
Vol. 28 no. 24 2012, pages 3265–3273
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts616

Structural bioinformatics Advance Access publication November 6, 2012

FOLD-EM: automated fold recognition in medium- and
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ABSTRACT

Motivation: Owing to the size and complexity of large multi-

component biological assemblies, the most tractable approach to

determining their atomic structure is often to fit high-resolution radio-

graphic or nuclear magnetic resonance structures of isolated compo-

nents into lower resolution electron density maps of the larger

assembly obtained using cryo-electron microscopy (cryo-EM). This

hybrid approach to structure determination requires that an atomic

resolution structure of each component, or a suitable homolog, is

available. If neither is available, then the amount of structural informa-

tion regarding that component is limited by the resolution of the

cryo-EM map. However, even if a suitable homolog cannot be identi-

fied using sequence analysis, a search for structural homologs should

still be performed because structural homology often persists through-

out evolution even when sequence homology is undetectable,

As macromolecules can often be described as a collection of inde-

pendently folded domains, one way of searching for structural homo-

logs would be to systematically fit representative domain structures

from a protein domain database into the medium/low resolution

cryo-EM map and return the best fits. Taken together, the best fitting

non-overlapping structures would constitute a ‘mosaic’ backbone

model of the assembly that could aid map interpretation and illuminate

biological function.

Result: Using the computational principles of the Scale-Invariant

Feature Transform (SIFT), we have developed FOLD-EM—a compu-

tational tool that can identify folded macromolecular domains in

medium to low resolution (4–15 Å) electron density maps and return

a model of the constituent polypeptides in a fully automated fashion.

As a by-product, FOLD-EM can also do flexible multi-domain fitting

that may provide insight into conformational changes that occur in

macromolecular assemblies.

Availability and implementation: FOLD-EM is available at: http://cs.

stanford.edu/�mitul/foldEM/, as a free open source software to the

structural biology scientific community.

Contact: mitul@cs.stanford.edu or mcmorais@utmb.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Recent technological advances have resulted in exponential

growth of the amount of data available at each level of the se-

quence–structure–function relationship. Along with this expan-

sion of available data comes the need for systematic and

objective methods for its analysis and interpretation. For ex-

ample, the amount of information that can be extracted from

the structure of an isolated macromolecule is limited; to fully

understand how a macromolecule functions in a cell requires

knowledge of not only its interaction partners, but also how

mutually induced conformational changes that occur upon com-

plex formation give rise to integrated biological function.

Toward this end, structural biology continues to tackle larger

and larger targets, ranging from radiographic structures of

binary protein complexes to cryo-EM image reconstructions of

large macromolecular complexes and cryo-electron tomograms

of entire cells. Unfortunately, cryo-elecron microscopy/tomog-

raphy (cryo-EM/ET) maps typically have low signal-to-noise

ratios, making their analysis and interpretation challenging and

somewhat subjective, depending on the skill of specialized inves-

tigators. Hence, there is a need for computational methods to

systematically and quantitatively analyze maps of macromolecu-

lar assemblies, organelles and whole cells. In particular, tools

capable of (i) identifying individual proteins within larger com-

plexes and (ii) characterizing conformational rearrangements

relevant to macromolecular function, would provide non-

structural specialists access to structural data, thus allowing for

enhanced biological perspectives.
We recently reported the development of a new computational

tool, MOTIF-EM, that solves a critical structural comparison

problem, P, in a fully automated fashion (Saha et al., 2010).

P is defined as follows: compare a non-atomic resolution struc-

ture (e.g. a cryo-EM map) with another structure (either another

map or an atomic resolution structure) and identify conserved

structural domains/motifs or structurally equivalent sub-volumes

between the input pair. MOTIF-EM solves P (Supplementary

Fig. S5), and thus detects conserved sub-structures in a pair of

structures, by using a novel algorithm inspired by a recent break-

through in 2D object recognition, the ‘scale-invariant feature

transform’ or SIFT (Lowe, 2004; details in Section 2).

Because of its unmatched effectiveness in carrying out feature

detection, adaptations of SIFT are being used in a wide range

of scientific applications including tracking of robots, 3D scene/

object modeling/recognition/tracking, human action recognition*To whom correspondence should be addressed.
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and human brain analysis in 3D Magnetic Resonance images

and so forth (Lowe, 2004).
Based on the feature-recognition principles used in MOTIF-

EM, we have now created a new software tool, FOLD-EM, to

automatically identify macromolecular folds in electron density

maps and to characterize conformational changes that accom-

pany different biological states of macromolecules. FOLD-EM

systematically searches an input electron density map of a macro-

molecular assembly for sub-volumes that are structurally hom-

ologous to one or more protein domains present in the SCOP

protein database. By recursively repeating this procedure, a

modular structure incorporating all the fitted domains is re-

turned, thus providing a preliminary C�-backbone model of

the macromolecular assembly under investigation. Similarly,

using our approach, it is possible to automatically determine if

different transformations are necessary for fitting different re-

gions when comparing a multi-domain structure to an input elec-

tron density map of a macromolecule that can adopt different

conformations. As a result, SIFT-based feature detection is in-

herently capable of performing flexible multi-domain fitting and

characterizing conformational differences between the structures

being compared. Our program assumes no a priori knowledge of

the type or relative orientation of macromolecular folds present

in the input electron density map, and thus provides a fully auto-

mated means of analyzing electron density maps of macromol-

ecules and their assemblies. Although the program was

developed for the analysis of medium to low resolution electron

density maps obtained via cryo-EM, it should work equally well,

if not better, with higher resolution electron density maps such as

those obtained by X-ray crystallography. Here, we (i) discuss the

computational challenges that needed to be overcome to develop

FOLD-EM; (ii) demonstrate the effectiveness of FOLD-EM in

carrying out flexible multi-domain and large-scale fittings using

synthetic and real data; and (iii) consider some advantages of

FOLD-EM compared with existing softwares that fit atomic

resolution structures into medium to low resolution electron

density maps.

2 METHODS

The SIFT-based feature-recognition module used by FOLD-EM is based

on a similar module first developed for our software MOTIF-EM (Saha

et al., 2010), which is summarized in Supplementary Text S1. Although

MOTIF-EM and FOLD-EM use a similar feature-detection algorithm

(Supplementary Fig. S1), the capabilities of the two programs are differ-

ent. MOTIF-EM is limited to pairwise structural comparisons between

two cryo-EM maps, whereas FOLD-EM is capable of a fully automated

large-scale structural comparison wherein an input electron density map

is systematically compared with representative domains present in a pro-

tein domain databank. By recursively identifying and fitting independ-

ently folded domains in the input map, the program returns a modular

domain structure of the macromolecular assembly under investigation.

FOLD-EM can also be used for pairwise comparisons between two maps

or for fitting high-resolution structures into lower resolution electron

density maps. However, unlike MOTIF-EM and many other fitting pro-

grams, FOLD-EM will automatically determine if different transform-

ations are necessary for fitting different regions when comparing a

multi-domain structure with an input electron density map of a macro-

molecule that can adopt different conformations. As a result, FOLD-EM

is inherently capable of performing flexible fitting and characterizing

conformational differences between the structures being compared. In

addition to writing new modules to carry out recursive large-scale and

flexible fitting, FOLD-EM development also required partial redesigning

of MOTIF-EM’s SIFT-based feature detection module (Supplementary

Fig. S1) to run �10� faster. Without this speed increase, carrying out

fold recognition by searching thousands of domains in the SCOP data-

base would have been slow and inefficient. The speed-up was obtained by

recognizing that during the clustering phase (step 5 in Supplementary

Fig. S1), only about 10% of the clustering data, i.e. from the dense

most regions of the clustering space, was sufficient to obtain accurate

clustering results.

FOLD-EM carries out large-scale fold recognition and fitting as fol-

lows. In the first step, FOLD-EM selects �4000 representative protein

domains from SCOP. Usually the first member of a SCOP domain family

is chosen, but additional domains are picked from the same domain

family if they are structurally at least 5 Å RMSD apart from at least

one of the selected domains. Within FOLD-EM, this SCOP subset rep-

resents all superfamilies of the five classes of SCOP protein domains:

all-alpha, all-beta, alpha/beta (mainly parallel beta sheets), alphaþbeta

(mainly antiparallel beta sheets), and small proteins. FOLD-EM then

converts each domain structure into electron density by applying a

Gaussian fall-off at each atomic position to simulate atomic form factors;

these maps can then be furthered blurred to match the resolution of the

input map. Next, FOLD-EM scores each domain against the input

low-resolution structure in the following way. The feature-recognition

module in FOLD-EM returns a graph clique as the end result of compar-

ing two structures. The size of the clique (i.e. the number of nodes in the

graph) is returned as the final score. The size of the clique is essentially the

size s of the common sub-structure (number of map grid points that make

up the sub-structure) between the input structure pair. For domain fit-

ting, s translates as the number of residues that makes up the portion of

the input domain that fits into the input map, and is the final score (SFE)

returned by FOLD-EM for the fit of a SCOP domain into the input

structure. The scoring function in Chimera’s (Pettersen et al., 2004) fitting

tool, known as ‘average map value’, SAV, is used by FOLD-EM for sec-

ondary evaluation. That is, after some domains with highest SFE’s are

chosen, they are finally sorted using their respective SAVs to return the

final list of candidate domains. If there is more than one domain in the

input map, a subsequent domain is similarly chosen, except that the re-

gions in the input map corresponding to the already chosen domains are

excluded from the evaluation.

Similarly, FOLD-EM carries out flexible multi-domain fitting by it-

eratively fitting each domain present in a multi-domain structure. For

example, in the case of the three-domain protein, the entire three-domain

structure can be input to FOLD-EM along with the input map.

FOLD-EM will identify the largest domain and fit this domain into its

corresponding sub-volume in the input cryo-EM map. The remaining

unfitted remnant structure will consist of the input map minus the largest

fitted domain/s. In the next iteration, FOLD-EM will take the remnant

structure and search the remaining map for the best fit. In this way,

FOLD-EM recursively docks each domain to its corresponding

sub-volume in the electron density map.

FOLD-EM is highly parallelizable. The fold-recognition test cases

using the SCOP database took 72–90 h to execute on a 100 processor

computing cluster at University of Texas Medical Branch, Galveston

(UTMB). However, the same job should only take few hours using a

national computing cluster with thousands of processors. The one-time

docking/fitting test cases took �2 minutes, to execute on the 100 proces-

sor UTMB cluster.

FOLD-EM is available as an open-source software for the struc-

tural biology scientific community at http://cs.stanford.edu/�mitul/

foldEM.

Simulated cryo-EM maps were generated from atomic resolution

structures using EMAN (Ludtke et al., 1999).
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3 RESULTS

3.1 Evaluating the fitting/docking module in FOLD-EM

To verify that FOLD-EM is capable of recognizing and fitting

conserved structural domains into low-resolution electron dens-

ity maps, we tested the algorithm using simulated and real data.

First, electron density maps, comparable to those obtained via

cryo-EM, were calculated for a GroEL monomer in the 5–20 Å

resolution range. To assess the effect of search model size on

fitting, we split the GroEL monomer into three separate do-

mains: (i) the equatorial domain (249 residues); (ii) the apical

domain (182 residues); and (iii) the intermediate domain (90 resi-

dues) (Fig. 1). Supplementary Table S1a reports the results from

fitting each domain. The reported error values for fitting each

domain into maps of different resolutions are low, demonstrating

the effectiveness of FOLD-EM in accurately fitting domains/

motifs of varying sizes into relatively low-resolution maps. We

have also tested the ability of FOLD-EM to fit atomic resolution

structures into experimentally determined cryo-EM maps.

Figure 2 shows the result of using FOLD-EM to fit the known

atomic resolution domain structures of GroEL into a 6 Å experi-

mentally determined cryo-EM map. For comparison, we also

tried fitting the groEL domains using other popular fitting soft-

ware including SITUS (Wriggers and Birmanns, 2001),

FOLDHUNTER (Jiang et al., 2001), Chimera fitting

(Pettersen et al., 2004), MODELLER (Topf et al., 2005),

COAN (Volkmann and Hanein, 2003), MOLREP (Vagin and

Teplyakov, 1997). In our hands, only FOLD-EM was able to

successfully fit the GroEL intermediate domain. Similarly,

Figure 3 shows the results of fitting the two-domain capsid pro-

tein from bacteriophage s29 into an experimentally determined

cryo-EM map of an isometric s29 particle. FOLD-EM success-

fully positioned both the HK97 and the bacterial immunoglobu-

lin (BIG2) domains of the capsid protein (Morais et al., 2005)

into their corresponding densities without any user intervention.

The resulting fits agree well with previously reported results

[(Morais et al., 2005); Supplementary Table S5] obtained using

semi-automated means. In contrast, other popular fitting soft-

ware (SITUS, FOLDHUNTER, Chimera fitting, MODELLER,

COAN, MOLREP) were able to successfully fit the larger HK97

domain, but not the BIG2 domain. We suspect that other fitting

softwares failed in these cases because the BIG2 and the GroEL

intermediate domains are very small compared with the target

density. However, it should be noted that other softwares were

run using default settings, and it is likely that an experienced user

would obtain better results.

To further evaluate the effectiveness of FOLD-EM as a

docker, we ran FOLD-EM on 30 additional test cases, the suc-

cessful outcome of which is reported in Supplementary Table

S1b. Ten extra experimentally determined maps, used here,

were obtained from Electron Microscopy Data Bank (EMDB).

Each map was accompanied by atomic resolution domains,

which were supposed to fit the corresponding map. Each map

was further filtered to additional lower resolutions (10 Å and

15 Å, respectively), which resulted in 20 additional maps. As

seen in the Table, in all these additional 30 test cases,

Fig. 2. (a) Fit of the atomic resolution GroEL domains (red, blue and

green ribbon models) into a 6 Å cryo-EM map (grey) of GroEL (from

Ludtke et al., 2004) using FOLD-EM. The fittings are consistent

(Supplementary Table S5 gives fitting RMSD errors) with previously

published results in Ludtke et al. (2004). (b) Fit of the atomic-resolution

GroEL intermediate domain (blue ribbon model) into the 6 Å GroEL

cryo-EM map, as determined by FOLD-EM [as in (b) above] enlarged,

with only the map region of the intermediate domain shown for clarity).

(c) Incorrect fits of the same intermediate domain (ribbon models) into

regions other than the intermediate domain region (circled), of the map

obtained using popular fitting software—SITUS (magenta),

FOLDHUNTER (cyan), the Chimera fitting tool (yellow),

MODELLER (red), MOLREP (blue) and COAN (green); the apical

and equatorial domains of GroEL were successfully fit by other popular

software. We suspect that other programs were not able to fit the inter-

mediate domain because it is very small compared with the target map

Fig. 1. We test the ability of FOLD-EM, to fit different sized domains

(the equatorial, apical and intermediate domains of GroEL; ribbon

models shown on left) into cryo-EM maps simulated from the GroEL

monomer (PDB ID: 1OEL, density maps shown in gray), in the reso-

lution range of 5–20 Å. The rightmost panel shows the result of fitting the

three domains using FOLD-EM

Fig. 3. (a) Successful fit of the HK97 (blue ribbon) and BIG2 domains

(red ribbon) into cryo-EM density of the phi29 isometric particle ob-

tained using FOLD-EM (Morais et al., 2005; Supplementary Table S5).

(b) Incorrect fit of the BIG2 domain, into regions other than the BIG2

domain region (circled), obtained using the popular fitting software

described above—SITUS (magenta), FOLDHUNTER (cyan), Chimera

fitting tool (yellow), MODELLER (red), MOLREP (blue) and COAN

(green). Again, we suspect that these failures occurred because the BIG2

domain is too small compared with the target map
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FOLD-EM successfully fitted the associated domains (PDB ID
in column #1), with reasonably low RMSD errors, further con-

firming the reliability of FOLD-EM as an effective docker.

3.2 Fitting models with non-precise boundaries

A strength of the feature-recognition algorithm used by

FOLD-EM is its ability to carry out partial matching. That is,

FOLD-EMcanmatch and align two objects precisely even if there

is only partial structural homology. As a result, the user does not
need to precisely define the boundary of the domain to be fitted

into a target map, i.e. the input domain might have some extra-

neous region/residues or may have some part of it missing. Figure

4a and b schematically illustrate the problems associated with

partial matching/fitting. As seen in the figures, while trying to fit

a structural homolog (black wire) into its corresponding region in
a map (blue region), presence of extraneous regions (red wire;

which does not have any corresponding ‘density’ in the target

map) can introduce fitting errors. Here, we show that

FOLD-EM is able to ignore any extraneous regions and preserve

fitting accuracy using both simulated and real/experimental data.
In simulated data, as earlier, we used FOLD-EM to fit the

three domains of GroEL into simulated cryo-EM maps of

GroEL. However, we have now added extraneous structural fea-

tures/residues to each domain of the search model (Fig. 5a–c)
that are not present in the simulated maps. Supplementary Table

S2a–c show the results obtained by using FOLD-EM to fit these

altered atomic resolution domain structures, each with differing

amounts of extraneous structures/residues introduced, into simu-

lated cryo-EM maps of GroEL. The low RMSD errors demon-

strate the effectiveness of FOLD-EM in fitting structures in the
presence of extraneous non-homologous structural features. We

also tested the partial matching capabilities of FOLD-EM by

correctly fitting our structurally altered GroEL domains into

an experimentally determined 6 Å cryo-EM map of GroEL

(Ludtke et al., 2004). Figure 5d and e show successful fits ob-
tained using FOLD-EM in the presence of extraneous

non-homologous structural features. The figures also show

how some popular fitting programs (SITUS, FOLDHUNTER,

Chimera fitting, MODELLER) failed to obtain correct fits, most

likely due to the presence of extraneous non-homologous fea-

tures. We also tested whether or not FOLD-EM could success-
fully perform partial fitting using search structures obtained

from other low-resolution structural methods such as low reso-

lution X-ray crystallography, small angle X-ray scattering and

cryo-EM. As a test case, we fitted (Fig. 6a–h) the mature

conformation of the bacteriophage P22 capsid protein, ob-

tained via cryo-EM, into density corresponding to the immature

conformation of the capsid, also obtained using cryo-EM

(Jiang et al., 2003). Unexpectedly, FOLD-EM was also able to

improve the alignment of the two subunits reported earlier

(Jiang et al., 2003), as seen in Figure 6g and h (see

Supplementary Text S2 for the evaluation of this result). This

test case confirmed the ability of FOLD-EM to obtain meaning-

ful fits in spite of inaccurate domain boundary specifications for

both the search model and the target map.
To further demonstrate the effectiveness of FOLD-EM to do

partial matching-based fitting, we ran FOLD-EM on an add-

itional 45 test cases, involving three different experimentally

determined cryo-EM maps (GroEL, Rice Dwarf Virus, 20S

Proteasome), the predominantly successful outcomes of which

are reported in Supplementary Table S2d. The three maps

were filtered to lower resolutions (10 Å or 15 Å), to generate

additional maps. Here also, 10%, 20%, 30%, respectively,

extra residues were added to respective atomic resolution do-

mains (column #1) that were fitted to these maps using

FOLD-EM. As seen in the Table, in all these cases,

FOLD-EM was able to fit domains with reasonably low

Fig. 5. (a–c) show examples of independently folded domains with extra-

naneous non-homologous features that were successfully fitted using

FOLD-EM. The red regions show the noise/extraneous residues that

were incorporated to test the robustness of FOLD-EM. (d) The fitted

green ribbon structure shows the correct fit (consistent with Ludtke et al.,

2004); Supplementary Table S5 gives the fitting RMSD error) of the

apical domain with �20 added extraneous residues (shown on right),

obtained using FOLD-EM. The rest of the ribbon structures show the

incorrect fittings obtained using the popular fitting software—SITUS

(magenta), FOLDHUNTER (cyan), Chimera fitting tool (yellow) and

MODELLER (red). As seen, the incorrect fits occur outside the upper

apical domain region, except in the case of FOLDHUNTER, where the

fit is still off by at least 25 Å RMSD. (e) The fitted green ribbon structure

shows the correct fit (consistent with Ludtke et al., 2004); Supplementary

Table S5 gives fitting RMSD error) of the equatorial domain with �150

added extraneous residues added (shown on right), obtained using

FOLD-EM. The rest of the ribbon structures show the incorrect fits

obtained using the popular fitting software—SITUS (magenta),

FOLDHUNTER (cyan), Chimera fitting tool (yellow) and

MODELLER (red). As seen, the incorrect fits occur outside the

bottom equatorial domain region, except in the case SITUS, where the

fit is still off by at least 6.2 Å RMSD

Fig. 4. (a and b) Cartoon illustrating problems associated with fitting

partial structures. The high-resolution structure (wire model in red and

black) has extraneous region (red), which does not have corresponding

density in the target map (pale blue region). This extraneous region can

act as noise and reduce the accuracy of the fit and the associated score [as

seen in (b)]. As FOLD-EM can separate conserved regions from

non-conserved ones, it will ignore the red extraneous region, yielding

an accurate fit (a) and associated score
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RMSD errors, further affirming the effectiveness of FOLD-EM

to do fitting incorporating the issue of partial matching seen in
Figure 4.

3.3 Fitting that incorporates conformation changes arising

from domain movements

Another unique aspect of FOLD-EM is its ability to automatic-

ally carry out simultaneous multi-domain fitting that accounts
for conformational changes resulting from domain movements

that may have occurred in the target low-resolution map relative
to the search model. Similar to the situation described above
where only part of a search model occurs in a cryo-EM structure,

conformational differences between structures being compared
can lead to inaccurate fitting results; in general, it is challenging

to simultaneously align multiple domains if each domain requires
a different geometric transformation to fit it into its correspond-
ing electron density. Here, we show that FOLD-EM can auto-

matically determine the extent of discreet structurally
homologous domains/regions shared by two structures, and

then separately fit each structural unit/domain. As a result,
FOLD-EM is inherently capable of performing unbiased fully
automated flexible fitting that makes no assumptions regarding

domain boundaries or motions.
As a test case, three domains of GroEL, were arbitrarily rear-

ranged to create three different GroEL conformations that con-

sist of two, three and four domains, respectively (left images in
Fig. 7a–c). We then calculated cryo-EM maps in the range of

5–20 Å from the radiographic structure of GroEL, which assumes
a conformation that is different than any of generated confor-
mers. FOLD-EM was then used to carry out flexible fitting of

each GroEL confomer into the simulated maps (Supplementary

Table S3a–c, Fig. 7a–f), resulting in good overall fits. The low

RMSD errors listed in Supplementary Table S3a–c show that

FOLD-EM is capable of unbiased fully automated flexible fitting.

To confirm that the flexible fitting routine works with real data,

we used FOLD-EM to fit the high resolution structure of one

conformation of GroEL into 4 Å and 6 Å cryo-EM maps of

GroEL in a different conformation (Fig. 8a–h).
Supplementary Table S5 gives the RMSD errors associated

with the fits described above.
To further demonstrate the effectiveness of FOLD-EM to

carry out flexible fitting, we performed additional testing using

simulated and experimentally determined cryo-EM maps, the

successful outcomes of which are reported in Supplementary

Table S3d. The experimental maps used are of GroEL, Rice

Dwarf Virus and 20S Proteasome. The synthetic map was gen-

erated from four atomic resolution domains, as seen in

Supplementary Figure S6. This figure (first column) also shows

the initial starting conformations that were flexed by FOLD-EM

to fit into the corresponding maps. The FOLD-EM fits can be

seen in the third column. The final fitting errors of the individual

domains are reasonably low as seen in Supplementary Table

S3d, further attesting to the effectiveness of FOLD-EM in

doing rigid body flexible fitting.
It is possible to obtain similar results using existing flexible

fitting software such as, NORMA (Suhre et al. 2006), DIREX

Fig. 7. (a–c, left) We created three fictitious atomic-resolution structures

based on GroEL, one with two domains (a, left), one with three domains

(b, left) and one with four domains (c, left). Next, we attempted to fit each

synthetic structure into a low-resolution density map of the structure in a

different conformation. For example, the three-domain structure (b, left)

is docked into a map (simulated from the three-domain GroEL structure

PDB ID: 1OEL) in a different conformation shown in (b, right).

Embedded ribbon structures shown in the figures are the ones used to

simulate the respective maps. (d–f) Fitting of conformation #2 [d or

(b, left)] using FOLD-EM results in reorganization of the domains into

a new structure (e) that fits the simulated GroEL 10 Å cryo-EMmap well

Fig. 6. (a and b) Cryo-EM density of capsid monomers from pre- and

post-capsid maturation states of phage P22, respectively (10). (c and d)

The conserved region between the monomers [shown in (a and b)] is

shown in blue, as determined by FOLD-EM. The rest of the region is

shown as red. (e and f) Here, only the conserved region [colored as blue in

(c and d), respectively] is shown, from two different views. (g and h)

[enlarged with respect to (a and b)]: alignment of the extracted conserved

pairs [shown in view #2 of (e and f)] using FOLD-EM and data from

Jiang et al. (2003), respectively. Circled regions in (h) highlight areas of

poor local alignment, determined by visual inspection
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(Schroder et al. 2007), MDFF (Trabuco et al. 2008), FLEX-EM

(Topf et al. 2008) and the one published in Gorba et al. (2008).
However, these other programs are all based on local search

approaches, and hence, by design, the final flexed conformation
can only be locally best (with respect to the initial starting con-
formation), and thus may not represent the best global fit. It is

well known that local search approaches are dependent on start-
ing positions, and a different starting conformation may yield a

different final flexed conformation. This is the classical ‘local
minima’ issue. On the other hand, FOLD-EM is based on a
global search and hence the final flexed conformation will be

independent of initial starting conformations. Hence, FOLD-
EM is free of ‘local minima’ issues by design. However, in prac-
tice, we believe FOLD-EM and local search-based methods

should be used together in a complementary fashion. For ex-
ample, FOLD-EM could be first used to produce starting

flexed conformations, and then a local search-based method
can be used to generate pathways connecting initial and final
conformations.

3.4 Fully automated fold detection and large-scale

structural comparisons using FOLD-EM

The fold-recognition/fitting scenarios described above assume

the users know the fold they are searching for in an electron
density map. The users choose either the identical molecule or

a suitable homolog as a search model for fold recognition/fitting.
Although homologous search models can often be identified via
sequence comparisons, it is not always possible to identify a suit-

able homolog based on sequence homology. However, lack of
sequence homology does not preclude structural homology, as it
is well known that structural similarities often persist over large

evolutionary distances where sequence vanishes. Hence, it would
be useful to have a tool that systematically compares structural

features of an electron density map with a large structural data-
base and returns the best fitting homolog/s. Rather than fitting
entire structures, the goal here is simply to fit individual domains.

More complex structures can then be inferred from the relative

arrangement of individual domains. There are several advantages
to this approach. First, domain databases are designed to include

only representative folds, thus avoiding the redundancy present
in the PDB. Second, the combinations and relative arrangements

of individual domains can vary greatly in multi-domain proteins;
by fitting domains separately, the search is not necessarily con-

fined to the different domain arrangements present in known

structures. Hence, our modular approach to locating independ-
ent structural units is more akin to the modular design of pro-

teins in nature, and is thus capable of a comprehensive search in
spite of including only a limited number of structural units.

In this application, approximately 4000 representative protein
domains from the SCOP database have been chosen as a struc-

tural database of search models. The first member of a domain
family is picked as the representative structure, and additional

structures from the same domain family are included if they

structurally differ by45 Å RMSD from each other. These struc-
tures represent all superfamilies of the five SCOP-domain classes:

all-alpha, all-beta, alphaþbeta, alpha and beta, and small pro-
teins. Next, each domain is scored against the input electron

density map using a modified scoring version of the module

from FOLD-EM that has been optimized for speed, as described
in Section 2. The domains with the best score are then returned

as potential fits for the input electron density map. Below,
we describe the use of FOLD-EM to search the SCOP data-

base and return a C� backbone model in a fully automated
fashion, thus removing subjectivity frommap analysis and reliev-

ing the user of the burden of identifying appropriate homologs as

inputs.
As before, we have used the well-known structure of GroEL as

a test case. Synthetic cryo-EM maps were calculated in the reso-
lution range of 5–20 Å. FOLD-EM was then used to systemat-

ically search the SCOP database, identify the constituent
domains in each map and return the fitted structures as C� back-

bone models for each of the simulated maps (Fig. 9).
Supplementary Table S4a lists candidate domains selected by

FOLD-EM along with their associated scores for the simulated

10 Å GroEL map. The first row of the table reports that the
chosen 90 residue intermediate domain was docked into its cor-

responding region in the map with an RMSD error of 0.49 Å

Fig. 8. (a–d) Fitting of an atomic-resolution GroEL conformation

(a, PDB ID: 1AON), using FOLD-EM, into a lower resolution (4 Å)

GroEL map (b, Ludtke et al., 2008) in a different conformation. This

needed spatial reorganization of the domains in the atomic structure,

resulting in a new structure (c) which fits the target map well, as seen

in (d). (e–h) The same application and outcome as (a–d), except that here

the target map is the (6 Å) GroEL map from Ludtke et al. (2004)

Fig. 9. The construction of a C� backbone model for a simulated GroEL

map from the best-scored candidate domains (first row in Supplementary

Table S4a)
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(with respect to the domain used to simulate that map region;

Supplementary Table S4b). Similar results were obtained for

simulated maps calculated at 5, 15 and 20 Å resolutions (fitted

structures not shown); all reported error values are low

(Supplementary Table S4b), demonstrating the ability of

FOLD-EM to correctly identify and fit the constituent domains

in noise-free simulated electron density maps of GroEL.
To verify that FOLD-EM is capable of correctly identifying

independent structural domains present in actual cryo-EM data

with representative noise levels, we selected as test cases several

moderate-resolution cryo-EM maps where the domain structures

of their constituent macromolecules is known. These structures

include: (i) a 6 Å map of GroEL (Ludtke et al., 2004); (ii) a 7.9 Å

map of the bacteriophage s29 capsid protein (Morais et al.,

2005); (iii) a 6.8 Å map of the Rice Dwarf Virus capsid protein

(Zhou et al., 2001); (iv) the 6.8 Å map of the 20S proteasome

(Rabl et al., 2008); and (v) a 12.5 Å map of the 70S ribosomal

subunit (Valle et al., 2003; Supplementary Text S3). Table 1 and

Supplementary Table S4c–e list candidate domains for different

regions of each protein along with associated scores that were

automatically determined by FOLD-EM. The domains with the

highest scores were selected as constituent domains of the output

C� models (Fig. 10a–e). Supplementary Table S5 evaluates the

fitting of the selected domains. In every case except for one, the

highest-scoring domains corresponded to the known domain

structures for each input map. The one instance where

FOLD-EM reported a better score for a SCOP domain different

than previously reported was for the bacterial immunoglobulin

domain of the capsid protein of bacteriophage s29, where the

correct fold had the fourth highest score.

Supplementary Table S4f–i report additional tests on simu-

lated cryo-EM maps. The simulated maps, in the range 5–15 Å,

were generated from aribitratry spatial arrangement of four

atomic resolution domains as seen in Supplementary Figure

S7. Here also, for a given map, the corresponding Table lists

the domains with best scores, which are finally chosen by

FOLD-EM to build the C� model of the map. For a given

domain, top five choices with associated scores are listed.

Finally, Supplementary Table S4i reports the respective fitting

RMSD scores of the chosen domains, which are reasonably low,

affirming the correctness of the chosen domains, in turn

re-affirming the ability of FOLD-EM to do effective C� model

building.

Existing programs capable of carrying out automated fold

recognition include EMATCH (Lasker et al., 2005; Lasker

et al., 2007), SPI-EM (Valazquez-Muriel et al., 2005), and

FREDS (Khayat et al., 2010). EMATCH is not independent

Fig. 10. (a) The fit of GroEL domains as determined by FOLD-EM is

consistent with Ludtke et al. (2004); Supplementary Table S5 gives the

RMSD errors associated with fitting the three chosen domains into the

6 Å cryo-EM map of GroEL. (b) The fit of HK97 and BIG2 domains as

determined by FOLD-EM is consistent with Morais et al. (2005);

Supplementary Table S5 gives the RMSD errors associated with fitting

the two chosen domains into the 7.9 Å cryo-EM map of s29 (Morais

et al., 2005). (c) The fit of independent domains of the Rice Dwarf Virus

capisd protein as determined by FOLD-EM is consistent with Zhou et al.

(2001), and Nakagawa et al. (2003); Supplementary Table S5 gives

RMSD errors associated with fitting each of the two chosen domains

into the 6.8 Å cryo-EM map of Rice Dwarf Virus (Zhou et al., 2001).

(d) The fit of three domains from the 20S proteasome as determined by

FOLD-EM is consistent with Rabl et al. (2008); Supplementary Table S5

gives the RMSD errors associated with fitting the chosen trimer domain

into the 6.8 Å cryo-EM map of 20S proteasome (Rabl et al., 2008).

(e) The fit of 30S and 50S domains from the 70S ribosome into the

12.5 Å cryo-EM map of the 70S ribosome (Valle et al., 2003);

Supplementary Table S5 gives the errors associated with fitting the

chosen domains into the 12.5 Å map of the 70S ribosome

Table 1. List of candidate domains along their associated scores (SAV: Chimera score, SFE: FOLD-EM score; see Section 2 and Supplementary Text S1

for score definitions), for domains that were automatically picked by FOLD-EM for building the C� backbone of the GroEL map

Top candidates for domain #1 Score (SAV, SFE) Top candidates for

domain #2

Score (SAV, SFE) Top candidates for

domain #3

Score (SAV, SFE)

1KP8 (A:2–136,A:410–526) 0.57, 100 1KID (A) 0.45, 52 1KP8 (A:137–190, A:367–409) 0.45, 36

1KID (A) 0.45, 55 1LS1 (A:1–88) 0.44, 55 2B5E (A:142–239) 0.40, 45

1LS1 (A:1–88) 0.44, 54 2GOY (A:7–138) 0.34, 59 1ABV (A) 0.40, 42

2GOY (A:7–138) 0.34, 59 1H5P (A) 0.33, 56 1YSJ (A:178–292) 0.40, 52

1H5P (A) 0.33, 56 1M9L (A) 0.30, 59 2RLT (A:1–99) 0.40, 38

Three domains were picked: the equatorial domain (columns 1 and 2; column 2 lists the associated scores), the apical (columns 3 and 4) and the intermediate domain (columns

5 and 6). The first row lists the three domains with the best scores and which are ultimately chosen by FOLD-EM to build the C� model of the map.
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software in that it requires an input map is first converted into a

collection of helices that have been identified in the input map, a

process that typically requires manual specification of appropri-

ate density thresholds for helix identification (Jiang et al., 2003));

non-helical information is not used. Hence this approach is not

suitable for those input cryo-EM maps that are predominantly

defined by non-helical structural elements or hardly detectable

helices (e.g. maps with short helices, maps coarser than 10 Å

resolution). FOLD-EM, on the other hand, is fully automated

and does not require any reduction of input maps. Furthermore,

FOLD-EM is not limited to analyzing maps of structures that

are predominantly helical. SPI-EM assigns an input map to a

specific CATH superfamily, whereas FOLD-EM, E-MATCH

and FREDS focus on identifying specific domain folds within

a map. Unlike FOLD-EM, both SPI-EM and FREDS are de-

pendent on the results obtained using third-party fitting soft-

ware—SITUS and MOLREP, respectively. Here, we have

shown how some existing popular fitting software, including

SITUS and MOLREP, failed in certain test cases (e.g. fitting

of the GroEL intermediate and the BIG2 domains into the

maps of GroEL and s29, respectively) where FOLD-EM suc-

ceeded. Hence, the choice of a robust fitting module is critical

and is an important feature that sets FOLD-EM apart from

FREDS and SPI-EM. Furthermore, we note that in the

FREDS publication (Khayat et al., 2010), potentially subjective

manual segmentation of individual domains in the input GroEL

map were required for successful implementation of the pro-

gram. The results presented above (Section 3.1) suggest that

manual segmentation is necessary because MOLREP, the fitter

used by FREDS, fails to fit the small intermediate domain in the

unsegmented GroEL monomer (Fig. 2c). FOLD-EM does not

require any manual processing of input maps, and hence achieves

higher level of automation and a lower degree of subjectivity in

building C� backbone models. Finally EMATCH, FREDS and

SPI-EM can be used only as long as the third-party methods

(helix detectors or domain fitters), which they depend on,

remain available to the users. FOLD-EM does not have such

dependency issue, as its basic modules (fitters, etc.) are all inbuilt.

3.5 Summary of Comparisons

Finally, in Table 2, we summarize the properties that distinguish

FOLD-EM methods from existing competing methods.

4 CONCLUSION

Inspired by SIFT’s broad applicability and driven by the current

need in structural biology to effectively and efficiently interpret

structures from electron microscopy, we have developed a new

software tool, FOLD-EM, to automatically and systematically

identify protein folds and fit atomic resolution macromolecular

structures into cryo-EM electron density maps without any prior

knowledge. FOLD-EM is based on MOTIF-EM—our previous

adaptation of the SIFT algorithm for interpretation of cryo-EM

maps. We have adapted and extended the MOTIF-EM algo-

rithm to automatically identify folds and characterize conform-

ational changes in cryo-electron density maps of large

macromolecular assemblies. The underlying algorithm in

MOTIF-EM and FOLD-EM works by constructing rotationally

invariant low-dimensional representations of local regions in the

input atomic resolution structures and cryo-EM maps.

Correspondences are established between the reduced represen-

tations by comparing them using a simple metric. These corres-

pondences are then clustered using hash tables and graph theory

to identify structurally equivalent domains or motifs. The motiv-

ation to develop FOLD-EM from MOTIF-EM came from the

recognition that the SIFT-based comparison module builds

Table 2. Properties that distinguish FOLD-EM methods from existing competing methods

Method in the FOLD-EM package Property FOLD-EM method Existing competing methods

Rigid body docker/fitter (Section 3.1) Partial matching (Fig. 4) Yes SITUS, FOLDHUNTER, Chimera,

MODELLER, MOLREP, COAN, etc.:

No

Flexible fitter (Section 3.3) Level of automation Independent of starting conformation,

as it is based on global search.

(details: Section 3.3, last paragraph)

NORMA, DIREX, MDFF, FLEX-EM,

etc.: Require users to provide appropri-

ate starting conformations, as they are

based on local search.

Backbone modeller (Section 3.4) Level of automation FOLD-EM is fully automated. EMATCH, FREDS: Not fully automated.

For instance, FREDS required approxi-

mate domain region segmentation.

(details: Section 3.4, last paragraph)

Backbone modeller (Section 3.4) Dependency None EMATCH, FREDS: Depend on availabil-

ity of third-party modules, such as helix

detectors, fitters, etc. (details: Section 3.4,

last paragraph)

A given row (#X) refers to a method in FOLD-EM. (Row #X, Column #1) lists the name of the method, (Row #X, Column #2) lists one of it’s critical distinguishing property,

(Row #X, Column #3) elaborates that property for that FOLD-EMmethod, and (Row #X, Column 4) elaborates that property for existing competing methods. For instance,

Row #2 refers to the method ‘Rigid Body Docker’ (Row #2, Column #1) in FOLD-EM. (Row #2, Column #2) lists the particular property (partial matching of Fig. 4) in

question. (Row #2, Column #3) states the existence of that property in the FOLD-EM docker. (Row #2, Column #3) states the non-existence of that property in any other

existing docker that we are aware of.
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correspondences by matching smaller structural units, and hence
the algorithm should work even if only portions of the structures
being compared are homologous. Thus, the method is well suited
for building backbone models of large complex macromolecular

assemblies by systematically fitting smaller independent domain
structures into a cryo-EM map of the larger assembly.
FOLD-EM accomplishes this task by recursively fitting repre-

sentative domain structures from the SCOP structural database
into the input cryo-EM map and returning the best-fitting
non-overlapping structures. FOLD-EM succeeds at least par-

tially because it is inherently capable of carrying out partial
matching; unlike other fitting software, the FOLD-EM fitting
module is not affected by extraneous structure in either the

target map or the search structure. Similarly, FOLD-EM will
also automatically determine if different transformations are ne-
cessary for fitting different regions of the input search model; as
a result, FOLD-EM is inherently able to characterize conform-

ational differences (due to inter-domain motions, partial resem-
blances) between the structures being compared. Using
FOLD-EM, we have demonstrated its effectiveness in (i) partial

matching, i.e. successful docking/fitting in the presence of extra-
neous protein residues; (ii) fitting multi-domain structures into
cryo-EM maps in a single step while taking into account flexi-

bility due to inter-domain motions; and (iii) performing fully
automated large-scale fold recognition and fitting using a protein
domain database. The ability to automatically and objectively
carry out these challenging tasks allows non-specialists to per-

form sophisticated structural analysis and sets FOLD-EM apart
from other existing docking packages.
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