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ABSTRACT

Summary: Genome-wide association studies are widely used to in-

vestigate the genetic basis of diseases and traits, but they pose many

computational challenges. We developed gdsfmt and SNPRelate

(R packages for multi-core symmetric multiprocessing computer

architectures) to accelerate two key computations on SNP data: prin-

cipal component analysis (PCA) and relatedness analysis using iden-

tity-by-descent measures. The kernels of our algorithms are written in

C/Cþþ and highly optimized. Benchmarks show the uniprocessor im-

plementations of PCA and identity-by-descent are �8–50 times faster

than the implementations provided in the popular EIGENSTRAT (v3.0)

and PLINK (v1.07) programs, respectively, and can be sped up to

30–300-fold by using eight cores. SNPRelate can analyse tens of thou-

sands of samples with millions of SNPs. For example, our package

was used to perform PCA on 55 324 subjects from the ‘Gene-

Environment Association Studies’ consortium studies.

Availability and implementation: gdsfmt and SNPRelate are avail-

able from R CRAN (http://cran.r-project.org), including a vignette.

A tutorial can be found at https://www.genevastudy.org/Accomplish

ments/software.
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1 INTRODUCTION

Genome-wide association studies (GWAS) are widely used to

investigate the genetic basis of many complex diseases and

traits, but the large volumes of data generated in chip- and

sequencing-based GWAS from thousands of study samples

and millions of SNPs pose significant analytical and computa-

tional challenges. One important challenge is the inflated

false-positive associations that arise in GWAS results when

population structure and cryptic relatedness exist (Cardon and

Palmer, 2003; Choi et al., 2009). These challenges can be ad-

dressed by using principal component analysis (PCA) to detect

and correct for population structure (Price et al., 2006) and

identity-by-descent (IBD) methods to identify the degree of

relatedness between each pair of study samples. For both meth-

ods, it is suggested to use a pruned set of SNPs, which are in

approximate linkage equilibrium with each other to avoid the

strong influence of SNP clusters (Laurie et al., 2010). However,

the computational burden associated with these methods is espe-

cially evident with large sample and SNP sizes and requires effi-

cient numerical implementation and memory management,

especially as chip arrays increase in size and sequencing data is

used to call variants. For example, the 1000 Genomes Project

identified �15 million SNP loci from whole-genome sequencing

technologies recently (1000 Genomes Project Consortium, 2010).
R is one of the most popular statistical programming environ-

ment, but it is not typically optimized for high performance or

parallel computing, which would ease the burden of large-scale

SNP-based GWAS calculations. To overcome these limitations,

we have initiated a project named CoreArray (http://corearray.

sourceforge.net/) that includes two R packages: gdsfmt to pro-

vide efficient, platform-independent memory and file manage-

ment for genome-wide numerical data, and SNPRelate to solve

large-scale, numerically intensive GWAS calculations (i.e. PCA

and IBD) on multi-core symmetric multiprocessing computer

architectures.

2 FEATURES

To support efficient memory management for genome-wide nu-

merical data, gdsfmt provides the genomic data structure (GDS)

file format for array-oriented data. In this format, each byte

encodes up to four SNP genotypes, thereby reducing file size

and access time. During the process of scanning SNP profiles,

operations on four genotypes may be performed simultaneously.

The GDS format supports data blocking so that only the subset

of data that is being processed needs to reside in memory, and it

is also designed for efficient random access to large datasets.

Although SNPRelate functions operate only on GDS-format

data files, functions to reformat data from PLINK, sequencing

Variant Call Format, NetCDF and other data files, are provided

by our packages (Danecek et al., 2011; Laurie et al., 2010; Purcell

et al., 2007).

SNPRelate provides computationally efficient functions for

PCA and IBD relatedness analysis on GDS genotype files. The

calculations of the genetic covariance matrix and pairwise IBD

coefficients are split into non-overlapping parts and assigned to

multiple cores for performance acceleration, as shown in

Figure 1. The functions in SNPRelate for PCA include the

basic calculations of sample and SNP eigenvectors, as well as

useful accessory functions. The correlation between sample

eigenvectors and observed allelic dosage can be used to evaluate

the genome-wide distribution of SNP effects on each eigenvector.*To whom correspondence should be addressed.
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The SNP eigenvectors can be used to calculate the sample eigen-

vectors of a new set of samples, which is useful in studies with

substantial relatedness (Zhu et al., 2008).
For relatedness analysis, IBD estimation in SNPRelate can be

done by either the method of moments (MoM) (Purcell et al.,

2007) or maximum likelihood estimation (MLE) (Choi et al.,

2009; Milligan, 2003) through identity by state. Our experience

shows that MLE is significantly more computationally intensive

than MoM for large-scale data analysis, although MLE esti-

mates are usually more reliable than MoM. Additionally, the

functions for linkage disequilibrium pruning generate a pruned

subset of SNPs that are in approximate linkage equilibrium with

each other, to avoid the strong influence of SNP clusters in PCA

and IBD analysis. An actual kinship matrix of individuals can be

estimated by either method, which could be used in downstream

association analyses (Price et al., 2010).
Both R packages are written in C/Cþþ, use the POSIX

threads library for shared memory parallel computing on

Unix-like systems and have an R interface in which the kernel

has been highly optimized by blocking the computations to ex-

ploit the high-speed cache memory. The algorithms are opti-

mized to load genotypes block by block, with no limit to the

number of SNPs. The algorithms are limited only by the size

of the main memory, which is accessed by the parallel threads,

and holds either the genetic covariance matrix or IBD coefficient

matrix.
GDS is also used by an R/Bioconductor package GWASTools

as one of its data storage formats (Gogarten et al., 2012).

GWASTools provides many functions for quality control and

analysis of GWAS, including statistics by SNP or scan, batch

quality, chromosome anomalies, association tests, etc.

3 PERFORMANCE

We illustrate the performance of SNPRelate using small,

medium and large test datasets. The small and medium sets

were constructed from simulated data and contain 500 and

5000 samples with 100K SNP markers, respectively. The large

set consists of 55324 subjects selected from 16 projects of the

‘Gene-Environment Association Studies’ (GENEVA) consor-

tium (Cornelis et al., 2010). We compared the run times of

SNPRelate with EIGENSTRAT (v3.0) and PLINK (v1.07) for

PCA and IBD estimation, respectively. The implementations

were benchmarked on a system with two quad-core Intel proces-

sors running at 2.27GHz and 32GB RAM and running Linux

Fedora 10.

As shown in Table 1, the uniprocessor implementations of

PCA and IBD in SNPRelate are �8–50 times faster than the

implementations provided in EIGENSTRAT and PLINK, re-

spectively. When the SNPRelate algorithms were run using

eight cores, the performance improvement ranged from �30 to

300. The SNPRelate PCA was conducted on the large dataset

(n¼ 55 324 subjects with �310K selected SNP markers). It took

�64h to compute the genetic covariance matrix (55K-by-55K)

when eight cores were used, and �9 days to calculate eigenvalues

and eigenvectors using the uniprocessor version of LAPACK

in R. The analyses on the small- and medium-size datasets

required 51 GB of memory, and PCA on �55K subjects

required �32 GB, as the genetic covariance matrix is stored in

the main memory shared by threads. An improvement on run-

ning time for PCA is to use a multi-threaded version of BLAS to

perform the calculation of eigenvalues and eigenvectors instead

of the default uniprocessor one. Although SNPRelate is much

faster than EIGENSTRAT for PCA or PLINK for IBD estima-

tion using MoM, the results are numerically the same (i.e. iden-

tical accuracy).
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Fig. 1. Flowchart of parallel computing for PCA and IBD analysis
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