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Abstract
Four experiments investigated the classic issue in semantic memory of whether people organize
categorical information in hierarchies and use inference to retrieve information from them, as
proposed by Collins & Quillian (1969). Past evidence has focused on RT to confirm sentences
such as “All birds are animals” or “Canaries breathe.” However, confounding variables such as
familiarity and associations between the terms have led to contradictory results. Our experiments
avoided such problems by teaching subjects novel materials. Experiment 1 tested an implicit
hierarchical structure in the features of a set of studied objects (e.g., all brown objects were large).
Experiment 2 taught subjects nested categories of artificial bugs. In Experiment 3, subjects learned
a tree structure of novel category hierarchies. In all three, the results differed from the predictions
of the hierarchical inference model. In Experiment 4, subjects learned a hierarchy by means of
paired associates of novel category names. Here we finally found the RT signature of hierarchical
inference. We conclude that it is possible to store information in a hierarchy and retrieve it via
inference, but it is difficult and avoided whenever possible. The results are more consistent with
feature comparison models than hierarchical models of semantic memory.

Hierarchical classification has long been identified as one of the most important aspects of
human knowledge representation. In the sciences, management, and law, hierarchies have
been used to structure the relations among domain entities, and tree diagrams representing
such relations can be found in many different texts. Hierarchical structure has also been
found in human knowledge representation (Markman & Callanan, 1984; Rosch, 1978). Our
concepts seem to be structured in levels of classification in which specific concepts fall
under increasingly higher-level concepts. For example, an object identified as a beach novel
also falls under more general classes of novel, book, and publication, forming a series of
inclusion relations: Beach novels are novels, novels are books, and books are publications.

The advantage of hierarchical representation has long been noted (Linnaeus, 1758; Quillian,
1968). The main benefit is that facts known about higher-level concepts apply to lower ones
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as well. So, after learning that all publications have an author, one knows that all novels
have an author. This is an important benefit, because there are dozens or even hundreds of
types of dogs, cars, musical instruments, hammers, contracts, investments, cultures, and so
on, and if we had to learn the properties of each type separately, it would be extremely
difficult and time-consuming. For example, if you had to learn that Scottish terriers have
skin, move, breathe, have livers, have a four-chambered heart, and all their other biological
properties, you might never get around to learning about Airedales, Jack Russell terriers, or
Yorkshire terriers (much less poodles). However, by knowing that those properties are true
of animals or mammals, you don’t have to relearn them for dogs, terriers, and every type of
terrier separately. Over and above this benefit, the power and flexibility of the
representational format is greatly increased with the notion of a “default hierarchy”
(Quillian, 1968), in which lower branches can contain exceptions to the general properties
stored higher up. For example the fact that penguins do not fly is treated as an exception to
the general rule stored higher up that birds do fly. Default hierarchies are an essential tool in
database design and in knowledge-based systems architecture in Artificial Intelligence,
suggesting their direct relevance for representing human conceptual knowledge.

The hierarchical structure of categories seems to be descriptively correct of a significant
subset of semantic memory, but what is less well understood is how that knowledge is stored
and accessed in memory. A major research question in the 1970s proposed two general
approaches to explaining hierarchical structure (see Smith, 1978, for an excellent
contemporary review). One view proposed that something much like an actual hierarchy was
represented in memory, through an associative network in which different categories were
connected by “IS-A” links: a terrier IS-A dog, a dog IS-A mammal, and so on (Collins &
Quillian, 1969). To represent the information associated with each category, other links such
as “HAS” or “CAN” would connect properties to the categories. So, the dog concept would
have a HAS link to the legs concept, and the animal concept would have a CAN link to the
breathes concept. Such a structure follows the principle of cognitive economy. By linking
“breathes” to the animal concept, one does not have to link it to the concepts of fish, birds,
mammals, and all of their many subtypes—the information is placed at the highest level in
the hierarchy only. However, a corresponding drawback to such efficiency is that processing
is slowed when deriving general features for lower-level categories (Collins & Quillian,
1969). To realize that Airedales breathe, one must traverse the hierarchy through the
concepts dog and mammal to arrive at animal, which is linked to the breathes feature.
Similarly, classification judgments such as that an Airedale is a living creature, require
traversing the links in memory between Airedale and the living creature concept, which
must take longer than judging that the Airedale is a dog, since these two concepts are linked
directly. In short, there is a distance effect between levels of the hierarchy, such that the
farther apart information is stored in the hierarchy, the longer it takes to retrieve or confirm
it. Although Collins and Quillian found such a distance effect, others have not or have
questioned whether it is due to the inferential process they propose (see Chang, 1986; Smith,
1978).

The inferential-network model has had as much lasting power as any idea in cognitive
psychology. A survey of our cognition textbooks finds very similar illustrations to Collins
and Quillian’s (1969) Figure 1 in almost every one, ranging from 1972 (Lindsay & Norman,
1972) through 2010 (Ashcraft & Radvansky, 2010).

A different approach to hierarchies in semantic memory proposes that the hierarchies are
only implicit in our category knowledge rather than characterizing memory structures.
Instead, each concept is represented by its defining and characteristic features (Smith, Rips,
& Shoben, 1974). The relations between the features of different concepts would define their
categorical relation, if any. For example, the concept animal is associated with the relatively
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few features that are common to (all) animals. To decide whether an Airedale is an animal,
one could check whether those animal features are found in the features known of Airedales:
Given that Airedales move independently, breathe, and reproduce, they must be animals.
This feature-comparison process yields no distance effect. Furthermore, given that
categories are associated to characteristic features, the similarity of two concepts could
determine how long it took to judge their relation, independently of their distance in the
hierarchy. Such typicality effects are extremely widespread (Hampton, 1979; 1997;
McCloskey & Glucksberg, 1979; Rips, Shoben, & Smith, 1973; Rosch, 1973; Rosch &
Mervis, 1975).

Ultimately, these two approaches generated considerable research but no clear resolution.
Chang’s (1986) comprehensive review makes it clear that all models have unexplained
phenomena. Our interpretation of this is that people take advantage of both processes
proposed by these approaches, in various combinations. Imagine learning that your friend
has a new kind of dog, a muffelet. Without knowing anything about it, you can infer that
muffelets have four legs, breathe, probably bark, wag their tails, and so on. You would
hardly be puzzled if your friend said that her muffelet chewed up her slippers. Since you
have no features associated to the name muffelet, you couldn’t have been using the feature
comparison process to draw these conclusions but were likely performing the kind of
inference envisioned by Quillian’s theory: The muffelet chews slippers because it is a dog,
and that is what juvenile dogs do. On the other hand, the evidence that this inference process
takes place when making judgments about familiar categories is weak. The distance effect is
often not found and unpredicted effects often are (Chang, 1986). Sometimes inference is not
transitive, as it should be according to this view (Hampton, 1982).

Hampton (1997) demonstrated that categorization can use both stored associations and
featural similarity, finding independent effects of category production frequency (how likely
an exemplar is to be generated as a category member) and typicality (how representative a
member is of its category) on categorization times. A double dissociation was obtained, with
a priming task removing frequency effects, and a manipulation of task difficulty affecting
typicality effects (see also Moss et al., 1995). Similarly, Kounois, Osman, and Meyer
(1987), in a study using speed-accuracy decomposition, proposed fast retrieval of some facts
followed by a slower feature comparison process as one explanation of their results.

Typicality effects fall more readily out of the similarity-comparison model (McCloskey &
Glucksberg, 1979; Smith et al., 1974), and it now seems to be the more popular approach—
except for a general rejection of the notion of defining features (Hampton, 1979; Rosch,
1973). However, even featural similarity may not explain all category judgments (e.g.,
Hampton, 1998).

More Recent Approaches
The importance of hierarchically organized knowledge has been recognized in recent models
of semantic memory, most notably the very ambitious project of Rogers and McClelland
(2004; see Close & Pothos, in press, for an alternative). They addressed issues of why very
general categories may be learned first and are the most resistant to effects of brain damage.
They also addressed the presence of a preferred, basic level of categorization (Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976).

Their connectionist model does not align neatly with either of the two previous approaches.
They used a Rumelhart network in which input nodes interpreted as objects activate two
hidden layers, which, along with context units, activate an output layer containing features
and category names. After training, the network was able to respond that a given object
breathes or is a canary. The context units refer to behaviors/functions, properties, and names,
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serving to selectively access the information in the output layer. So, with one context unit
activated, the network might respond that a given object has legs, wings, and eyes; with
another context unit activated, the same object might yield the response that it is a canary
and a bird.

Because of the distributed nature of the conceptual representations and the network
architecture, the Rogers and McClelland model is different from the two approaches we
have been discussing. Perhaps the greatest difference is that there are no “concept nodes” in
the system. Input nodes correspond to objects, and output nodes include features and the
objects’ names. In between are hidden nodes that form semantic representations of the kinds
of objects the network has learned. There is no node corresponding to the concept of
canaries, which is then related to its features or subordinate and superordinate categories.
Instead, the semantic representations in the hidden layers activate various features in a
graded response. This directly yields typicality effects, as typical objects (like robins) will
activate category names and properties most strongly, whereas less typical objects (like
penguins) will activate them less strongly.

There is no distance effect in the network corresponding to the Collins and Quillian
inference effect. The semantic representations activate specific and general names, and there
is no link between the names themselves. As a result, their model does not provide a simple
way to evaluate statements such as “A robin is a fish.” However, following a procedure they
use for introducing novel category exemplars (p. 64), one can derive a way for the model to
answer such questions. If the node representing the first term of the sentence is activated,
that activation can be backwards-generated to derive the hidden layer representation that is
most compatible with it (the prototypical robin). Then, that activation pattern can be run
forward in order to discover whether the second term of the sentence is activated (whether
the prototypical robin is a fish). As this description shows, name activation in the model
occurs through semantic representations and not through networks of associations between
categories or category names. As a result, this model is closer to the feature-based accounts
of semantic memory than to the network-based accounts. It seems very likely that the model,
like Smith et al.’s (1974), could predict that some long-distance inferences like “A penguin
is an animal” are faster to confirm than short-distance links like “A penguin is a bird,” if the
penguin’s features overlap more with the typical animal’s than with the typical bird’s.
(Indeed, Rogers & McClelland, 2004, ch. 5, document in detail the effects of the similarity
of such atypical items to other categories.)

In summary, Rogers and McClelland’s (2004) semantic memory model seems much closer
to the featural approaches, as do recent competitors such as Close and Pothos (in press). It
clearly does not contain a hierarchical network of associations that directly lead to the
Collins and Quillian effects, and its predicted effects are largely based on semantic
similarity and details of the learning regimen (ch. 5). In Experiment 2, which had stimuli
comparable to their simulations, we will attempt to draw specific predictions from their
model.

The Present Study
It is not our intention to attempt to resolve the semantic memory debate 25 years on. If our
conclusion is correct, there is no simple right answer to the question of how hierarchical
information is represented. It may be either inferred or explicitly represented, depending on
the categories and features. As people become experts or learn specific facts, their
knowledge could pre-empt more general retrieval processes. Someone with great experience
with killer whales might well store the fact “killer whales breathe air” but would not store
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the fact “robins breathe air.” Therefore, retrieving information about breathing killer whales
might not involve hierarchical inference, whereas retrieving this fact about robins might.

One reason for confusion in the literature is that researchers do not have experimental
control over the stimuli of semantic memory and people’s experience with them. People
may form implicit categories such as four-legged mammals, which investigators do not take
into account, making predictions of hierarchical distance incorrect. People may also have
learned some of the specific categorical relations tested in an experiment, like whales being
mammals, but have never even encountered others. Familiarity with properties and
categories has also been argued to underlie some effects (Malt & Smith, 1982; McCloskey,
1980). Such confounding variables could obscure the basic properties of semantic memory
retrieval but are very difficult to control in naturally occurring semantic domains.

In part because of such problems, it is still not clear how people structure and retrieve
information from hierarchically organized domains. One important question is whether
people spontaneously form memory structures of the Quillian type—efficient hierarchical
networks of associations. Although such a structure seems ideal, in practice people may
make redundant links or omit links in a way that results in a much more complex memory
structure. Another question is whether retrieval of information about hierarchically
structured material has the profile that Collins and Quillian (1969) originally identified for
it, and in particular, whether it shows the distance effect. Later theorizing weakened that
prediction (e.g., Collins & Loftus, 1975), but this was in large part due to uncontrolled
associations of the whale-mammal sort.

Whether people form internal hierarchies when all those confounding variables are absent
remains an open question. Our goal was to investigate not retrieval of information from
familiar semantic domains but the underlying psychological question of whether people
create and use mental hierarchies when the conditions are ideal to do so. The answer to this
question will then inform the debate about how information is stored in the messier, more
complex world of actual semantic memory. If people do not form mental hierarchies even
under these ideal circumstances, this will cast strong doubt on whether such hierarchies play
a role with real semantic information. If they do so, this will suggest a stronger potential role
for such hierarchies in everyday semantic memory.

Our approach was to teach people novel, hierarchically organized information and then to
perform the classic tests of information retrieval. In the first experiment, the hierarchy was
implicit in the features of a set of learned exemplars. For example all the shapes of a given
color were always shaded in a particular manner. In this case, people would have had to
notice the hierarchical structure on their own and use it to represent the information. Since it
is possible that the usual profile of hierarchical retrieval will only be found when the
information is presented as explicitly hierarchical (“Robins are birds; birds are animals.”), in
a further two experiments we explicitly taught people this information. An early experiment
by Smith, Haviland, Buckley, and Sack (1972) also taught people hierarchies with novel
features. However, their hierarchies were considerably more modest than ours, and they
used already familiar categories such as hawk-bird-animal. Thus, they did not avoid the
problems associated with familiar items.

Like the traditional semantic memory literature, our experiments focused on categorical
relations, comparable to verifying sentences such as “A fish is an animal” or “A claw
hammer is a tool.” The main effect to be expected according to the hierarchical retrieval
model (Collins & Quillian, 1969) is the distance effect. When the two categories are directly
linked, confirming their relationship should be faster than when there is an intervening
category; and that should be faster than when there are two intervening categories. By using
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novel categories and names, we avoided problems such as implicit categories people might
form (e.g., four-legged mammals) and specific facts that people might memorize, pre-
empting inference (e.g., killer whales being mammals and breathing air).

Learning hierarchically organized categories is not a trivial task. People can only learn and
remember so much information in an experimental session, and hierarchies have the
unfortunate property of expanding by a factor of two or more with each level that is added.
(If they do not, then they are probably not really hierarchies, as we explain below.) We
constructed hierarchies with four levels, each of which had a binary branching structure.
However, we pruned the category tree in order to limit the number of categories to be
learned.

Past research using a similar method has found that order of learning the levels can have an
effect. Murphy and Smith (1982) found that the first-learned level was faster in perceptual
classification, and it is likely advantaged in sentence verification tasks as well. We
addressed this issue by using two different learning orders. If there is a distance effect, it
should be present when averaged across such orders. In addition, there may be an effect of
the overall level of category asked about. For example, questions involving the highest level
of categories could be answered faster than those involving lower levels, as in Rogers and
McClelland’s (2004) model. The distance and level effects can be partly separated (see
below), and the effects of these different variables should give insight into how hierarchical
information is represented and then retrieved. Of course, retrieving information from
recently learned material may be different from retrieving it from very familiar concepts, a
possibility we address in the General Discussion.

Our expectation was that under some conditions, with the confounds of differing familiarity
and pre-emptive associations gone, people would show the classic distance effect proposed
by Collins and Quillian (1969). We thought it was an open question whether such evidence
of hierarchical memory structure would be found in all conditions or only when the
hierarchy was clearly evident. The pattern of results would be revealing about when we
might expect such effects in natural categories. However, our expectations were not actually
met, as we did not find distance effects until Experiment 4, and so we postpone
consideration of interpretations until the General Discussion.

Experiment 1
The first experiment used a set of items that had an implicit hierarchical structure: The
properties of the stimuli were structured in inclusion relations as shown in Figure 1. The
stimuli were all rectangular colored shapes with different sizes, screen locations, and
textures. Initially, people simply studied these shapes for a memory test. Afterwards, they
judged the truth of sentences about the stimuli, such as “All pink things are empty” or “All
left things are small.” Of the possible ways of establishing a hierarchy, this condition is
perhaps the least amenable to the classic distance effect, since the “categories” were never
explicitly learned but were implicit in the stimuli. Finding a distance effect here would
therefore provide the strongest evidence for the hierarchical representation of information.

Each item is described by a vertical path through the taxonomy. For example the first
stimulus in Form B (Figure 1) was striped, red, large, and on the left; another stimulus was
empty, red, large, and on the left. Because there were ten such paths in the taxonomy, there
were ten distinct items, although subjects saw many examples of each one. We limited the
size of the hierarchies by not using the complete binary branching structure, which would
have resulted in 16 distinct items and 32 nodes in the taxonomy. This seemed too many for
people to learn accurately (and this was especially true for later experiments when we taught
the categories explicitly). Therefore, we divided each taxonomy into two branches: a fully
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branching hierarchy and a pruned branch with only one stimulus. For example, in Figure 1,
Form B, the left taxonomy is divided into a fully branching hierarchy (the large items) and
the pruned branch (the tiny, black, wavy figure). The pruned branch was necessary to obtain
four distinct levels. To understand why, consider the pruned branch itself. We have
maintained its levels of attributes in the figure so that size is the second level, color the third,
and texture the fourth, as in the rest of the stimuli. In reality, there is no way to establish
higher or lower-order attributes when there is no branching. That is, although all wavy
things are black, all black things are also wavy; although all black things are tiny, all tiny
things are black. Therefore, none of these attributes is “above” any of the others, because
none of them includes two different kinds of things. The feature tiny would be above black
only if there were two or more colors of tiny things, so that the colors are a subset of tiny
objects. For the same reason, in order to ensure that the category of things on the left is
superordinate to large things, there need to be two kinds of left things, and the same for right
things. (That is, without the pruned branch, left and large would be at the same level.) Thus,
the pruned branches were necessary to establish the taxonomic structure shown, but they
were not themselves organized hierarchically and were not involved in the predictions.

We used two different sets of materials that had the identical taxonomic structure but with
different attributes at each level. In Form B, location was at the top level, followed by size,
color, and texture. In Form A, size was at the top, followed by location, texture, and color.
This helped to ensure that the effects would not be due to idiosyncrasies of a particular
property. We could not create four different versions with each dimension (shape, texture,
color, size) at each level, however, because people could not learn to distinguish ten
different sizes or locations (at the bottom level), whereas they could distinguish ten colors or
textures.

The goal of the experiment, then, was to discover whether people formed a hierarchical
memory structure of the sort shown in Figure 1 and retrieved information in the classic
manner indicated by the distance effect. For example, if those who learned Form B realized
that there were two different kinds of large figures, red and green, and that the green items
were either dotted or zig-zagged, then they might be very fast to verify that all dotted items
are green (distance = 1) but slower to verify that all dotted items are large (distance = 2).

We also considered an alternative process, in which people used exemplar retrieval to judge
the sentences. When answering whether all dotted shapes are green, one could attempt to
retrieve examples of dotted shapes and see if all are green. After completing retrieval, failure
to identify any non-green items would lead to a “true” answer. In contrast, if asked whether
all striped things are green, retrieval of remembered striped exemplars should lead to the
recall of red striped objects, yielding a “false” answer.

This exemplar retrieval strategy does not yield a distance effect. It should be just as easy to
verify that dotted items are all green (in Form B) as to verify that they are all on the left,
because all of the retrieved dotted items are both green and on the left. The fact that many
other items are on the left (leading to its higher placement in the taxonomy) does not affect
this decision. However, what should lead to difficulties in the exemplar strategy is the size
of the subject category in true trials. There are relatively few dotted figures, so retrieving
and judging them should be simple. There are four times as many large figures in this
hierarchy, so any judgment about them should require more retrieved items, leading to
longer RTs. As a result, there should be a level effect, such that questions about higher-level
categories take longer: “All dotted things are green” should be confirmed faster than “All
large things are left.” In contrast, if people form a taxonomic structure in memory and use it
to retrieve information, there should be a clear distance effect (“All dotted things are green”
much faster than “all dotted things are left”) but no strong level effect.
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In summary, in Experiment 1, people memorized colored figures whose features were
structured in a hierarchy. They were tested in the standard semantic memory sentence
verification task. In particular, we looked for evidence of distance and level/category size
effects.

Method
Subjects—Twenty-four students from New York University received course credit for
their participation in the experiment. They were tested individually on a PC.

Materials—Two hierarchically structured sets of colored shapes, Forms A and B, served as
the stimuli. The taxonomies had four levels, each level represented by a particular feature
dimension: size, position on the screen, pattern, and color. The assignment of features to
levels in the hierarchical structure was different in the two forms, as shown in Figure 1. The
taxonomy’s branching was binary with the exception of one pruned branch described above
(see Figure 1). Each taxonomy defined ten types of exemplar, which were the stimuli shown
to the subjects in the learning phase.

Forty sentences of the form All S things are P were constructed for purposes of sentence
verification, where S and P referred to features in the taxonomy (e.g., green, tiny, left), e.g.,
All red things are spotted. We describe sentences with a numerical code in which the first
digit represents the level of the S term in the hierarchy, and the second digit represents the
level of the P term. This represents both the level of the sentence (the taxonomic level of the
S term) and, implicitly, its distance (the difference between the two numerals). Sentence 2–4
is thus a sentence where the first term is from level 2 and the second term from level 4,
yielding a distance of 2. The true sentences were constructed so that each feature from one
level was paired with all the values above it in the hierarchy. This resulted in the lowest
features appearing in sentences of distances 1, 2, and 3, when they were paired with the
features at levels 2, 3, and 4, respectively. Features at level 2 varied in distance from 1 to 2,
and features at level 3 only had true sentences with distance of 1.

An equal number of false sentences were constructed by pairing S features with higher-level
features that did not appear above them in the taxonomy. These false P features were the
nearest neighbor to the true P features. For example, in Form B a true sentence was “All
starred things are brown,” and the corresponding false sentence would be “All starred things
are blue,” since blue is the sibling of brown in the taxonomy. This type of false item was
used by Smith et al. (1973; see Table 1) and Collins and Quillian (1969; they also used
same-level false items in Experiment 2). This design has the desirable property of yielding
equal numbers of true and false responses for each S and P term, even though there are more
possible true statements for lower-level than higher-level categories. Since the number of
possible sentences decreases at the higher levels in taxonomy, the sentences of the 3–4 type
were repeated, resulting in a total of 42 true and 42 false sentences in the test.

Procedure—Subjects were randomly assigned to one of the two forms. There were two
phases, learning and sentence verification. In the learning phase, subjects observed all
exemplars from the taxonomy they were studying. We wanted to ensure that subjects would
attend to all the features of an item and also that they would encode them using the words
that would be tested in the test phrase. Therefore, a verbal description of the item’s features
appeared for 4 s in a randomized order (e.g. pink, empty, left, large). After an ISI of 1 s, the
image of the exemplar with the listed features was presented for 5 seconds. Subjects were
instructed to learn the attributes of the presented objects. Subjects were also instructed to
think of features of the exemplar in exactly the terms presented before the image because
they were going to be tested on verbal descriptions of features later during the experiment.
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Nothing else was said about the nature of the upcoming test. The exemplars were presented
in three randomly ordered blocks for a total of 30 presentations.

After the learning phase, subjects performed sentence verification. All sentences were
presented in each of two blocks in a randomized order. On each trial, a fixation cross was
presented for 500 ms in the left middle of the screen and then replaced by the sentence,
which remained on screen until response. The next trial began 1 s after response. Subjects
were instructed to respond as fast as they could without sacrificing accuracy.

Results
The main theoretical questions involve the effects of level (of the S term) and distance
(between S and P). However, the nature of hierarchies does not permit a completely crossed
design with these two variables, because as level in the hierarchy increases, the greatest
possible distance decreases correspondingly. Therefore, we performed two analyses that
focused on the theoretically significant variables. In an analysis of level, we kept distance
constant at 1 and varied the level of the S term. In an analysis of distance, we kept the S
term constant at level 1 and compared the distances 1–3 created by varying the P term.
Correct reaction times (RTs) within 2 SD of the condition mean for each subject were
included in the analyses. Four subjects with missing cells were omitted from the RT analysis
of level in true sentences. Table 1 shows the mean RTs and accuracies of each condition
(including all subjects).

The first analysis tested the effect of the level of the S term in true sentences by including
only sentences with distance 1 (i.e., sentence types 1–2, 2–3, and 3–4) in a 2 × 3 ANOVA
with variables form (A or B) and level (1–3). The effect of level was reliable, F(2, 36) =
11.13, p < .01, MSE = 2212062, as RT increased steadily from level 1 to level 3 (2157 to
2525 to 2746 ms). There was also a main effect of form, F(1, 18) = 7.03, p < .02, MSE =
21224518, as well as an interaction of the two variables, F(2, 36) = 7.00, p < .005, MSE =
1392111. Form B showed a particularly large increase from level 2 to 3 (3044 to 3846 ms),
with a smaller increase from level 1 to 2 (2721 to 3044ms), whereas in Form A, the greatest
difference was between levels 1 and 2 (1781 to 2178ms), with levels 2 and 3 about the same
(2178 and 2012 ms). These effects appear to have been caused by greater difficulty in
answering questions about location (top, left, bottom, right), perhaps due to the slightly
unusual syntax of these sentences (“Striped things are top”), which was used to maintain
uniformity of the questions across features. In any case, there was a strong effect of the
taxonomic level of the S term.

Analysis of the accuracy data (see Table 1) yielded a similar pattern. There was a strong
effect of level, primarily shown by a reduction in accuracy at level 3 (only 57% correct,
compared to about 72% for the other levels), F(2, 44) = 10.30, p < .001, MSE = 0.197. There
were again effects of form, F(1, 22) = 14.97, p < .002, MSE = 1.509, and the interaction of
form and level, F(2, 44) = 14.05, p < .001, MSE = 0.269. As in the RTs, the biggest effect
was between levels 2 and 3 in Form B.1

The second analysis used only sentences whose S term was at the lowest level, varying the
distance of the P term. There was no distance effect in the RTs, F(2, 44) = 1.21, MSE =
283365, nor was there an interaction with form, F < 1. Form B was slower overall, as before,
F(1, 22) = 9.42, p < .01, MSE = 18779535. Thus, the signature effect of retrieval from

1Recall that subjects with missing cells were excluded from the RT analysis. We included all subjects in the accuracy analysis, since
errors are not missing data there. However, the interaction with form was much stronger in the accuracy data, apparently reflecting a
number of subjects in Form B who did not learn the taxonomy well or who reversed left and right. Therefore, the RT data probably are
a better reflection of memory retrieval by people who successfully learned the categories.
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hierarchical memory structures was not obtained. The analysis of accuracy data had the
same pattern, with no effect of distance p’s > .10, but marginally higher accuracy of set A, F
(1, 22) = 3.65, p < .10, MSE = .34.

We also analyzed the results of the false sentences. Such sentences do not allow as firm
predictions as the true ones, absent a clear model of how the false answer is derived. (For
example, Collins & Quillian, 1969, considered three different proposals for how false
sentences were evaluated, none of which received strong support. See Holyoak & Glass,
1975, for more discussion of false judgments.2)

In the levels analysis, there was a main effect of level, such that level 3 was slower than the
lower levels, F(2, 44) = 13.96, p < .001, MSE = 2830849. The pattern was stronger for Form
B, but was found in both, F(2, 44) = 3.60, p < .04, MSE = 729204, for the interaction. And
Form B was again slower overall, F(1, 22) = 7.01, p < .02, MSE = 13379832. There was
only a marginal effect of level on accuracy, F(2, 44) = 3.12, p < .06, MSE = 0.027.

As in the true sentences, there was no significant distance effect, F(2, 44) = 1.60, p > .20,
MSE = 421550, and Form B was slower than Form A, F(1, 22) = 8.90, p < .01, MSE =
354691008. In accuracy, there were no significant differences at all. In short, the false
sentences were quite similar to the true sentences.

Discussion
As one might expect, there were some idiosyncratic effects of the different features that
characterized the levels in our hierarchy, such that people found it somewhat difficult to
keep track of location and also seemed to find the two-size alternation easier than
distinguishing four sizes. Such effects probably account for the interactions involving set.
However, what is striking is that the results do not show a distance effect. Instead, the
strongest effect is that people took longer to answer questions when the S term was higher in
the taxonomy—that is, when it included a larger set. Figure 2 illustrates the two effects for
the true RTs.

This profile of results is not consistent with the hierarchy-in-memory notion originally
proposed by Collins and Quillian (1969). Instead, it seems much more in keeping with a
strategy in which people retrieve exemplars using the S term as the cue, and then test them
to see if they have the P feature. The number of exemplars retrieved by the S term would
clearly affect RT, as the more items to be checked, the longer it will take to arrive at an
answer. However, the distance in the taxonomy between S and P should have no effect on
RT, since there is no “distance” between features in retrieved exemplars.

It is interesting that category size influenced RT, because people could have answered the
“All” question via a simpler “Some” question and not produced this effect. If one empty
square was large, then all empty squares were large, and so other empty squares didn’t need
to be checked. However, answering the “Some” question actually makes the false sentences
more difficult. A single counterexample can disconfirm an “All” sentence, but all items have
to be checked to disconfirm “Some” statements. That may explain why subjects apparently
did not adopt this strategy, taking longer to answer questions about the larger categories.

An important result is simply that people could confirm the hierarchical structure of the
stimuli in spite of not having been trained on the hierarchy, or, indeed, its ever having been

2Indeed, a reading of the literature suggests that no account of false items has been generally accepted. Different kinds of false items
may be answered in different ways (e.g., “close” items by a search for contradiction, and “distant” items by similarity judgment). In
our data, the false items tended to show similar effects as the true items, though often weaker.
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mentioned. As we noted in the Introduction, hierarchical structure can be implicit in
semantic memory; here, by retrieving memories of individual exemplars, hierarchical
relations could be accurately evaluated without being directly represented. There was one
clear failure of this process, involving the highest level of set B (where four subjects had
zero accuracy), which we suspect has to do with left-right confusion of some kind. Either the
subjects reversed the directions or suffered response competition (when confirming a correct
statement about a figure being on the left, they might have pressed the left button rather than
the “true” button on the right). However, even when these subjects were omitted, the RT
results showed a level effect and no distance effect.

One limitation of this study is that the nodes in the hierarchy are not traditional categories
but rather features. The taxonomy in Figure 1 does not refer to classes of entities like
Airedales, dogs, and mammals, but rather to properties of the entities. There is much
similarity between these two situations, as a given item is simultaneously in all its higher-
level categories in both cases. In Figure 1, a single item is checkered (level 1), brown (level
2), small (level 3), and on the right (level 4). Similarly, a given Airedale is also a dog, a
mammal, and an animal. However, the latter categories are not defined by a single feature
and generally have nouns as names rather than the adjectival forms used in our taxonomies.
For these reasons, we turned next to teaching people category hierarchies of the more
traditional sort. Unlike Experiment 1, the hierarchical structure was now very transparent
during the learning process itself. After subjects had learned the lower-level categories,
when they were then taught higher-level categories it was immediately apparent that the
stimuli just learned were also in these categories. Experiment 2 asks whether subjects will
encode such categorical relations into memory and confirm statements using the resulting
hierarchical structure.

Experiment 2
Figure 3 depicts one of the taxonomies used in Experiment 2, and Figure 4 shows exemplars
of two categories, HOBNIKs and LARs. The stimuli were schematic drawings of bugs
which varied in their shape, pattern, number of legs, and color. We constructed categories at
four different levels, as shown in Figure 3, by successively combining lower-level categories
into more general ones. To make learning easier, the categories at each level were defined
by the features of the category immediately above them together with one new stimulus
dimension to differentiate the categories at that level. For example, the highest-level
categories separated the two shapes, oval and angular, and the next level additionally
grouped the bugs by the number and arrangement of their legs, and so on. As in natural
categories, more specific categories were therefore associated with more features—SUPs
were rounded; ZIMs were rounded, brown, spotted, and two-legged. Each category was
given a pseudo-word name.

The learning procedure and structure of the stimuli made it clear that the categories were
hierarchically organized, but subjects did not see a depiction of that hierarchy, nor were they
trained on the IS-A relations (cf. Experiment 3). Therefore, it was possible for a subject to
learn all the categories without abstracting the hierarchical structure. Our assumption was
that most subjects would identify the inclusion relations, and the question was whether they
would form a memory structure in which the hierarchical connections have functional
consequences. In particular, would they form something like the tree structure shown in
Figure 3 and use the links to draw inferences such as all BOTs being LAMMELs? Because
all our subjects would have had vast experience with hierarchically organized categories, it
seems very possible that they would abstract the categorical hierarchy, and we would now
find the distance effect we did not observe in Experiment 1.
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Rogers and McClelland (2004) taught their network hierarchies of roughly this sort. They
generally found that when category names did not have their frequencies restricted, the
highest level categories were learned fastest and were more strongly activated after learning.
However, when they provided category names in learning proportionally to their real-life
frequencies (basic-level category terms much more frequent than superordinates), they then
found a basic-level advantage. In our experiment, frequencies were not specifically
controlled: During learning each category received its own page depicting its exemplars, and
in the tests each object had all its names tested equally often. Such uncontrolled frequencies
result in larger categories being tested more often (as in Rogers & McClelland’s earlier
simulations), because there are more animals (SUPs) than there are birds (LARs), and so
animal would be tested more than bird in such a paradigm. Therefore, we suggest that if
Rogers and McClelland’s approach is psychologically correct, we should find that the
highest-level categories have an advantage in this task, as in their simulations with
uncontrolled frequencies. This is because networks have a preference to learn broader
distinctions before narrower distinctions and because the unequal frequencies favor the
higher levels. As a result, sentences about the higher levels should be answered faster than
questions about lower levels.

Method
Subjects—We tested 33 NYU undergraduates. Since the RT data are only interpretable for
subjects who correctly learned the categories and their relations, we analyzed the data only
from the 23 subjects who scored 85% or higher on the categorization and sentence
verification tasks described below. Given the amount of material to be learned, this high
drop-out rate was not unexpected.

Materials—We designed a hierarchically structured set of schematic bugs. The bugs
differed in their shape (oval or angular), pattern (striped, spotted, empty, or solid), number
and arrangement of legs, and color (red, blue, brown, orange, white, light blue, green, pink,
gray, and violet). The hierarchy was produced by nesting the categories in four levels, as
shown in Figure 3. Each level was characterized by distinctions in different stimulus
dimensions. The top two categories distinguished bugs on the basis of overall shape;
categories at the next level also differed in pattern; the next categories differed also in the
number and arrangement of legs; and the lowest categories also differed in color. This
structure avoided creation of a basic level in which information would be accumulated at
one preferred level of categorization (Murphy, 2002, ch. 7). Each category received a
pseudo-word name. Within the most specific categories (e.g., NOP or PIM), there were two
bugs with identical values on all four dimensions but differing in size. Thus, all categories
contained multiple distinct objects.

For the study phase, we prepared a sheet of paper for each category containing its name and
pictures of all the bugs in that category: 16 bugs for the top level, and 8, 4, and 2 bugs for
the lower levels.

Sentences for the verification test were constructed in the form “All Ss are Ps.” True
sentences matched an S term with a P term at a higher level of the same taxonomical branch.
There were 34 such sentences. False sentences matched the S term with the nearest
corresponding category name from the higher level not on the same branch of the hierarchy.
For the ZIM category, the false sentences would be “All ZIMs are LARs,” “All ZIMs are
MAZes,” and “All ZIMs are LAMMELs.” There were 34 such false sentences. As in
Experiment 1, we repeated the true and false 3–4 sentences to result in 72 total test
sentences.
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Procedure—Subjects were randomly assigned to one of two learning orders in the study
phase. In the bottom-up order, they learned category names at the lowest level in the
taxonomy first, and then progressed to the second, third, and fourth levels. The top-down
order was the reverse. At the beginning of the study phase, subjects were told they would
learn categories of artificial bugs whose drawings would be presented on separate pages and
that their task was to learn the bugs’ names such that they could produce the name when
presented with a drawing of a bug. They were informed of the relevant stimulus dimensions.
After reading the instructions, the experimenter handed the pages containing the categories
of the first level to be learned. For example, if the order of learning was bottom-up, the
subject would first receive eight pages each presenting a category belonging to the lowest
level of the taxonomy. The subjects were told that they could choose any way of learning the
categories’ names they liked and that they should call the experimenter when they felt they
had learned the categories.

Subjects then took a test on their knowledge of the categories. The computer presented a
single bug together with a list of category names from the corresponding level in the
taxonomy. Subjects had to choose the correct category name of that bug. For example, after
learning the third level of the taxonomy, FACNER, MAZ, REL, and NURIS, the subjects
would view all the bugs one by one and press a key corresponding to one of these four
names. Subjects received feedback on their responses. If any response was incorrect, the
subject had to review the drawings and repeat the test until performance was perfect.

After successfully passing the test of each level and completing the study phase, subjects
reviewed all the categories that they had previously learned. The experimenter handed all
the pages of each category of bugs to the subject in the same order in which they were
learned in the study phase. The subjects were thus able to remind themselves of all
categories and their names. The categorization task was then conducted on a computer. A
category name appeared for 1000 ms followed by a blank screen for 500 ms, and then a
picture of a bug. The subjects’ task was to respond by pressing the “Yes” key if the
presented bug was a member of the category and “No” if it was not. There was no feedback,
and the next trial started 500 ms after the response. Each bug was paired with all its true
category names. The false items were produced by matching a bug with the closest incorrect
category from a particular level. There were 48 pairs of bugs and category names in total,
tested in a random order. The subjects were told that they had unlimited time to respond and
that they should try to be as accurate as possible.

After the categorization task, the subjects performed the sentence verification task. There
were two blocks, resulting in a total of 144 sentences per subject, randomized within each
block. The sentences were presented on a screen of a PC, flush left and centered vertically.
The fixation point appeared for 250 ms, followed by the sentence. The subjects were
instructed to respond whether a sentence was true or false by pressing the Z and M keys
labeled as “Yes” and “No” on a keyboard as quickly as possible without sacrificing
accuracy. No feedback was provided; 750 ms after response, the next trial began.

Results
Categorization—Prior to sentence verification, subjects took a picture categorization task
in which they had to confirm that a picture had a given name. After removing 10 subjects
who failed to learn (see above), the remaining subjects performed well, scoring at least 94%
correct overall, as shown in Table 2. There was a significant main effect of level on
accuracy, F(3, 69) = 3.13, p < .05, MSE = 0.024, and an interaction of level and learning
order, F(3, 69) = 2.99, p < .05, MSE = 0.023. Accuracy was fairly flat across levels in the
bottom-up condition, and the highest and lowest levels were most accurate in the top-down
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condition. Most importantly, accuracy was generally high and did not differ greatly across
learning orders.

Sentence Verification—Table 3 presents the mean RTs and accuracies. As in Experiment
1, the analyses focused on two effects: the level of the first term in the sentence (comparing
1–2, 2– 3, and 3–4 sentences) and the distance between the terms in the sentence (comparing
1–2, 1–3, and 1–4 sentences). There was a marginal effect of hierarchical level on the RTs
for TRUE sentences, F(2, 46) = 2.91, p < .07, MSE = 3622111, and no effect of learning
order. Subjects responded fastest to the 3–4 sentences, contrary to the effect in Experiment
1. The highest level sentences were also answered most accurately, F(2, 46) = 7.30, p < .01,
MSE = .073. There was no effect of learning order. In the false sentences, there was no level
effect in RTs—only a marginal interaction of order of learning and level, F(2, 46) = 2.72, p
< .08, MSE = 7916470. However, the higher levels were more accurate than the lowest
level, F(2, 46) = 5.13, p < .01, MSE = .177, with no order effect.

The analysis of the distance in true sentences revealed a significant main effect in RT, F(2,
46) = 7.10, p < .01, MSE = 5295480, and accuracy, F(2, 46) = 3.88, p <.05, MSE = .044. In
both cases, subjects performed better in the longer distances, contrary to the expected
distance effect with hierarchies. There were no effects of learning order. The distance and
level effects are presented in Figure 5.

The false sentences showed a similar “negative” distance effect, except for the data point of
distance 2 in bottom-up learners, which was faster and more accurate than distance 3 in that
group. One subject with missing cells was omitted from this analysis. This pattern resulted
in a main effect of distance in RTs, F(2, 44) = 3.50, p < .05, MSE = 5473612, plus a
marginally significant interaction with learning order, F(2, 44) = 3.15, p = .053, MSE =
4916086. Both effects were marginally reliable in the accuracy data, F(2, 46) = 2.47, p < .
10, MSE = .092; F(2, 46) = 2.50, p < .10, MSE = .093.

Discussion
The results were quite different from those of Experiment 1 (compare Figures 2 and 5),
which is perhaps not surprising given the differences in the stimuli. However, like
Experiment 1, the data did not follow the expected pattern of hierarchical retrieval. First,
there was a levels effect in which the more general categories were responded to
significantly more accurately and marginally faster than the lower-level categories. This
could potentially be due to the fact that there are fewer categories at these levels than at
lower ones, thereby reducing memory interference. However, it should be noted that when
tested on categorization, there was no general advantage for classifying into the highest
category, and in fact the lowest level was slightly more accurate there (Table 2). Smith et al.
(1972) paired familiar categories with novel features and also found faster responses for
higher-level categories and features.

Second, and more significant, there was a distance effect, but it was opposite to the expected
one. Rather than people being faster in verifying categorical relations of adjacent levels, they
were faster the farther apart the categories were. Putting the two effects together, one
possible explanation is that people were faster in answering questions when the sentence P
term was from the highest level (3–4 and 1–4 in the two analyses). This does not seem to be
caused by learning the highest level first, because the pattern is also evident in the bottom-
up learners (see Table 3).

One possible explanation for this advantage for level 4 P terms is that as the categories move
up in the hierarchy, they become more abstract, that is, are associated with fewer features.
So, the bugs in the VADUS category (level 1) were all angular, striped, and green, with four
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rear legs. In contrast, the LAMMEL bugs (level 4) had only one feature in common, their
angular shape. According to the feature-comparison account (Smith et al., 1974), people
judge category relations by comparing the concepts’ features and looking for overlap. The
fewer the features in the P term, the quicker the comparison can be, because there are fewer
features to be checked (Smith et al., 1972, give a similar explanation for their results). For
example, when asked if VADUSes are LAMMELs, one might judge whether VADUSes are
angular, which is the only feature common to LAMMELs. However, to decide whether
VADUSes are WAMMERs, one must judge their shape, pattern, and legs to ensure that the
WAMMER features are also found in VADUSes.

If the highest level categories were unusual for some reason, one might wonder if there were
signs of the expected distance effect when that category was not involved. This can be
answered by examining distances 1 vs. 2 at level 1 in Table 3. One can see that across the
four cases (truefalse × 2 learning orders), there is no sizeable slowdown or loss of accuracy
at distance 2. In fact, by far the largest effect is in the false sentences, bottom-up order,
where accuracy and RT are much better for the longer distance. So, it does not seem that the
advantage of the highest level—whatever its cause—is masking a distance effect.

The results are broadly consistent with predictions we attributed to Rogers and McClelland
(2004). There was no (normal) distance effect, and questions about the highest level seemed
to have an advantage. They provide detailed analyses and explanation of why more global
features should be learned prior to features used to distinguish specific categories. Like our
explanation, their proposal is that superordinate categories have the advantage of a small
number of features that distinguish large categories of objects. Without actually running our
stimuli in their model, it is difficult to say exactly what it predicts, because we controlled the
learning order by presenting the categories from specific to general or vice versa. The
former order might have negated their model’s preference for global features and categories.
However, the overall results seem consistent with their analysis of semantic memory.

Experiment 3
Our goal in this research has been to investigate the development and use of hierarchical
memory structures for artificial materials that did not have the potential confounding
variables that could influence natural category hierarchies. For example, if children are told
that penguins are birds or worms are animals, these learned facts could influence their
sentence verification, probably pre-empting the use of hierarchical inference or feature
comparison. After all, a learned fact is likely to be retrieved faster than an inference can be
drawn. Therefore, in Experiments 1 and 2, we did not make any mention of the hierarchies
and inclusion relations.

However, in real life people know some taxonomic relations. Students encounter taxonomic
trees in biology classes; bird-watchers read about the orders, genera, and species of different
birds; people encounter statements in the media such as palm trees not being “real trees”;
and so on. Possibly such explicit information is necessary for people to form hierarchies in
memory that conform to the Collins and Quillian retrieval processes. We interpreted
Experiment 2 as revealing a feature comparison process, but that may have arisen because
people learned the items’ names and not the taxonomy per se. Perhaps when people
explicitly learn a taxonomy, this useful tool will organize their memory and their answering
of questions about the categories.

To explore this possibility, we investigated how people would perform the sentence
verification task if they only knew the taxonomy and did not have conceptual knowledge.
That is, subjects were shown a tree structure like Figure 3, and they learned the category
names and their relations. They did not learn, however, that VADUSes were angular, green,
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etc. bugs—they only learned that VADUSes were at the bottom level of the hierarchy,
subordinate to WAMMER, which was subordinate to REL, and so on. With only this
schematic information, it seems more likely that memory retrieval will follow the Collins
and Quillian profile. If VADUS is associated to WAMMER, which is associated to REL,
which is associated to LAMMEL, then it might well take longer to confirm that a VADUS is
a LAMMEL than that a VADUS is a WAMMER. We used the same taxonomy as in
Experiment 2, so that a direct comparison of their results would be interpretable.

Method
Participants—Twenty students from New York University received course credit for their
participation in the experiment. They were randomly assigned to one of the two presentation
orders. Four other subjects were omitted because they did not follow instructions or had
accuracy below .65 in the sentence verification task.

Materials—The hierarchical category structure used in Experiment 3 was identical to the
one used in Experiment 2 except for a few changes in category names to make them more
distinctive. We presented subjects with an illustration of the hierarchy itself, as shown in
Figure 3.

Procedure—Subjects read instructions that mentioned biological taxonomies and told
them that they would learn category taxonomies with novel names. No information was
given about the nature of these categories. They initially saw a schema of the taxonomy
containing empty boxes rather than category names. They were instructed that they would
be given the category names level by level and that they should learn the whole taxonomy
with the category names in correct positions. As in Experiment 2, there were two orders of
learning: 11 subjects learned the taxonomy starting from the bottom level, and 9 started at
the top level. There were no exemplars or features associated with the categories—the sole
task was to learn the structure of the taxonomy and the category names as shown in Figure
3. A sentence in the instructions emphasized the importance of learning the inclusion
relations in the taxonomy. After the presentation of the empty schema of the taxonomy, the
experimenter provided a picture of the taxonomy with the category names of one level filled
in (replacing the empty boxes). The subjects could spend as much time as they wanted to
study each level. They then had to draw the entire hierarchy and write down in correct
positions all the category names that they had previously learned. If this reproduction was
correct, the experimenter would hand the taxonomy with the next level’s category names
filled in. If the drawing was incorrect, the study taxonomy with the category names was
presented again, followed by another test. This procedure was repeated until subjects could
reproduce the drawing with all elements of the taxonomy.

The sentence verification phase was identical to the one employed in Experiment 2.

Results
Mean RTs and accuracies are presented in Table 4. We again performed two analyses in
order to test the levels and distance effects. The analyses of true RTs revealed a significant
main effect of the level of the first term in the sentence, F(2, 36) = 12.88, p < .01, MSE =
34587377, and a marginally significant interaction of level and order of learning, F(2, 36) =
2.80, p = .07, MSE = 7512771. This pattern seems to reflect two effects: First, the highest
level was faster than the others, and second, the level learned first had an advantage. As a
result, in the top-down order, the highest level (which benefited from both effects) was
confirmed almost 3 s faster than the other levels, but in the bottom-up order, the lowest level
(learned first) was also relatively fast. The accuracy data showed a very similar pattern and
revealed the same two effects: the main effect of level, F(2, 36) = 18.03, p < .01, MSE = .
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277, and a marginally significant interaction of level and order, F(2, 36) = 2.80, p = .07,
MSE = .043.

In the false sentences, there was only a significant main effect of level in RTs, in which the
highest level was again fastest, F(2, 36) = 3.67, p < .05, MSE = 10132534. There were no
reliable differences in the accuracy data of the false sentences, but the overall pattern was
consistent with the levels effect in the RTs.

The second set of analyses tested for the distance effect. As in Experiment 2, the RTs for
true sentences showed a negative distance effect, F(2, 36) = 8.93, p < .01, MSE = 14808954,
along with another marginally significant interaction of distance and presentation order, F(2,
36) = 2.86, p = .07, MSE = 4750611. Distance 3 was over a second faster to confirm than
the others, and there was also an effect that the 1–2 sentences were relatively fast when level
1 was learned first. The same pattern appeared in accuracy: a distance effect, F(2, 36) =
11.79, p < .01, MSE = .140, and interaction with order, F(2, 36) = 5.82, p < .01, MSE = .
069. In the false sentences, the only reliable result was the same distance effect in RTs, F(2,
36) = 7.55, p < .01, MSE = 11067474.

Discussion
Surprisingly, the results of Experiment 3, in which people learned only the taxonomy
without knowing anything about the categories themselves, were very similar to those of
Experiment 2, in which people learned the categories but not the hierarchies. In particular,
both experiments showed a levels effect in which the sentences with terms 3–4, highest in
the hierarchy, were answered faster than others. Both experiments also showed a negative
distance effect in which sentences with the greatest distance, 1–4 sentences, were faster than
sentences with adjacent terms, like 1–2. As in Experiment 2, the absence of the expected
distance effect was not solely due to the speed of answering questions about the top level.
There was no consistent increase in RT (or decrease in accuracy) from distance 1 to distance
2 (at level 1) in Table 4. These results are inconsistent with the usual predictions involving
inferences from hierarchies in memory. We discuss possible explanations of this unexpected
reversal in the General Discussion.

Experiment 4
The repeated finding of no distance effect—or even a negative distance effect—within
hierarchies is surprising. In fact, the result may raise a concern that there is something wrong
with our tested hierarchy, the names, or some aspect of the testing procedure. There is a
certain logic to the claim that drawing inferences must take longer than retrieving known
information and that inferences involving more steps must take longer than those involving
fewer steps. The failure to find such effects in experiment after experiment naturally raises
the concern that something has gone wrong.

We addressed this concern by using the same hierarchy as in previous experiments but with
a different training regimen designed to reveal the expected distance effects. In the previous
experiments, people learned colored shapes, categories, or a visual depiction of a hierarchy.
It is possible (and in light of the results, likely) that with such materials they could develop
specific processing strategies that obviate the need for inference within the hierarchy. For
example, memories of exemplars could be consulted, or the spatial characteristics of the
displayed hierarchy could be used to answer questions.

Experiment 4 used a learning procedure that seemed much less open to such possibilities—a
simple verbal learning procedure in which pairwise links were memorized. Subjects learned
sentences such as “All FACNERs are SUPs,” “All HOBNIKs are FACNERs,” and “All
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ZIMs are HOBNIKs.” During the learning phase, people learned only the individual
sentences; they saw neither the taxonomic tree nor category exemplars, though they were
told that these names referred to categories that were nested. At test, subjects had to confirm
not only the learned sentences but also the ones that are true by inference—e.g., for the
above, “All HOBNIKs are SUPs” and “All ZIMs are FACNERs.” Under the assumption that
most people would not spontaneously draw and learn the inferences during the learning
procedure, we should now find a distance effect. The learned sentences should be fastest,
and the sentences requiring a one- or two-step inference should be correspondingly slower
and less accurate.

Such a finding would confirm that there is nothing in the hierarchy, names, testing
procedure, and so on that is preventing the distance effect from revealing itself in our
experiments. Furthermore, a finding of the distance effect will support the contention that in
“normal” circumstances, when people have more knowledge about the categories and
stimuli than simple pairwise associations, the hierarchical retrieval model does not apply to
newly learned conceptual hierarchies.

Method
Subjects—Twenty-two NYU undergraduates served in the experiment to receive course
credit.

Stimuli—The materials were the same category names as in the previous two experiments,
organized into all the set-inclusion sentences from one level to the next highest level in the
form “All PIMs are BOTs.” There were 16 such sentences, all of which were distance 1
category relations. The test sentences were identical to those used in Experiments 2 and 3, so
that the questions and answers were the same across the two experiments. Thus, in addition
to the learned sentences, longer-distance true and false sentences also appeared in the test.

Procedure—A fair test of the distance effect can only be made if people have actually
learned the original sentences. Clearly, no one can draw an inference that a PIM is a REL, if
they do not know both that PIMs are BOTs and that BOTs are RELs. We used a learning
procedure similar to that of the Experiment 2, in which we presented the sentences from one
level first, followed by a test of that level, and then presented sentences from the next level,
its test, and so on. Learning proceeded either from top to bottom through the hierarchy or
from bottom to top, as before. The sentences were said to describe category relations similar
to all chairs being furniture or all whales being mammals.

For each level, subjects viewed a list of all the inclusion sentences at that level on the
computer screen and were instructed to remember them. When they had indicated they were
done, they received a cued recall test in which the first category name was provided and the
second had to be filled in: “All PIMs are ____.” In the second and third levels, there were
fewer sentences, and so each was tested twice. When subjects gave the wrong category
name, an error message appeared along with the correctly completed sentence. If
performance was not perfect in the test of a given level, the original screen of all its
sentences was re-presented for more study, followed by another test.

After all levels had been learned, there was a final phase to remind subjects of the sentences
that had been learned earlier. They reviewed the sentences from each level separately and
could cycle through the three lists of sentences as many times as they wanted. They then
received a cued recall test in the same format as the previous tests. Subjects needed to get at
least 80% correct to move on to the next phase. If they scored below 80%, they reviewed the
sentences as before, and took the test again.
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At test, subjects were reminded that the sentences described category relations, which are
transitive. So, if All Xs are Ys and all Ys are Zs, it follows that all Xs are Zs. The final task
was to read each sentence and to decide whether it was true based on what was learned.
Obviously, the learned sentences were true, but other sentences would be as well. It was
stressed that accuracy was important and that subjects should take the time to remember the
relevant sentences to respond correctly. However, they were to press the response button as
soon as they had arrived at an answer.

Results and Discussion
All subjects successfully passed the final test of all learned sentences and entered the test
phase. The mean number of blocks in that final learning test was 2.2, with proportion correct
of .91 in the final block. Some people’s performance in the test phase was nonetheless low,
and subjects were dropped from the RT analyses if they had empty cells in that particular
analysis (reflected in the degrees of freedom). We included learning order as a variable but
mention it only when it interacts with the theoretically relevant variables. Because of the
difficulty of this task, we expected that more of the effects might be seen in accuracy than in
the previous experiments. Results are shown in Table 5.

There was no effect of level in the accuracy analyses of either the true or false sentences,
F(2, 40) < 1, F(2, 40) = 1.45, p > .20. This is perhaps not surprising, as all of these sentences
involved distances of 1 that were directly presented and learned. However, even for distance
2, which was inferred, there was no difference between level 1 and level 2 sentences (.67
and .70 accuracy in the trues).

There was an effect of level in true RTs, with the lowest level faster than the other two, F(2,
38) = 3.84, p < .05. There were no differences due to level in the False RTs, F < 1. Across
the dependent measures, there seems to have been no consistent effect of level.

In contrast, there was a clear distance effect, as accuracy declined from learned to inferred
sentences (Ms of .87, .67, and .69 for distances 1–3), F(2, 40) = 8.44, p < .001. There was no
distance effect in the False sentences, F < 1. That result could reflect a bias to answer “false”
when unsure of the answer, inflating accuracy of the false responses at the unlearned higher
distances. There was also an interaction with learning order in the false sentences, F(2, 40) =
4.95, p < .02, which may derive from an advantage to the most recently learned levels (the
most accurate condition was the 1-1 sentences in the top-down order).

As can be seen in Figure 6, the true RTs showed a strong distance effect, increasing from 3.3
to 5.3 to 6.9 s with distances of 1–3, F(2, 38) = 25.10, p < .001. A similar though less
dramatic pattern obtained with false RTs, F(2, 40) = 6.22, p < .01. The most important effect
is probably the increase from distance 2 to 3, as sentences with distance 1 were learned and
therefore would be faster than the others on any account. A key test, then, is to show that it
takes longer to make two inferences than one, and this was in fact the case t(20) = 2.47, p < .
02.

Overall, there was a clear distance effect, which was especially noticeable in RT. This shows
that the Collins and Quillian distance effect does in fact obtain when the memory structure is
likely to be what that model assumes. That is, if people store pairwise associations, they can
then draw inferences across those associations, from lower levels to higher levels. The
inferences were less accurate than the learned relations, and their RT increased
monotonically with the number of steps required.

It is possible that subjects did not view the items as categories, given that they knew nothing
about their contents. However, the instructions did present them as nested categories,
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analogous to real-life examples, and people were generally accurate in verifying the inferred
IS-A relations. There is nothing in the hierarchical inference account that requires that the
categories be richly represented—indeed, we can draw inferences about categories we know
virtually nothing about other than their IS-A relations (like rheas or Lamborghinis).

The importance of this result is in its contrast to the results of all the previous experiments,
which found either no distance effect or a negative effect. Even though the names and
hierarchical structure were the same as those of Experiments 2 and 3, and even though the
test phases of all three experiments were identical, only this experiment conformed to the
expected pattern of results for hierarchical inference. This shows that the hierarchy tested,
names, and test procedure of the previous experiments had no unknown problem that
prevented a distance effect from revealing itself. Instead, it seems clear that when people
learn categories or explicitly learn the hierarchy as a whole, they do not produce the
predicted distance effects.

General Discussion
We began this investigation by asking whether retrieval of information from a newly learned
set of categories would produce the pattern predicted by Collins and Quillian (1969) in their
classic semantic memory model, when confounding effects of familiarity, differences in
associations, and specific learned facts are removed. This question is really two interrelated
questions: Do people actually form mental representations in the efficient hierarchical
structure C&Q assume? and Does retrieval from such representations reveal the effect of
number of intervening links, the distance effect? Questions of representation and process of
this sort cannot be answered independently (Anderson, 1978). However, the results are clear
enough that we can provide a joint answer.

To start at the end, the results of Experiment 4 suggest that when we are fairly certain that
people’s mental representations consist of pairwise linked associations in memory (PIMs are
BOTs; BOTs are RELs; etc.), the results do in fact follow the expected predictions. The
more links required to answer the question, the longer subjects took to respond and the more
errors they made.

One issue with that experiment might be the extremely long RTs, ranging as high as 7 s for
the longest distances, which are much higher than category membership verification in most
studies (e.g., means of around 1 s in McCloskey & Glucksberg, 1979). Of course, our RTs
reflect judgments of newly learned materials with nonsense names, so longer times are to be
expected. However, note that the RTs in Experiments 2 and 3 were shorter, with the same
test materials. As we suggest below, the shorter RTs in other kinds of tasks may reflect a
reorganization of memory that is inconsistent with the simple hierarchical model. That is, it
may be no coincidence that the experiment with longest RTs was the only one to show the
distance effect.

The problem for the hierarchical inference model is that its predicted pattern appeared only
when people engaged in what was essentially a verbal-learning task, in which all inferences
had to be drawn at test. Of course, it would have been logically possible for people to draw
the inferences during study. However, given the need to memorize and pass a test on 16
sentences with novel names, the task no doubt discouraged the learning of inferences that
were not on the test. When people were exposed to a depicted hierarchy (Experiment 3) or
learned meaningful content with the categories (Experiments 1 and 2), the distance effect
failed to appear. Instead, effects of category level (specificity) or even a negative distance
effect obtained. Understanding these effects, which are not predicted by the hierarchy
model, will tell us more about how people structured this information in memory.
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The Unpredicted Effects
In Experiment 1, questions about more general properties took longer than questions about
properties lower in the hierarchy. This effect seems most explicable as due to exemplar
retrieval. Because the more general properties appeared in more items, they engendered
more checking. If there were eight items on the left but only two that were red, it would take
longer to answer questions beginning “All left objects…” than “All red objects…,” because
there would be more exemplars to retrieve and check in the former. This explanation entails
that people did not form a hierarchy like that shown in Figure 1 but remembered the stimuli
as distinct exemplar types. This experiment did not use traditional categories or category
names, so perhaps the failure to organize the material according to the hierarchical relations
of the features is not very surprising.

Experiments 2 and 3 did use categories and discovered a surprising negative distance effect
in which the longer the distance to be traversed in the hierarchy, the shorter the RT and more
accurate the judgment. This result directly contradicts the prediction of inference in a
hierarchy and also raises the question of just why it occurs. One possible explanation is that
the effect is really an overall preference for answering questions about the highest level of
the taxonomy. Both experiments revealed a reliable effect of hierarchy level, with the
highest level being fastest; that level is involved in the longest distance (1–4) sentences as
well. So, a simple explanation of much of the results may be that questions about level 4 are
generally easier than questions about other levels.

It is not obvious why this should happen in both Experiments 2 and 3, however, because
their stimuli and learning procedures were so different. In Experiment 2, people learned
actual categories and were not trained on the taxonomy per se. The highest categories were
the most inclusive, and they were associated with a single feature. Therefore, the semantic
simplicity of that level could have made it easier, since only one feature had to be retrieved
and compared to the representation of the subject term. SUPs were all rounded, but
HOBNIKs were rounded, dotted figures with two feet, so it should take less time to judge
whether something was a SUP than whether it was a HOBNIK. Under this explanation,
people represented the categories as features, and the number of features involved predicts
performance, as in feature comparison accounts. However, that explanation cannot account
for Experiment 3, where there were no features known of the categories. Those subjects only
learned the hierarchical structure.

One possible explanation of the results in Experiment 3 refers to the spatial nature of the
taxonomic representation. A salient feature of each category may have been whether it was
in the tree shown on the left or right (see Figure 3). If people learned these locations and
associated them with the top nodes of the tree on each side, it might have been easy for them
to answer questions of the sort “Ss are SUPs” or “Ss are LAMMELs,” because they would
have essentially been judging whether both terms occurred on the same side. Perhaps all the
left categories were encoded as the SUP categories, and the right ones as the LAMMEL
categories. This strategy would help only the highest categories. Given the visual
presentation of the hierarchy, we suspect that physical location accounts for the ease with
which judgments were made regarding the top two categories, and this accounts for the
negative distance and level effects.

Thus, it may well be coincidence that Experiments 2 and 3 had such similar results, given
the large differences in what was learned about the two sets of categories. However, both
illustrate that people may actively organize the material they receive into representations
that are efficient for information retrieval. The Quillian hierarchy is particularly efficient in
terms of the number of nodes and associations that need to be stored—that is, memory
space. However, preserving memory space may not be the most important form of
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efficiency. If memory is cheap but processing time is valuable, then storing information
redundantly could lead to better overall performance (Logan, 1988). Just as it is probably
useful to memorize the fact that whales are mammals rather than deriving it every time this
information is needed, it may be useful to remember categories’ features or the spatial
locations in a viewed taxonomy. Given that in real life it is the content of concepts that is
essential, people may well compare concepts in terms of their features and learned short-cuts
rather than relying on inference to save memory space. It is important to have quick access
to conceptual information about what a dog or a chair is in language comprehension and in
dealing with everyday objects. Thus, even though one could save memory by storing the fact
that mammals breathe and give birth to live young and by not representing the same facts
about dogs, this may conflict with the more useful ability to retrieve information about dogs
quickly and accurately.

In Experiments 2 and 3, which included conceptual content or spatial relations, subjects
responded much faster to long-distance test questions than when such information was
lacking in Experiment 4. Thus, all the “confounds” that make it difficult to provide a fair test
of semantic memory models, like familiarity or specific associations, may be exactly the
things in real life that people use in order to avoid the slow inference process that is
necessary within a hierarchical network (though see the Limitations section). Certainly,
people can make long-distance inferences when faced with novel questions such as whether
wombats have heart valves or whether ambulances have rudders. But the results of the
present research suggest that people try to avoid relying on those inferences when possible.

If we are right, then the inferential model proposed by Collins and Quillian is more of a fall-
back measure than the preferred way that semantic information is stored and retrieved. In
that sense, the model is not wrong so much as being only one possible way of retrieving
information, a slow and onerous one.

Implications for Theories
The semantic memory models of the 1970s and 80s may seem somewhat simplistic in the
light of newer, large connectionist models of conceptual knowledge (Rogers & McClelland,
2004) or sophisticated mathematical models of semantic organization (Close & Pothos, in
press; Shafto et al., 2006; Tenenbaum, 1999). However, our own feeling is that these earlier
models capture some aspects of how people can represent and retrieve information from
memory.

The Collins and Quillian approach can explain how we can derive novel inferences. This
occurs when we think about general properties of a specific object (e.g., that tea roses must
perform photosynthesis) or about properties of a newly learned kind of thing (e.g., that a
long-tailed dachshund is an animal and probably barks). Models in which concepts are
represented as feature lists cannot explain such cases, given that the concept and features
have never been encoded together. Assuming that such cases of retrieval by inference exist,
Experiment 4 shows that they occur in the way that the original Collins and Quillian model
would predict.

When people learned richer representations of our materials (Experiments 1 and 2),
however, the results did not support this model. Instead, people seemed to rely on exemplar
retrieval or feature comparison. Experiment 2 seems to be the experimental situation that is
closest to real-world categories, which are richly represented and hierarchically organized
(though our stimuli were not nearly as rich as actual categories). Subjects could have formed
a hierarchical network of category names when learning these categories but failed to do so,
suggesting that people prefer to compare conceptual representations. Feature comparison
models (Hampton, 1979; McCloskey & Glucksberg, 1979; Smith et al., 1974) have
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generally seemed more consistent with the overall results in the field, though there are still
phenomena they do not account for (Chang, 1986; Smith, 1978).

The use of an exemplar strategy in Experiment 1 is reminiscent of exemplar models in
category learning (Medin & Schaffer, 1978). Indeed, the experiment had the properties
argued to be ideal for exemplar learning—small numbers of items, presented repeatedly
(Smith & Minda, 1998). Such a strategy seems less likely to work for most real-world
categories. One likely cannot retain distinct memories of every chair, car, dog, or reality-TV
contestant one encounters. Furthermore, no exemplar-based model of hierarchical
categorization has yet been proposed (see Murphy, 2002, ch. 7).

One cannot confirm universally quantified statements by retrieving a finite number of
exemplars, so exemplar retrieval is not logically able to confirm statements such as “All
birds have feathers” or “No mammals have feathers.” However, when general knowledge is
lacking, people may rely on retrieving examples to give their best guess at the answer. For
example, to decide whether only mammals play, one could retrieve memories of playing
animals and check to see if all of them are mammals. This strategy would be effective under
the assumption that counterexamples would come to one’s notice if they existed (see
Gentner & Collins, 1981). However, even that strategy would not work for properties that
are not normally noticed and encoded into exemplar memory, e.g., “All squirrels breathe.”
Although we have seen hundreds of squirrels, we don’t recall ever noticing that they were or
weren’t breathing. Our strength of belief in this proposition probably derives from the
Quillian-like inference that all mammals breathe air, squirrels are mammals, hence they
breathe.

This discussion is consistent with a number of recent conclusions from the experimental
literature on category learning that multiple systems are involved in learning categories,
depending on the type of category and learning procedure (e.g., Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Nosofsky, Palmeri, & McKinley, 1994; Poldrack et al., 2001).
More generally, Murphy (2002) concluded after an extensive review of the concepts
literature that concepts are something of a mess. He pointed out that there are many different
means to accomplish the tasks we refer to as conceptual, and it seems likely that all those
means are used at one time or another (see also Hampton, 2010). The present research
provides an example of this state of affairs even within a circumscribed topic, where
exemplar use, feature matching, spatial strategies, and spreading activation across
associations all appear to have been used, depending on what information was presented.
Indeed, Smith (1978, p. 35) noted that feature comparison and learned associations both
might underlie performance, “for the issue is not really one of a dichotomy.”

The Rogers and McClelland (2004) approach to semantic memory did fairly well in the
experiment that was most similar to its model domain (see Discussion of Experiment 2),
with object categories that were associated to features. Rogers and McClelland note that
their model is intended to capture the long-term representation of semantic knowledge. They
explicitly refer to other components that will be necessary for a complete theory, such as
episodic memory needed to encode newly learned facts. Their theory was not intended to
learn paired associates of the sort tested in Experiment 4. Their model also does not have a
reasoning component, which could be necessary for novel induction questions. Such a
component could act on their semantic representations. In short, we believe that their model
has considerable promise as a representation of semantic information in long-term memory
but that other processes will be involved in explaining all the tasks that are tested in
semantic memory research.
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Limitations
An experimental study of this sort can allow the manipulation of variables that are not easily
controlled with natural materials. But such studies also are unlike actual semantic memory
in a number of respects, such as having smaller, more recently learned networks that are
semantically reduced compared to real concepts. One potentially important difference is that
semantic organization may take place over multiple exposures to material over a very long
time frame. Rogers and McClelland (2004) emphasize this aspect and contrast their model
of semantic learning with a hippocampal-based system of episodic memory. This suggests
that an important extension of our work might be to use a larger network learned over days
and see how retrieval of information changes as it becomes more entrenched.

Our own intuition, however, is not that the distance effects that were absent from
Experiments 2 and 3 will appear in entrenched categories. Inference through the hierarchy is
what one does when one has not encoded the specific facts well enough to directly retrieve
them (Logan, 1988). As marine biologists become more and more familiar with killer
whales, we don’t think that they rely on inference to decide whether they breathe air or are
animals. Research on visual categorization into familiar categories suggests that people
classify objects directly into superordinates like animal or vehicle, rather than using
inference up the taxonomy after identifying the object as a sparrow or truck (Mack &
Palmeri, 2011; Murphy & Brownell, 1985). Of course, that is not to say that there will be no
difference between retrieving newly learned and entrenched information from memory;
there well may be. Our guess is that, rather than showing a positive distance effect, the
present effects would flatten out with practice, as people get faster and faster at retrieving
the information from memory.

Experimental studies using constructed categories are certainly not the only way to study
semantic memory. Studies of semantic memory using natural categories should continue,
perhaps in combination with experimentally controlled materials (as in Smith et al.’s, 1972
study).

Conclusion
Even taking into account the diversity of ways that hierarchical information might be
encoded and retrieved, we did not find that the traditional Quillian hierarchy was the favored
method. Instead, it appeared to be used only when other sources of information and retrieval
strategies were entirely removed. Therefore, we suspect that in everyday life, such a model
of hierarchical concepts is probably not the default way that information is retrieved from
semantic memory.
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Highlights

Four experiments examine the classic problem of how semantic memory is structured.

Subjects learned novel hierarchies, eliminating stubborn problems of confounding
variables.

Results gave little support for the Collins & Quillian network-inference model.

Results were consistent with feature-based models, including recent connectionist
models.
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Figure 1.
The taxonomies used in Experiment 1. Subjects learned either Form A or Form B.
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Figure 2.
Mean sentence verification reaction times in Experiment 1 as a function of level of the S
term (solid line) and distance in the hierarchy (dotted line).
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Figure 3.
The taxonomy used in Experiments 2–4.
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Figure 4.
Two of the categories from Experiment 2. In the original presentation, the two bugs on the
left in the HOBNIK category were red, and the other two were blue. In the LARs, the first
two were brown and the second two orange. Each distinct bug appeared in two sizes, as
shown.
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Figure 5.
Mean sentence verification reaction times in Experiment 2 as a function of level of the S
term (solid line) and distance in the hierarchy (dotted line).
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Figure 6.
Mean sentence verification reaction times in Experiment 4 as a function of level of the S
term (solid line) and distance in the hierarchy (dotted line).
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Table 2

Mean categorization accuracies (and SDs) in Experiment 2

Order of Learning Level

1 2 3 4

Bottom-up .97 (.04) .94 (.07) .97 (.03) .93 (.10)

Top-down .99 (.02) .92 (.11) .86 (.15) .95 (.07)
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