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Abstract
In this article, a stepwise procedure, correlation pursuit (COP), is developed for variable selection
under the sufficient dimension reduction framework, in which the response variable Y is
influenced by the predictors X1, X2, …, Xp through an unknown function of a few linear
combinations of them. Unlike linear stepwise regression, COP does not impose a special form of
relationship (such as linear) between the response variable and the predictor variables. The COP
procedure selects variables that attain the maximum correlation between the transformed response
and the linear combination of the variables. Various asymptotic properties of the COP procedure
are established, and in particular, its variable selection performance under diverging number of
predictors and sample size has been investigated. The excellent empirical performance of the COP
procedure in comparison with existing methods are demonstrated by both extensive simulation
studies and a real example in functional genomics.

Keywords
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1. Introduction
Advances in science and technology in the past few decades have led to an explosive growth
of high dimensional data across a variety of areas such as genetics, molecular biology,
cognitive sciences, environmental sciences, astrophysics, finance, internet commerce, etc.
Compared to their dimensionalities, a large amount of data sets generated from these areas
have relatively small sample sizes. Variable (or feature) selection and dimension reduction
are more than often key steps in analyzing these data. Much progress has been made in the
past few decades on variable selection for linear models (see Shao 1998 and Fan and Lv
2010 for a review). In recent years, shrinkage based procedures for simultaneously
estimating regression coefficients and selecting predictors have been particularly attractive
to researchers, and many promising algorithms such as LASSO (Tibshirani 1996, Zou 2006,
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Friedman 2007), least angle regression (LARS) (Efron et al. 2004), SCAD (Fan and Li
2001), etc., have been invented.

Let Y ∈ ℝ be a univariate response variable and X = (X1, X2, ⋯, Xp)′ ∈ ℝp a vector of p
continuous predictor variables. Throughout this article, we consider the following sufficient
dimension reduction (SDR) model framework as pioneered by Li (1991) and Cook (1994).
Let β1, β2, ⋯, βK be p-dimensional vectors with βi = (β1i, β2i, ⋯, βpi)′ for 1 ≤ i ≤ K. The
SDR model assumes that Y and X are mutually independent conditional on

, i.e.,

(1)

where “⊥″ means “independent of” and B = (β1, β2, ⋯, βK). Expression (1) implies that all

the information X contains about Y is contained in the K projections . A
predictor variable Xj (1 ≤ j ≤ p) is said to be relevant if there exists at least one i (1 ≤ i ≤ K)
such that βji ≠ 0. Let L be the number of relevant predictor variables. When there are a large
number of predictors (i.e. p is large), it is usually safe to impose the sparsity assumption,
which states that only a small subset of the predictors influence Y and the others are
irrelevant. In the SDR model, this assumption means that both K and L are small relative to
p.

In his seminal paper on dimension reduction, Li (1991) proposed a seemingly different
model of the form:

(2)

where f is an unknown (K + 1)-variate link function and ε is a stochastic error independent
of X. It has been shown that the two models (1) and (2) are in fact equivalent (Zeng and Zhu
2010). We henceforth always refer to β1, β2, ⋯, βK as the SDR directions and the space
spanned by these directions as a SDR subspace. In general, SDR subspaces are not unique.
To resolve this ambiguity, Cook (1994) introduced the concept of central subspace, which is
the intersection of all possible SDR subspaces and is a SDR subspace itself, and showed that
the central space is well-defined and unique under some general conditions. We denote the
central subspace by B) and assume its existence throughout this article.

Various methods have been developed for estimating β1, ⋯, βK in the literature on SDR.
One particular family of methods utilizes inverse regression, which is to regress X against
Y. The sliced inversion regression (SIR) method proposed by Li (1991) is the forerunner of
this family of methods. Recognizing that estimation of the SDR directions does not
automatically lead to variable selection, Cook (2004) derived various χ2 tests for assessing
the contribution of predictor variables to the SDR directions. Based on these tests, Li et al.
(2005) proposed a backward subset selection method for selecting significant predictors.
Following the recent trend of using the L1 or L2 penalty for variable selection, Zhong et al.
(2005) proposed to regularize the sample covariance matrix of the predictor variables in SIR
and developed a procedure called RSIR for variable selection. Li (2007) proposed Sparse
SIR (SSIR) to obtain shrinkage estimates of the SDR directions. Bondell and Li (2009)
further adopted the nonnegative garrote method for estimating the SDR directions and
showed that the resulting method is consistent in variable selection.

The majority of the aforementioned methods take a two-step approach to variable selection
under the SDR model. The first step is to perform dimension reduction, that is, to estimate
the SDR directions; and the second step is to select the relevant variables using statistical
testing or shrinkage methods. Because these methods need to estimate the covariance and

Zhong et al. Page 2

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conditional covariance matrices of X, both of which are of dimensions p × p, the
effectiveness and robustness of the two-step approach are questionable when p is large
relative to n. Zhu et al. (2006) have shown that the estimation accuracy of SDR directions
deteriorates as p increases. In other words, the more irrelevant variables there are, the more
likely a method fails to estimate the SDR directions accurately, and the less likely the
method identifies the true relevant predictor variables.

In this article, we propose correlation pursuit (COP), a stepwise procedure for simultaneous
dimension reduction and variable selection under the SDR model. Similar to projection
pursuit (Friedman and Tukey 1974, Huber 1985), COP defines a projection function to
measure the correlation between the transformed response and the projections of X and
pursues a subset of explanatory variables that maximize the projection function. It starts
with an randomly selected subset and iterates between finding an explanatory variable
(predictor) that significantly improves the current projection function to add to the subset
and finding an insignificant predictor to remove from the subset. During each iteration step,
COP needs only to consider the predictors currently in the subset and one more predictor
outside the subset. Therefore, COP can avoid the estimation and inversion of p × p
covariance and conditional covariance matrices of X and mitigate the curse of
dimensionality. Furthermore, COP performs dimension reduction and variable selection
simultaneously. Therefore, dimension reduction and variable selection can be mutually
enhanced. Our theoretical investigations as well as simulation studies show that COP is a
promising tool for dimension reduction and variable selection in high dimensional data
analysis.

The rest of the article is organized as follows. In Section 2, we give a brief introduction to
SIR, following a correlation interpretation of SIR provided by Chen and Li (1998). This
interpretation was also used in Fung et al. (2002) and Zhou and He (2008) for dimension
reduction via canonical correlation. In the same section, we describe the COP procedure and
derive various test statistics used by the procedure. The asymptotic behavior of the COP
procedure is discussed in Section 3. Several implementation issues of the procedure are
discussed in Section 4. Simulation and real data examples are reported in Sections 5 and 6,
respectively. Additional remarks in Section 7 conclude the article. An abbreviated version of
the proofs of the theorems is provided in the Appendix..

2. Correlation Pursuit for Variable Selection
2.1. Profile Correlation and SIR

Let η be an arbitrary direction in ℝp. We define the profile correlation between Y and η′X,
denoted by P(η), as:

(3)

where the maximization is taken over all possible transformations of Y including non-
monotone ones. The profile correlation P(η) reflects the largest possible correlation between
a transformed response T(Y) and the projection η′X. Let η1 be the direction that maximizes
P(η) subject to η′Ση = 1, that is, η1 = argmaxη′Ση=1 P(η). We refer to η1 as the first
principal direction for the profile correlation between Y and X and call P(η1) the first profile

correlation. Direction η1, or its projection , may not entirely characterize the dependency
between Y and X. Using P(η) as the projection function again, we can seek for a second

direction, denoted by η2, which is uncorrelated with , and maximizes P(η),
that is, η2 = argmaxη:η′Ση1=0 P(η). We refer to η2 as the second principal direction and
P(η2) as the second profile correlation. This procedure can be continued until no more
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directions can be found that are orthogonal to the obtained directions and have a nonzero
profile correlation with Y. Suppose K̃ principal directions exist between Y and X, which are
η1, η2, ⋯, and ηK̃, with the corresponding profile correlations P(η1) ≥ P(η2) ≥ ⋯ P(ηK̃) > 0.
We need to impose the following condition to establish the connection between the principal
directions and the SDR directions under the SDR model.

Condition 1 (Linearity Condition): For any η in ℝp, E(η′X|B′X) is linear in B′X, where B
is as defined in equation (1).

Proposition 2.1. Under the SDR model and the Linearity Condition, the principal directions
η1, η2, …, ηK̃ are in the central space B).

To make this article self-sufficient, we have included the proof of Proposition 2.1 in the
Appendix. Based on the proposition, the principal directions are indeed SDR directions. In
general, K̃ < K. When the link function f is symmetric along a direction, using correlation

alone may fail to recover this direction. For example, if , the profile correlation
between Y and X1 will always be zero. To exclude this possibility, we follow the convention
in the SDR literature to impose the following condition.

Condition 2 (Coverage Condition): The number of principal directions of profile correlation
is equal to the dimensionality of the central subspace, that is, K̃ = K.

Under both the linearity and coverage conditions, the principal directions η1, η2, ⋯, ηK
form a special basis of the central subspace B), that is, B) = span(η1, η2, …., ηK). This
basis is uniquely defined and is the estimation target of SIR. In the rest of the article, for
ease of discussion, we use β1, β2, …., βk and η1, η2, …, ηK, interchangeably.

Chen and Li (1998) showed that, at the population level, there exits an explicit solution for
the principal directions. In the proof of their Theorem 3.1, Chen and Li (1998) has derived
that

(4)

where M ≜ var[E(X|Y)] is the covariance matrix of the expectation of X given Y.
Furthermore, the principal directions of profile correlation are the solutions of the following
eigenvalue decomposition problem:

(5)

(6)

The principal directions η1, η2, …, and ηK are the first K eigenvectors of Σ−1 M, and their
corresponding eigenvalues are exactly the squared profile correlations, that is, P2(ηi) = λi
for i = 1, 2, …, K.

Given independent observations {(xi, yi)}i=1, ⋯, n of (X, Y), where xi = (xi1, ⋯, xip)′, Σ can
be estimated by the sample covariance matrix,

(7)
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where x̄ is the sample mean of {xi}. Li (1991) proposed the following SIR procedure to
estimate M. First, the range of  is divided into H disjoint intervals, denoted as S1, …,

SH. For h = 1, …, H, the mean vector  is calculated, where nh is the number
of yi's in Sh. Then, M is estimated by

(8)

and the matrix Σ−1 M is estimated by Σ̂−1 M̂. The first K eigenvectors of Σ̂−1 M̂, denoted by
η̂1, η̂2, …, η̂K, are used to estimate the first K eigenvectors of Σ−1 M or, equivalently, the
principal directions η1, η2, …, ηK, respectively. The first K eigenvalues of Σ̂−1 M̂, denoted
by λ̂1, λ̂2, …, λ̂K, are used to estimate the eigenvalues of Σ−1 M or, equivalently, the
squared profile correlations λ1, λ2, …, λK, respectively.

2.2. Correlation Pursuit
The SIR method needs to estimate the two p × p covariance matrices Σ and M, and to obtain
the eigenvalue decomposition of Σ̂−1 M̂. When a large number of irrelevant variables are
present and the sample size n is relatively small, Σ̂ and M̂ become unstable, which leads to
very inaccurate estimates of principal directions η̂1, η̂2, …, η̂K (Zhu et al. 2006). As a
consequence, those shrinkage-based variable selection methods that rely on η̂1, η̂2, …, η̂K
often perform poorly for the SDR model when p is large. We here propose a stepwise SIR-
based procedure for simultaneous dimension reduction (i.e., estimating the principal
directions) and variable selection (i.e., identifying true predictors). Our procedure starts with
a collection of randomly selected predictors and iterates between an addition step, which
selects and adds a predictor to the collection, and a deletion step, which selects and deletes a
predictor from the collection. The procedure terminates when no new addition or deletion
occurs.

The Addition Step. Let denote the collection of the indices of the selected predictors and
X  the collection of the selected variables. Applying SIR to the data involving only the

predictors in X , we obtain the estimated squared profile correlations .
Superscript indicates that the estimated squared profile correlations depend on the current
subset of selected predictors. Let Xt be an arbitrary predictor outside and + t = {t}.
Applying SIR to the data involving the predictors in + t, we obtain the estimated squared

profile correlations . Because ⊂ + t, it is easy to see that

. The difference  reflects the amount of improvement in the first profile
correlation due to the incorporation of Xt. We standardize this difference and use the the
resulting test statistic

(9)

to assess the significance of adding Xt to in improving the first profile correlation.
Similarly, the contributions of adding Xt to the other profile correlations can be assessed by

(10)
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for 2 ≤ i ≤ K. The overall contribution of adding Xt to the improvement in all the K profile

correlations can be assessed by combining the statistics  into one single test statistic

(11)

We further define that

(12)

Let Xt̄ be a predictor that attains , that is, , and let ce be a pre-
specified threshold (details about its choice are deferred to the next two sections). Then, if

, we add t̄ to  otherwise, we do not add any variable.

The deletion step. Let Xt be an arbitrary predictor in and define − t = − {t}. Let

 be the estimated squared profile correlations based on the data
involving the predictors in − t only. The impact of deleting Xt from on the ith squared
profile correlation can be measured by

(13)

for 1 ≤ i ≤ K. The overall impact of deleting Xt is measured by

(14)

and the least impact from deleting one predictor from is then defined to be

(15)

Let Xṯ be a predictor that achieves , and let cd be a pre-specified threshold for

deletion. If , we delete Xṯ from  otherwise, no deletion happens.

The asymptotic distributions of the proposed statistics and the selection of the thresholds
will be discussed in the next two sections. Because the described procedure aims to find
predictors that can most significantly improve the profile correlations between Y and X, we
call it the Correlation Pursuit procedure (COP). Below we summarize COP into a pseudo-
code.

The COP Algorithm
1. Set the number of principal directions K and the threshold values ce and cd.

2. Randomly select K + 1 variables as the initial collection of selected variables 

3. Iterate until no more addition or deletion of predictors can be performed:

Zhong et al. Page 6

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The addition step:

•
Find t̄ such that ;

•
If , add t̄ to  that is, let = + t̄;

The deletion step:

•
Find ṯ such that ;

• If , delete ṯ from  that is, let = − ṯ;

4. Output 

3. Theoretical Properties
3.1. Asymptotic distributions of test statistics in COP

Let us first consider an addition step. We assume that SIR uses a fixed slicing scheme
relative to the number of observations n, that is, the slices S1, S2, ⋯, SH are fixed (defined
by the range of the response variable) but the number of observations in each slice goes to
infinity. Let Xt be an arbitrary predictor in c. Under the null hypothesis H0 that all the
predictors in c are irrelevant, we have ηt1 = ηt2 = ⋯ = ηtK = 0. Recall that the statistics we
propose to measure the contributions of Xt to the K profile correlations are

, and to measure the overall contribution of Xt by

. To establish the asymptotic distributions of these statistics, we need to impose a
condition on the conditional expectation of Xt given X .

Condition 3 (Regression Condition): E(Xt | X ) is linear in X .

Theorem 3.1. Assume that Conditions 1 and 2 hold, Condition 3 holds for (X , Xt) for any
Xt ∈ X C, and the squared profile correlations λ1, λ2, …, λK are positive and different
from each other. Then, for any given fixed slicing scheme, under the null hypothesis H0 that
all the predictors in c are irrelevant, we have that

(16)

in distribution and

(17)

in distribution as n → ∞. Here, (Z1t, Z2t, ⋯, ZKt) follows the multivariate normal
distribution with mean zero and covariance matrix WKt. The explicit expression of WKt is
given in the Appendix.

The asymptotic distributions in Theorem 3.1 can be much simplified if we impose the
following condition on the variance of the conditional expectation of Xt given X .

Condition 4 (Constant Variance Condition): E[(Xt − E(Xt|X ))2|X ] is a constant.

Corollary 3.1. Assume that Conditions 1 and 2 hold, Conditions 3 and 4 hold for (X , Xt)
for Xt ∈ X c, and the squared profile correlations λ1, λ2, …, λK are positive and different
from each other. Then, for any given fixed slicing scheme, under the null hypothesis H0 that
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all the predictors in c are irrelevant, we have that  are

asymptotically independent and identically distributed as χ2(1), and  is
asymptotically χ2(K).

Theorems 3.1 and Corollary 3.1 characterize the asymptotic behaviors of the test statistics
for an arbitrary Xt in c. In the COP procedure, however, the predictor that attains the

maximum value of  among t ∈ c, which is , is considered a candidate
predictor to enter  Our next theorem characterizes the joint asymptotic behavior of

 as well as that of .

Note that the linearity, regression, and constant variance conditions together are more
general than the normality assumption on X because they only need to hold for the basis of
the central subspace (e.g., B or η1, ⋯, ηK) and a given subset of predictors (e.g., . If we
require that the conditions hold for any projection and any given subset of the predictors,
however, then it is equivalent to requiring that X follows a multivariate normal distribution.
In order to understand the joint behavior of all the COP statistics, in what follows we impose
the normality assumption on X.

Let  denote the collection of currently selected predictors and its
complement respectively. Let Σ  = Cov(X ), Σ c = Cov(X c), Σ c = Cov(X , X c),

and . Note that . Let ã = (ã1, ã2, …, ãp−d)′ be the
vector of the diagonal elements of Σ̃ c. Define D c = diag(ã1, ã2, …, ãp−d), and define

.

Theorem 3.2. Assume that (a) X follows a multivariate normal distribution; (b) the coverage
condition holds; and (c) the squared profile correlations λ1, λ2, ⋯, λK are nonzero and
different from each other. Then, for any fixed slicing scheme, under the null hypothesis H0
that all the predictors in c are irrelevant, we have

(18)

and

(19)

as n goes to ∞. Here zk = (zk,d+1, ⋯, zk,p) for k = 1, ⋯, K are mutually independent and
each zk follows a multivariate normal with mean zero and covariance matrix U c.

We now consider deletion steps of the COP procedure. We let denote the current
collection of selected predictors before a deletion step, and let Xt be an arbitrary predictor in

 Note that , where 𝒜 ̃ = − t for 1 ≤ k ≤ K. Therefore, results similar
to those stated in Theorem 3.1 and Corollary 3.1 can be obtained for

 after some modifications described below.
First, our current “null hypothesis”, denoted as H0t, is that Xt and the predictors in c are
irrelevant. Second, the regression and constant variance conditions need to be imposed on

the conditional expectation of Xt given X𝒜 ̃ instead. The asymptotic distribution of ,
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however, turns out to be fairly complicated if not entirely elusive, due to the fact that there
does not exist a common null hypothesis for all Xt ∈  In what follows, we will establish
two strong results that have implications for properly selecting the thresholds ce and cd, as
well as for the consistency of the COP procedure in selecting true predictors.

3.2. Selection consistency of COP
Let be the collection of the true predictors under the SDR model. The principal profile
correlation directions are η1, η2, ⋯, ηK, which form a basis of the central subspace. Assume
that S1, ⋯, SH is a fixed slicing scheme used by SIR.

Let ph = P(y ∈ Sh), , and

(20)

where Lh,K = E(vK|Y ∈ Sh). A few more conditions are needed for the results we state in the
next two theorems.

Condition 5. X follows a multivariate normal distribution with covariance matrix Σ such
that τmin ≤ λmin(Σp) ≤ λmax(Σp) ≤ τmax, where τmin and τmax are two positive constants, and
λmin(·) and λmax(·) are the minimum and maximum eigenvalues of a matrix, respectively.

Condition 6. There exists a constant ωH > 0 such that λmin(MH,K) > ωH.

Condition 7. There exist constants  and υ > 0 such that for any slice Sh and any two

predictors Xi and Xj,  for all i, j = 1, ⋯, p,
and h = 1, ⋯, H. In addition,

Condition 8. Let ηj = (ηj1, ηj2, ⋯, ηjK)′ in which ηjk is the coefficient of Xj in the kth
principal correlation direction ηk. There exist a positive constant ϖ > 0 and a nonnegative
constant ξ0; such that ‖ ηj ‖2> ϖ · n−ξ0 for j ∈  where ‖ · ‖ denotes the standard L2 − norm.

Condition 9. limn→∞ p = ∞ and p = o(nϱ0) with ϱ0 ≥ 0 and 2ϱ0 + 2ξ0 < 1.

Condition 5 ensures that the variances of the predictors are on a comparable scale and that
they are not strongly correlated. Condition 6 assumes a lower bound for the eigenvalues of
MH,K, which is slightly stronger than the coverage condition that ensures SIR to recover all
the SDR directions. Condition 7 imposes conditions on the moments of the conditional
expectations of X given Y ∈ Sh so that the Bernstein inequalities hold for the conditional
sample means. Condition 8 assumes that the coefficients of any true predictors do not
decrease to zero too fast as both n and p increase; otherwise, such predictors will not be
identifiable asymptotically. Condition 9 allows p to increase as n increases, but their rates
are constrained. Similar conditions have been used by others for establishing variable
selection results for stepwise procedures in linear regression (Wang 2009, Fan and Lv 2008).
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Theorem 3.3. Let be the set of currently selected predictors and let be the set of true

predictors. Let . Assume that Conditions 5–9 hold. Then, we have

(21)

for any fixed slicing scheme as n goes to ∞.

The probability statement in (21) is not just about one given collection of predictors. It
considers all the possible collections that do not include all the true predictors yet, that is,
{ : c ⋂ ≠ ∅}. In other words, it considers all the possible scenarios where the null

hypothesis H0 is not true. Further note that . Because

, from equation (21), we have

(22)

This result implies that by setting ce to ϑn1−ξ0 or smaller, if the COP procedure has not
collected all the true predictors yet, then with probability going to 1 (as n goes to ∞), it will
continue to select a predictor to the current collection. Thus, the addition step of COP will
not stop until all the true predictors are selected. Another way to interpret (22) is that the
selection power of the COP procedure converges to 1 asymptotically.

Theorem 3.4. Assume that Conditions 5–9 hold. Then we have

(23)

for ϱ > 1/2 + ϱ0, and any positive constant C, under any fixed slicing scheme with n going to
∞.

Theorem 3.4 has two implications. The first one regards the addition step of COP. Once all
the true predictors are selected, that is, c ⋂ = ∅, the probability that it will select a false
predictor from c converges to zero. The second implication concerns the deletion step.
Consider one collection of selected predictors 𝒜 ̃ and assume that 𝒜 ̃ contains all the true
predictors and also some irrelevant ones, that is, 𝒜 ̃ ⊃  Clearly,

(24)

Therefore,

(25)

In other words, with probability going to 1, the COP procedure will delete an irrelevant
predictor from the current collection.

One possible choice of the thresholds is . From Theorem 3.3,
asymptotically, the COP algorithm will not stop selecting variables until all the true
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predictors are included. Moreover, once all the true predictors are included, according to
Theorem 3.4, all the redundant variables will be removed from the selected variables.

4. Implementation Issues
When implementing the COP algorithm, one needs to specify the number of profile
correlation directions K, the thresholds for the addition and deletion steps ce and cd, and the
slicing scheme particularly the number of slices H. A proper specification of these tuning
parameters is critical for the success of the COP algorithm.

4.1. Slicing Schemes and the Choice of H
Li (1991) suggested that in terms of estimation, the performance of SIR is robust to the
number of slices in general. The COP algorithm uses SIR to derive test statistics for
selecting variables. It is of interest to understand the impact of a slicing scheme on the
involved testing procedures. Again, we consider an addition step in the COP procedure. Let

be the current collection of selected predictors. Let Xt be an arbitrary predictor in c.

Theorem 4.1. Assume that X follows a multivariate normal distribution. Then, for any given
fixed slicing scheme, we have

(26)

where

(27)

, η̃t,  = Cov(Xt, vK|X ) and MH,K is defined in equation (20).

The difference between Theorem 3.1 and Theorem 4.1 is that the latter does not assume that
Xt is an irrelevant predictor. When Xt is indeed a true predictor, then ηt is not a zero vector
and maxt∈ c⋂  CH, t is greater than zero. The larger CH, t is, the more likely Xt will be
added to  The next result shows that a finer slicing scheme leads to higher power for the
addition step by COP. For any two different slicing schemes S = (S1, ⋯, SH1) and

, we say that S′ is a refinement of S, denoted by S′ ≾ S, if for any ,

there exists a Sh ∈ S such that .

Proposition 4.1. Suppose S and S′ are two slicing schemes such that S′ ≾ S. Then, for any
η ∈ ℝK, we have

(28)

where MH2,K and MH1,K are defined as in (20) under the slicing schemes S′ and S,
respectively.

Proposition 4.1 implies that the constant CH,  in Theorem 4.1 becomes larger when a finer
slicing scheme is used. This further suggests that the power of the COP procedure in
selecting true predictors tends to increase if a slicing scheme uses a larger number of slices.
On the other hand, when a slicing scheme uses a larger number of slices, the number of
observations in each slice will decrease, which makes the estimate of E(X|y ∈ Sh) less
accurate and further makes the estimates of M = Cov{E(X|Y)} and its eigenvalues λ1, ⋯,
λK less stable. The success of the COP procedure hinges on a good balance between the

Zhong et al. Page 11

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



number of slices and the number of observations in each slice. We observed from intensive
simulation studies that, with a reasonable number of observations in each slice (say ≥ 20), a
large number of slices is preferred.

4.2. Choice of ce and cd

Section 3 has characterized the asymptotic distributions or behaviors of the test statistics
involved in the COP procedure. In theory, these results (Theorems 3.4 and 3.5) can be used
for choosing the thresholds ce and cd. In practice, however, these thresholds should be used
with much caution due to the following concerns. First, the distributions obtained in Section
3 are for a single addition or deletion step and under various assumptions. Second, the
distributions are valid only in an asymptotic sense. In what follows, we propose to use a
cross-validation procedure for selecting ce and cd.

Let {αi}1≤i≤d be a pre-specified grid on a sub-interval in (0, 1) and  be the

collection of the 100αith percentile of . For convenience, we only consider the m pairs of

 for 1 ≤ i ≤ m. Note that cd < ce and that there is only one tuning
parameter we need to determine. We follow the general 5-fold cross validation scheme to
select the best pair of ce and cd. We randomly divide the original data into five equal-sized
subsets, and then apply the COP procedure to any four subsets to generate the estimation
and variable selection results. The remaining subset of the data is used to test the model and
generate a performance measurement. The performance measurements are averaged and the
result is used as the CV score. We choose the pair of ce and cd that mazimizes the CV score.

We define the performance measure used in the CV procedure as follows. Suppose is the
collection of selected predictors and η1, , ⋯, ηK,  are the estimates of the principal
profile correlation directions produced by applying the COP procedure to the training data
set. We consider the first principal profile correlation direction first. Recall η1,  is the
direction that achieves the maximum correlation of a linear projection of X and the

transformed response Y, and the optimal transformation is  (Theorem 3.1
in Chen and Li (1998)). With η1,  estimated by η̂1,  using the training data, we apply
LOESS proposed by Cleveland (1979) to fit T1(Y) using the training data and denote the
fitted transformation as T̂1(·). Let X ̃ and Ỹ be the data matrix and the response vector of the
testing data set. Then, the squared profile correlation between X̃ and Ỹ based on the

direction η̂1,  and transformation T ̂1(·) is computed as . Similarly, the
squared profile correlations between X̃ and Ỹ along η̂2, , ⋯, η̂K,  can be calculated. The
overall performance measure is defined to be

(29)

The CV score for any pair (ce, cd) is defined to be the average PC over the five possible
partitions of the training-test data sets.

4.3. Selection of the number of directions K
To determine K, the number of principal profile correlation directions, we adopt a BIC-type
criterion proposed by Zhu et al. (2006). For any given k between 1 and J, where J ≤ max(n,
p) is a reasonable upper bound chosen by the user, we apply the COP procedure with K = k.
Suppose the resulting collection of the selected predictors is k and the cardinality of k is
pk. Using the data involving only the selected predictors, we can estimate M = Cov(E(X k|
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Y)) as before and denote the result as M̂. Let θ̂1 ≥ θ̂2 ⋯ θ̂p be the eigenvalues of M̂ + Ipk,
where Ipk is the pk by pk identity matrix, and let τ be the number of θ̂i's that are greater than
1. Define

(30)

where . We choose K = argmin1≤k≤J G(k). In the
original criterion proposed by Zhu et al. (2006), the authors show that the criterion produces
a consistent estimate of K for fixed pk. Our simulation study shows that the modified
criterion leads to the correct specification of K for the COP procedure and can be generally
used in practice.

5. Simulation Study
We have performed extensive simulation studies to compare the COP algorithm with a few
existing variable selection methods and will present three examples in this section. When
implementing the COP algorithm in these examples, we use the CV procedure and the GIC
criterion discussed in the previous section to select the thresholds ce and cd and the
dimensionality K, respectively. The grids used for selecting ce is

, and the associated grid for selecting cd is

. The range used for selecting K is from 1 to 4 (i.e., J = 4).
For SSIR, we use the grid {0, 0.1, …, 0.9, 1} × {0, 0.1, …, 0.9, 1} to select the pair of
tuning parameters that leads to its best performance. Both COP and SSIR involve slicing the
range of the response variable, for which we use the same scheme to facilitate fair
comparison.

5.1. Linear models
In this example, we consider the linear model

(31)

where X = (X1, X2, ⋯, Xp)′ follows a p-variate normal distribution with mean zero and
covariances Cov(Xi, Xj) = ρ|i−j| for 1 ≤ i, j ≤ p, and ε is independent of X and follows N(0,
1). The variable selection methods we compare the COP procedure to include LASSO,
SCAD (Fan and Li 2001), MARS, and SSIR (Li 2007). The R packages SIS, lars and mda
are used to run SCAD, LASSO and MARS, respectively. The tuning parameters involved in
SCAD and LASSO are selected by cross validation. We use the codes provided by the
original authors to run SSIR. In this example, we consider two specifications of the linear
model given below.

Scenario 1.1 : p = 8, β = (3, 1.5, 2, 0, 0, 0, 0, 0)′, σ = 3, ρ = 0.5;

Scenario 1.2 : p = 1000, β = (3, 1.5, 1, 1, 2, 1, 0.9, 1, 1, 1, 0, ⋯, 0)′, σ = 1, ρ = 0.5.

Under Scenario 1.1, Model (31) involves 3 true predictors and 5 irrelevant variables, and
was originally used in Tibshirani (1996) and Fan and Li (2001) to demonstrate the empirical
performances of LASSO and SCAD. We randomly generated 100 data sets from Scenario
1.1, each with 40 data points (i.e. n=40), and applied the aforementioned methods to the data
sets. Two quantities were used to measure the variable selection performance of each
method, which are the average number of irrelevant predictors falsely selected as true
predictors (denoted by FP) and the average number of true predictors falsely excluded as
irrelevant predictors (denoted by FN). Note that under Scenario 1.1, FPs and FNs range from
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0 to 5 and 0 to 3, respectively, with small values indicating good performances in variable
selection. The FP and FN values of the tested methods are reported in Table 1.

Under Scenario 1.2, Model (31) involves ten true predictors and 990 irrelevant predictors
and is clearly more challenging than Scenario 1.1. We randomly generated 100 data sets
each with 200 data points (i.e. n=200) from Scenario 1.2. Note that in each data set, n < p.
Similar to Scenario 1.1, we applied the methods mentioned above to the data sets and report
the FP and FN values of these methods in Table 1. The tuning parameters in all these
methods are determined by cross validation.

From the left panel of Table 1, under Scenario 1.1, SSIR has the lowest FP value (FP=0.19),
that is, the average number of irrelevant variables selected by SSIR is 0.19; and COP has the
third lowest FP values (0.71). The other methods tend to have more false positives than
SSIR and COP. In terms of FNs, the order of the methods ranked from the lowest to the
highest is MARS, SCAD, LASSO, COP, and SSIR. The relative sub-par performance of
COP and SSIR is due to the fact that these two methods are developed for variable selection
under models more general than the linear model.

From the right panel of Table 1, under Scenario 1.2, COP has the lowest FP value
(FP=2.28). In terms of FN, LASSO and MARS have the lowest value with COP following
modestly behind. Compared with MARS, COP has a much lower FP value and a slightly
higher FN value. SSIR breaks down under Scenario 1.2 because the variance-covariance
matrix of X is no longer invertible. In terms of both FP and FN, COP outperformed SCAD
under the scenario. One explanation for this comparison result is that SCAD involves non-
convex optimization, and can be unstable in implementation.

5.2. Nonlinear multiple index models
In this example, we consider the following multiple index model,

(32)

where X1, ⋯,, Xp are i.i.d. N(0, 1) random variables, ε is N(0, 1) and independent of X, and
d and σ are parameters that need to be further specified. This model was originally used in
Li (1991) for demonstrating the performance of SIR. It is not difficult to see that given the
two projections X1 + X2 + ⋯ + Xd and X2 + X3 + X4, Y and X are independent with each
other. The dimensionality of the central subspace of Model (32) is two, and the collection of
true predictors is {X1, ⋯, Xd} ⋃ {X2, X3, X4}. Because Model (32) is nonlinear, methods
that were designed specifically for linear models such as LASSO and SCAD are clearly at
disadvantage. Therefore, in this example, we only compare the performances of MARS,
SSIR and COP.

By specifying p, d and σ at different values, we have the following three scenarios,

Scenario 2.1: p = 30, d = 3, σ = 0.1;

Scenario 2.2: p = 30, d = 3, σ = 2;

Scenario 2.3: p = 400, d = 8, σ = 0.1.

For each scenario, we generated 100 data sets each with 200 observations (i.e. n=200) and
applied MARS, SSIR and COP to each data set. The resulting FP and FN values are reported
in Table 2.

Zhong et al. Page 14

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For Scenario 2.1, MARS achieved the lowest FN value (0.03), but its FP value was
unacceptably high (16.55); SSIR had the lowest FP values, but its FN value was the highest
among the three. The FP and FN values of COP were between the extremes. It appears that
the performances of SSIR and COP are similar under Scenario 2.1. For Scenario 2.2, COP
outperformed SSIR in terms of both FP and FN values. MARS again achieved the lowest
FN value (0.32) at the expense of an unacceptable FP value (17.18). Scenario 2.3 is the most
challenging among the three scenarios, in which the number of predictors exceeds the
number of observations. Both MARS and SSIR broke down under this scenario. However,
COP still demonstrated an excellent performance with its FP and FN values reasonably low.

5.3. Heteroscedastic models
In the previous examples, the true predictors affect only the mean response. In this example,
we consider the following heteroscedastic model

(33)

where X = (X1, X2, ⋯, Xp)′ follows a p-variate normal distribution with mean zero and
covariances Cov(Xi, Xj) = ρ|i−j| for 1 ≤ i, j ≤ p, ε is independent of X and follows N(0, 1),
and βj,1 = 1 for 1 ≤ j ≤ 8 and =0 for j ≥ 9. Note that the central subspace is spanned by β1 =
(β1,1, β2,1, …, βp,1)′ and the number of true predictors is 8. We further specify ρ and p in
(33) and consider the following three scenarios,

Scenario 3.1 : ρ = 0, p = 500;

Scenario 3.2 : ρ = 0, p = 1000;

Scenario 3.3 : ρ = 0.3, p = 1500.

For each scenario, we generated 100 data sets each with n = 1000 observations and applied
MARS, SSIR and COP to the data sets. The FP and FN values of the three methods are
listed in Table 3.

Under Scenario 3.1, both SSIR and COP outperformed MARS. The FN value of SSIR (0.99)
is less than that of COP (1.21), but the FP value (52.54) is much larger than that of COP
(5.71). Under both Scenarios 3.2 and 3.3, in which p is much larger than n, SSIR broke
down, but COP still demonstrated excellent performances. The performances of MARS
under these two scenarios were fairly poor.

6. Application: Predict Gene Expression from Sequence Using Next-
generation Sequencing Data

Embryonic stem cells (ESCs) maintain self-renewal and pluripotency as they have the
ability to differentiate into all cell types. To enhance the understanding of the embryonic
stem cells development, predictive models, such as regression models, can be constructed in
which the gene expression is regarded as the response variable and various features
associated with gene-regulating transcription factors (TFs) are taken as the predictors.
Examples of such features include motif scores based on position-specific weight matrices
of motifs recognized by the TFs Conlon et al. (2003), and ChIP-chip log ratios.

Recently, the emerging next-generation sequencing technologies, in particular, RNA-Seq
and ChIP-Seq, offer researchers an unprecedented opportunity to build predictive models for
complex biological processes such as gene regulation. Compared to the traditional
hybridization-based methods, such as microarray, RNA-Seq and ChIP-Seq provide more
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accurate quantification of gene expression and TF-DNA binding locations respectively
(Mortazavi et al. 2008, Wilhelm et al. 2008, Nagalakshmi et al. 2008, Boyer et al. 2005,
Johnson et al. 2007).

To quantify gene expression in RNA-Seq data, one may calculate the RPKM (reads per
kilobase of exon region per million mapped reads), which has been shown to be proportional
to the gene expression levels (Cloonan et al. 2008). From ChIP-Seq data, Ouyang et al.
(2009) proposed a feature named TF association strength (TFAS), which was shown to
explain a much higher proportion of gene expression variation than traditional predictors in
predictive models. In particular, for each TF, the TFAS for each gene is computed as a
weighted sum of the corresponding ChIP-Seq signal strengths, where the weights reflect the
proximity of the signal to the gene. We here examine whether we can build a better
predictive model for gene expressions by combining both TFASs and motif scores of TF in
mouse ESCs.

To achieve this goal, we compiled a data set consisting of gene expressions, TFASs, and
motif scores. In this data set, the RPKMs were calculated as gene expression levels from
RNA-Seq data in mouse ESCs (Cloonan et al. (2008)). The TFASs of 12 TFs were
calculated from the ChIP-Seq experiments in mouse ESCs (Chen et al. (2008)). In addition,
we supplement this data set with motif scores of putative TFs of mouse. From the
transcription factor database TRANSFAC, we complied a list of 300 TF binding motifs of
mouse. For each gene, a matching score was calculated using the scoring system described
in Zhong et al. (2005) for each TFBM. The matching score can be considered intuitively as
the expected number of occurrences of a TFBM on the gene's promoter region. To build a
predictive model in mouse ESC, we treat the gene expression as the response variable and
the 12 TFASs as well as the 300 TF motif matching scores as predictors. More precisely, the
response is a vector with 12408 entries and the data matrix is a 12408 × 312 matrix with (i,
j)th entry representing the TFAS score of of the ith gene's promoter region for TF j if j ≤ 12;
representing the matching score of the ith gene's promoter region for TF j if j > 12.

We have applied COP to this data set. The procedure has identified two principal directions
and selected in total 42 predictors. The first squared profile correlation is λ1 = 0.67, and the
second squared profile correlation is λ2 = 0.20. Among the 12 TFASs calculated from ChIP-
Seq, eight of them were selected by COP. In particular, Oct4 is a well-known master
regulator regulating the pluripotency, and Klf4 regulates differentiation (Cai et al. 2010).
Evidence also suggests that at these early stages of development, STAT3 activation is
required for self-renewal of ESCs (Matsuda et al. 1999). Among the 300 TF motif scores, 34
of them are selected by COP. To further understand what extra information that TF motif
scores provide, we annotate the functions of the 34 TFs. It is of interest to note that 24 out of
the 34 selected motifs correspond to TFs that are either regulators for development or
cancer-related; see Table 4. Since ESCs are in a developmental phase, it is not surprising to
have active TFs regulating general development. Some recent evidences suggest that tumor
suppressors that control cancer cell proliferation also regulate stem cell self-renewal (Pardal
et al. 2005). Thus, a careful study of these cancer-related TFs could lead to a better
understanding of the stem cell regulatory network.

7. Discussion
The contribution of the COP procedure to the development of variable selection
methodologies for high dimensional regression analysis is two-fold. First, it dos not impose
any assumption on the relationship between the response variable and the predictors, and the
sufficient dimension reduction framework that the COP procedure relies on includes fully
nonparametric models as special cases. Therefore, COP can be considered a model-free
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variable selection procedure applicable in any high dimensional data analysis. Second, as
demonstrated by our simulation studies, the COP procedure can effectively handle hundreds
and thousands of predictors, which can be extremely challenging to other existing methods
for variable selection beyond linear or parametric models. Like linear stepwise regression,
the COP procedure may encounter issues typical to stepwise procedures as discussed in
Miller (1984). Nonetheless, we believe that the COP procedure should become an
indispensable member of the repository of variable selection tools and recommend its broad
use. When a parametric model is postulated for the relationship between the response and
the predictor variables and model-specific variable selection methods are available, we
recommend to use COP together with these methods as a safeguard against possible model-
misidentification. We have implemented the COP procedure in R, and the R package can be
downloaded from http://cran.r-project.org/web/packages/COP/ or requested from the authors
directly.

As a trade-off, the COP procedure imposes various assumptions on the distribution of the
predictors, of which the linearity assumption is the most fundamental and crucial. When the
linearity condition is required to hold for any lower dimensional projection, it is equivalent
to requiring that the joint distribution of the predictors is elliptically-contoured (Eaton 1986).
Hall and Li (1993) establishes the fact that low dimensional projections from high
dimensional data approximately satisfy the linearity condition, which to a certain degree
alleviates the concern of the linearity assumption and explains why SIR and the COP
procedure worked well under mild violation of the assumption. When the linearity condition
is heavily violated, data re-weighting schemes such as the Voronoi re-weighting scheme
(Cook and Nachtsheim 1994) can be used to correct the violation. We plan to incorporate
such schemes into the COP procedure in the future.

When the number of the predictors is extremely large, the performance of the COP
procedure can be compromised. This is also the case for variable selection methods under
the linear model. Lately, Fan and Lv (2008) advocates a two-step approach to attack the so-
called ultra-high dimensionality. The first step is to perform screening to reduce the
dimensionality from ultra-high to high or moderately high, and then in the second step,
variable selection methods are applied to identify the true predictors. The same approach can
be used for variable selection under the SDR framework. More precisely, we can apply the
forward COP (FCOP) precedure, which is simply the COP procedure with the deletion step
removed, to reduce the dimensionality of a problem from ultra-high to moderely high. The
FCOP procedure is much easier to implement and computationally more efficient than the
COP procedure. Then, the usual COP procedure is applied to the reduced data to select the
true predictors. This approach is currently under investigation and the results will be
reported in a future publication.
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Appendix

A.1 PROOF OF PROPOSITION 2.1
Let ⊥(B) denote the space of vectors such that for any ρ ∈ ⊥(B) and any β ∈ B), ρ′Σβ
= 0. Let ⊥(K̃) be the space of vectors such that for any ρ ∈ ⊥(K̃,) ρ′Σηk = 0 for k = 1, ⋯,
K̃. We will show that ⊥(B) ⊆ ⊥(K̃), which means, for any ρ ∈ ⊥(B) P(ρ) = 0. First,
because for any T, T(Y)⊥η′X | B′X, then cov(T(Y), η′X) = E(T(Y)η′X) = E(E(T(Y)|B
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′X)E(η′X|B′X)). Due to the linearity condition, for any ρ ∈ ⊥(B),

, where c1, ⋯, cK are linear coefficients. In addition, since

 for k = 1, ⋯, K, E(ρ′X|B′X) = 0. Consequently,

, P(ρ) = 0 and ⊥(B) ⊆ ⊥(K̃). Proposition 2.1
holds.

A.1 PROOF OF THEOREM 3.1
Without loss of generality, we let = {1, ⋯, d} and t = d + 1. Let X(j) be the vector of n i.i.d
observations of the jth variable for j = 1, ⋯, d + 1. We assume that the predictors have been
centered to have zero sample mean. Denote Xn×j = (X(1), ⋯, X(j)) for j = d, d + 1. We let

where  is the average of the first j variables for those individuals whose
responses fall into the hth slice Sh, h = 1, ⋯, H. Let nh be the number of observations in the

hth slice, h = 1, ⋯, H. Let  be the ith largest eigenvalue of  for j = d, d + 1
respectively, where Σ̂j is the sample variance-covariance matrix of Xn×j. It is difficult to see

the asymptotic distribution of  for i = 1, ⋯, K directly based on  for j = d,

d + 1. We did some transformations such that the transformed  (with eigenvalues

unchanged) is a sub-matrix of the transformed .

Let

where σ̂2 is the sample variance of . Denote

. Let γ = Xd+1 − E(Xd+1|X1, ⋯, Xd), and γn×1 be the n regression error
terms of the n observed Xd+1 on X1, ⋯, Xd. Then γn×1 are i.i.d with mean zero and a finite
variance. Under the null hypothesis H0 : ηd+1,i = 0, i = 1, ⋯, K we have E(γ|y) = E(E(γ|X1,
⋯, Xd)|y) = 0 for any y. Let γ̄ be the mean of γn×1. Then

With transformations on , we showed that  for i = 1, ⋯, K equals a
squared linear combination of γ̄h. Thus, we just need to show that (γ̄1, ⋯, γ̄H) converges to
a multivariate normal distribution, and we complete the proof. Let

. Define four matrices, AH×H, BH×d, Ed×d and ΓH×d, where
AH×H=diag{var(γ|y ∈ S1), ⋯, var(γ|y ∈ SH)}/σ2; the (h, j)th entry of BH×d is
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, the (j, j′)th entry of Ed×d equals cov(zj′γ, zjγ)/σ2, the (h, j)th entry
of ΓH×d is  and σ2 = limn→ σ̂2 = Var(γ). Let ϒ be a d by d matrix and

Define Q̃ to be a d × K matrix with jth column as , where qj is the the jth

eigenvector of the limiting matrix . Then WKt =
Q̃TϒQ̃.

A.1 PROOF OF Corollary 3.1
With an additional condition that E(γ2|X1, ⋯, Xd) is constant, we can show that the
asymptotic variance matrix of (γ̄1, ⋯, γ̄H) adopts a special form, with which the asymptotic
standard chi-quare distribution can be derived.

A.3 PROOF OF THEOREM 3.2
Without loss of generality, we let = {X1, ⋯, Xd}. Following the notations used in
Theorem 3.1, let γj = Xj − E(Xj|Xi, i ∈  for j ∈ c, and

Let . Similar as in the proof of Theorem 3.1, we basically show  for j = d
+ 1, ⋯, p and h = 1, ⋯, H converge to a multivariate normal distribution.

A.3 PROOF OF THEOREM 3.3

We use the same notations defined in the proof of Theorem 3.2. Let . Let

 be defined as in the proof of Theorem 3.1. First, for any t,

, and

Since X follows a multivariate normal distribution, from Li (1991),  for k > K,
then

We need to use the two Lemmas 8.1 and 8.2 stated below. The proofs of the two lemmas are
omitted here. From Lemma 8.1,
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Then as long as

we have

From Lemma 8.2,

Under Condition 8, since p = o(nϱ0) with 2ϱ0 + 2ξ0 < 1,

.

A.3 PROOF OF THEOREM 3.4
Since

and with ⊆  , then from Lemma 8.2,

 for ε > Cnϱ0−1/2 and Theorem 3.4 holds.

Lemma 8.1. Under the same conditions as in Theorem 3.3, for any ⊆ {1, ⋯, p} and c ⋂
≠ ∅,

Lemma 8.2. Under the same conditions as in Lemma 8.1,
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A.3 PROOF OF THEOREM 4.1
For coherence, we use the same notation as defined in the proof of Theorem 3.1. Without
loss of generality, let = {1, ⋯, d} and t = d + 1. Under the assumption that Xn×(d+1) has a

multivariate normal distribution, we derive the limiting value of  as
n → ∞ for fixed slices. Let ΞK×K be the variance-covariance matrix of vK.

Because {X1, ⋯, Xd+1} follow a multivariate normal distribution, we have

 where the ρi are the coefficients. Since we
assume that the response only depends on K linear combinations of Xn×(d+1), Ω̃(d+1) and Ω̂(d)

have at most K nonzero eigenvalues, and

Because of the following three results:

1.
.

2. , h = 1, ⋯, H.

3. Since , then

Combining 1,2,3, we have . Since

,

and Theorem 4.1 holds.

A.3 PROOF OF Proposition 4.1
Note that η′MH,Kη = Var (E(η′vK|y ∈ Sh)) and

Thus, Proposition 4.1 holds.
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Table 1

Performance comparison under linear models: FP is the average number of irrelevant variables falsely selected
by the method, and FN is the average number of true variables falsely excluded by the method; the number in
(·) is the standard error of the FP or FN and NA* indicates that the corresponding algorithm broke down.

Methods

p = 8, n = 40, σ = 3, ρ = 0.5 p = 1000, n = 200, σ = 1, ρ = 0.5

FP
(0, 5)

FN
(0, 3)

FP
(0,990)

FN
(0,10)

LASSO 0.77(0.093) 0.16(0.037) 8.87(0.586) 0.00(0.000)

SCAD 0.67(0.094) 0.10(0.030) 6.05(0.926) 1.16(0.150)

MARS 4.00(0.059) 0.04(0.020) 30.64(0.165) 0.00(0.000)

SSIR 0.19(0.051) 0.96(0.068) NA* NA*

COP 0.71(0.080) 0.56(0.066) 2.28(0.203) 0.75(0.095)
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Table 4

Motifs identified

development COUP-TF, AP2, Sp1, CHOP C/EBpalpha, NF-AT
Pax, Pax8, GABP, En1, TTF1
PITX2, NKx2-2, HIXA4, ZF5, PPAR direct repeat 1

cancer IRF1, EVI1, NF1, GKLF, Whn
VDR, POU6F1, Arnt, Cdx2

8 selected TFAS E2F1, Mycn, ZFx, Klf4
Tcfcp2/1, Oct4, Stat3, Smad1
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