving
researchers from the health, energy, envi-
ronmental, and economics disciplines are
crucially needed to guide practice modifi-
cations and to establish a foundation for
policy initiatives to ensure both the envi-
ronmental and economic sustainability of
health services. j
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