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Abstract: NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of 
superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved 
in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the 
involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been 
increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct 
mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-
sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, 
focusing on Parkinson and Alzheimer diseases. 
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INTRODUCTION 

 Extensive research over the past few decades indicates 
that reactive oxygen species (ROS), key mediators of 
cellular oxidative stress and redox dysregulation, contribute 
to many pathological events of aging and major disease 
processes, including cancer [1], cardiovascular disorders [2], 
diabetes [3] and neurodegenerative diseases [4]. Accordingly, 
as described in detail in recent reviews [1, 2] a broad range 
of studies have been developed in animal models and have 
provided important insight into the involvement of ROS in 
pathological events in virtually all tissues. Endothelial nitric 
oxide synthase uncoupling, xanthine oxidase activation, 
mitochondrial respiration, peroxisome oxidases, cytochrome 
P-450, among other cellular sources, produce ROS as a 
byproduct of their biological activity [2]. Indeed, considering 
the nervous system particular vulnerability to oxidative 
stress, the expression of NADPH oxidase (Nox) family of 
superoxide (O2

·−) and hydrogen peroxide (H2O2)-producing 
proteins in the brain tissue has been considered unlikely  
for a long time; however, in the past 15 years Nox family 
members and the ROS they produce have been implicated in 
a variety of neurological diseases [5]. This review summarizes 
current research on Nox involvement in neurodegeneration, 
with a focus on Parkinson and Alzheimer diseases.  

REACTIVE OXYGEN SPECIES AND OXIDATIVE 
STRESS 

 ROS is a general designation of chemical species arising 
from oxygen reduction and their related precursors and/or 
reactive reaction products. These species can be classified 
into 2 groups of compounds, namely radicals and 
nonradicals. Superoxide ion radical (O2

·−), hydroxyl radical 
(OH.), peroxyl (ROO.) and alkoxyl radicals (RO.), and one 
form of singlet oxygen (1O2) are among the species classified 
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into the radical group because they contain at least 1 
unpaired electron in the shells around the atomic nucleus and 
are capable of independent existence. The nonradical group 
of oxygen derivatives contains a large variety of molecules, 
which include the hypochlorous acid (HClO), ozone (O3), 
hydrogen peroxide (H2O2) and organic peroxides [6, 7]. 

 A very important notion is the fact that properties such as 
reactivity, solubility, and diffusibility all make the 
physiological consequences of each specific ROS very 
distinct [8, 9]. ROS generation involves a cascade of 
reactions that generally starts with the production of O2

·−, a 
molecule with relatively low reaction rates with biological 
components and unable to cross biological membranes. 
Oxygen reduction in the presence of a free electron generates 
O2

·−. Under physiological pH, most of the O2
·− is in its 

charged form hydroperoxyl (HO.
2), which has higher 

reducing capacity, in comparison to O2
·−, and which is able 

to more easily cross biological membranes. In a hydrophilic 
environment, both O2

·− or HO.
2 can reduce ferric ions (Fe+3) 

to ferrous ions (Fe+2), enabling them to undergo the Fenton 
reaction (see later) [7].  

 Superoxide spontaneously dismutate to H2O2, but this 
reaction can be catalyzed by superoxide dismutase. H2O2, in 
turn, can easily penetrate biological membranes and react 
with other species, leading to the generation of more 
deleterious reactive species, such as OH. or HClO, in the 
presence of myeloperoxidase. The oxidizing activity of H2O2 
can also lead to deleterious chemical effects such as 
degradation of haem proteins; iron release; inactivation of 
enzymes; and oxidation of DNA, lipids, SH groups, and keto 
acids [5, 7]. However, catalase, glutathione peroxidase, and 
peroxidases all convert H2O2 to water and other metabolites 
within cells, even when H2O2 is present in very low 
concentrations [10]. Additionally, Fe+2 interacts with H2O2 to 
generate OH.

 through Fenton’s reaction. The OH. radical is 
considered to be a powerful oxidizing agent with extremely 
short life-span that can react at a high rate with organic and 
inorganic molecules in the cell, including DNA, proteins, 
lipids, amino acids and metals [10].  
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 As the importance of oxidative stress in the 
pathophysiology of several neurodegenerative diseases is 
increasingly recognized, an important question is whether 
cellular ROS generation represents redox signaling as 
opposed to oxidative imbalance. Under normal conditions, 
the intracellular redox state, which implies the relative 
contribution of oxidation and reduction processes to the cell 
function, is constantly monitored and kept within a narrow 
range. The redox state plays a significant role in the 
regulation of signaling pathways, including kinase and 
phosphatase activity and gene expression through 
modulation of transcription factor function [e.g., nuclear 
factor kB (NFkB) and activator protein 1 (AP-1)] [7, 11]. 
Accumulating experimental evidence demonstrated that 
protein trafficking, synthesis, degradation and folding are 
also redox-sensitive processes [12]. The mechanisms 
responsible for regulating and maintaining the cellular redox 
homeostasis are not yet fully understood; however, it is 
widely accepted that alterations in this state toward lower 
(redosis) or higher (oxidosis) values might lead to several 
cellular deleterious processes [13, 14].  
 Considering both the toxic and beneficial ROS effects, 
Helmut Sies [15] defined, in 1985, oxidative stress as “a 
disturbance in the prooxidant– antioxidant balance in favor 
of the former”. More recent studies also suggested that 
alterations of ROS production may be restricted to specific 
cell compartments such as endosomes, caveolae, nucleus and 
do not necessarily imply changing the redox status of the 
major intracellular reductants glutathione or thioredoxin, or 
even the overall redox state of the cell [16, 17].  
 In addition to this view, the notion that mechanisms of 
oxidative stress affect several signaling/enzymatic 
mechanisms and are not limited to free radical damage to 
macromolecules, provided the basis for the contemporary 
definition of oxidative stress, as a condition where there is a 
disruption in the normal function of redox networks with or 
without free radical-induced macromolecular damage [9, 17]. 

NOX FAMILY MEMBERS AND SUBUNITIES 
 Early Nox research was carried out in 
polymorphonuclear neutrophils. Since Sbarra and Karnovsky 
first suggested the existence of such an enzyme in 
neutrophils, a great deal has been learned about the 
leukocyte oxidase [18]. Following stimulation, neutrophils 
undergo a respiratory burst characterized by a 20-fold 
increase in oxygen consumption, which is accompanied by 
an increase of glucose utilization and production of reduced 
NADPH by the pentose phosphate pathway [19]. In parallel 
with the knowledge produced by understanding the 
respiratory burst, Nox isoforms have been ascribed an 
important role in the pathology of cardiovascular disorders 
such as hypertension and atherosclerosis [20]. On the other 
hand, despite agreement about the potential importance of 
Nox enzymes in the pathogenesis of many neuro- 
degenerative diseases, comparatively less is known about 
mechanisms underlying the regulation of Nox complex 
activity and expression in brain tissue.  
 The NADPH oxidase is a multi-subunit enzyme that 
transfers electrons across biological membranes. The 
subunits are localized both in the cell membrane 

(cytochrome b558, comprised of p22phox and gp91phox) and in 
the cytoplasm (p40phox, p47phox, and p67phox) [21]. Upon 
stimulation, activation of a low-molecular weight G protein 
(Rac1 or Rac2) and phosphorylation of p47phox initiates 
migration of the cytoplasmic elements to the plasma 
membrane [22]. The catalytic component gp91phox facilitates 
electron transfer. The electron from cytoplasmic NADPH 
travels first to flavin adenine dinucleotide (FAD), then 
through the Nox heme groups, and finally across the 
membrane and it is transferred to oxygen. Superoxide is the 
primary product of the electron transfer, but other downstream 
ROS can also be generated [5]. Seven Nox isoforms have 
been identified so far: Nox1, gp91phox (Nox2), Nox3, Nox4, 
Nox5, and Dual Oxidase 1 and 2 (Duox1 and Duox2). Nox 
1–5 are known to produce O2

·−, whereas Duox enzymes are 
able to release H2O2 without forming a detectable amount of 
O2

·−, because they contain an extracellular peroxidase-like 
domain in addition to the EF-hand Ca2+ binding domains 
and gp91phox homology domain [23]. However, as elegantly 
demonstrated by Serrander and col. [24], in cell lines 
expressing Nox4 the type of ROS released was 
predominantly H2O2, whereas O2

·− was almost undetectable. 
Although close structural and functional similarities exist 
between the different Nox homologues, each isoform seems 
to be differentially expressed and regulated across distinct 
tissue and cell types [25]. Specifically in the central nervous 
system, the presence of Nox1, Nox2, Nox3, and Nox4 
isoforms has been identified in several structures (Table 1) 
[26]. However, very little is known about the role of Nox5 
and Duox1 and 2 in the nervous tissue. Detailed mechanisms 
of activation for individual Nox enzymes described in the 
nervous system are discussed below. 

 Nox isoforms have distinct activation mechanisms. Nox1 
associates with the membrane subunit p22phox, and mostly 
with the cytosolic subunits, NoxO1 (p47phox homologue) and 
NoxA1 (p67phox homologue) and Rac [27, 28]. Nox2 
interacts with p22phox, phosphorylated p47phox, p67phox, and 
Rac. Nox2 has also been found to complex with p40phox, but 
the functional consequences of this interaction are not clear 
[2]. Nox3 activation is less well defined, but it is believed to 
be similar to Nox1, involving Rac, p47phox, and NoxA1. 
Nox4 is unique among the catalytic Nox subunits in that it 
only interacts with p22phox, and it is thought to be 
constitutively active [2]. Nox1 mRNA was found to be 
expressed in neurons, astrocytes and microglia, whereas 
Nox4 was found in neurons. In activated microglia, ROS 
production is frequently associated with Nox2 expression. 
However, Nox1 and Nox4 might also play a role in that 
process [2].  

NOX AND PARKINSON’S DISEASE 

 Parkinson’s disease (PD) is a neurodegenerative disorder 
characterized by a progressive loss of dopaminergic neurons 
in the nigrostriatal pathway of the brain, which triggers 
complex functional modifications within the basal ganglia 
circuitry, leading primarily to motor dysfunctions. Although 
the etiology of PD is unknown, a common element of most 
theories is the involvement of oxidative stress, either as a 
primary or secondary event of the disease [4, 29-31]. 
Research on the pathogenesis of PD suggested that 
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mitochondrial dysfunction is the major source of oxidative 
stress in this disease [32]; however, increasing evidence has 
been also found for a role of Nox enzymes in the process. 

 The research on the mechanisms involved in PD disease 
has relied on the development of animal models that 
reproduce the pathological and behavioral characteristics of 
the disease. Classically, these models are based on the 
systemic or intracerebral administration of neurotoxins 
capable of selectively degenerate the nigrostriatal system. A 

very useful model is based on systemic administration or 
striatal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydro- 
pyridine (MPTP), which causes a PD-like syndrome highly 
similar to the human disease [33-35]. As demonstrated under 
in vivo conditions, translocation of p67phox was induced by 
MPTP in mouse brain and prevented by the tetracycline 
derivative minocycline [36]. More recently, it has been 
demonstrated that p47phox phosphorylation and p47phox–
gp91phox complexes are significantly increased in mice 

Table 1. NADPH Oxidases in the Brain 

 Brain Region Specie RNA Protein References 

Medulla Human  + [85] 

Superior colliculus Rat +  [26] 

Hippocampus Rat +  [84] 

Cerebellum Rat +  [83] 

Forebrain Mice +  [25] 

Midbrain Mice +  [25] 

Hindbrain Mice +  [25] 

Dorsal root ganglion Mice +  [86] 

Nox1 

Hypothalamus Mice +  [87] 

Medulla Human/Rat  + [74,83] 

Superior colliculus Rat +  [26] 

Thalamus Mice/Rat + + [26,78] 

Hippocampus Mice/Rat/Human + + [58,69,70,88,90] 

Cerebellum Mice  + [80] 

Forebrain Mice +  [25] 

Midbrain Mice +  [25] 

Hindbrain Mice +  [25] 

Hypothalamus Mice/Rat + + [73, 74, 76] 

Substantia nigra Mice/Rat + + [75,77] 

Amygdala Mice  + [78] 

Nucleus of the solitary tract Rat  + [79] 

Striatum Mice/Rat + + [71,72,75] 

Cortex Mice/Rat/Human + + [24,69,89,90] 

Nox2 

Brainstem Mice  + [70] 

Cerebellum Rat +  [81,83] 

Hypothalamus Rat +  [81] 

Nox3 

Cortex  Rat +  [81] 

Superior colliculus Rat +  [26] 

Hypothalamus Mice  + [73] 

Cortex Mice + + [61,82] 

Forebrain Mice +  [25] 

Midbrain Mice +  [25] 

Hindbrain Mice +  [25] 

Hippocampus Mice + + [82] 

Nox4 

Cerebellum Mice + + [82] 

Observation: several studies that reported Nox protein occurrence by immunostaining have not actually used the appropriate negative controls, and therefore the data must be 
interpreted with caution. 
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substantia nigra (SN) after systemic injections of MPTP 
[37]. In addition, MPTP induced increases of both gp91phox 
and 3-nitrotyrosine in the SN of ageing mice, which were 
inhibited by oral treatment with the NO-donating derivative 
of flurbiprofen [2-fluoro-α-methyl (1,1'-biphenyl)-4-acetic-4-
(nitrooxy)butyl ester (HCT1026)] [38]. In line with these 
findings, degeneration of dopaminergic neurons induced by 
MPTP was attenuated in gp91phox-/- mice as compared to Wt 
littermates [39]. In the same PD model, gp91phox immuno- 
reactivity colocalizes with microglial cell markers but not 
with astrocyte markers, confirming a microglial origin for 
Nox [40]. In vitro overnight MPP+ (a MPTP metabolite) 
treatment of N27 rat dopaminergic cells was able to induce 
Nox2 protein expression and O2

·− generation, as measured by 
flow cytometric detection. This effect was inhibited by 
siRNA silencing of p22phox [41]. Thus, it appears that 
activation of Nox2 plays a relevant role in the loss of 
dopaminergic neurons in the MPTP-induced PD model.  

 Another commonly used procedure for obtaining 
experimental nigrostriatal lesion in rodents is based on local 
infusion of 6-hydroxydopamine (6-OHDA) (reviewed in 
[42]). The biological effects of 6-OHDA are mainly related 
to the massive oxidative stress caused by the toxin that, once 
accumulated in the cytosol, seems to be auto-oxidated, 
promoting a high rate of free radical generation [43]. As 
detected by dihydroethidium fluorescence, the treatment of 
primary mesencephalic cultures with 6-OHDA induced a 
significant increase of the intracellular generation of O2

·− in 
dopaminergic neurons, as well as in microglial cells [44]. 
There is evidence to implicate Nox-derived ROS in this 
process, but the mechanisms involved are poorly understood. 
Important advances in this regard were provided by a series 
of recent studies. For instance, data from our laboratory 
suggest a relevant role for Nox2 in 6-OHDA-induced PD. In 
this study, the membrane protein levels of p67phox were 
markedly elevated in the SN of 6-OHDA lesioned mice, 
suggesting that the p67phox subunit translocated from the 
cytosol to the plasma membrane, thus forming a Nox entity 
capable of producing superoxide after 6-OHDA injection. 
Tyrosine hydroxylase immunolabeling indicated that gp91phox-

/- mice appear to be protected from dopaminergic cell loss in 
the SN and from dopaminergic terminal loss in the striatum. 
Moreover, wild type mice treated with apocynin, a Nox 
inhibitor [45], and gp91phox-/- mice all exhibited significantly 
ameliorated apomorphine-induced rotational behavior after 
6-OHDA lesion (Hernandes et al., submitted). These results 
are corroborated by some in vitro observations. In rat primary 
mesencephalic cultures, 6-OHDA induced a significant 
increase of gp91phox and p47phox immunolabeling. Confocal 
microscopy revealed that both gp91phox and p47phox were 
intensely expressed in microglia cells. Microglial activation 
and O2

·− generation in dopaminergic neurons were significantly 
reduced by apocynin [46]. Six-OHDA also induced increased 
expression of gp91phox in human dopaminergic neuroblastoma 
cells [47]. In addition, it has been recently reported that 
striatal injection of 6-OHDA increased Nox1 expression in 
dopaminergic neurons of the rat SN. Rac1, a key regulator in 
the Nox1 system, was also activated. Nox1 was localized 
into the nucleus, and immunostaining for a DNA oxidative 
stress marker, 8-oxo-dG, was increased. Adeno-associated 
virus-mediated Nox1 knockdown and Rac1 inhibition were 

both able to reduce 6-OHDA-induced oxidative DNA 
damage and dopaminergic neuronal degeneration [48]. 

 Nevertheless, the role of Nox enzymes in 6-OHDA-
induced PD might not be only limited to the Nox2 isoform. 
As recently demonstrated, striatal administration of 6-OHDA 
increased Nox1 expression in dopaminergic neurons of the 
SN. Furthermore, adeno-associated virus-mediated Nox1 
knockdown reduced 6-OHDA-induced oxidative DNA damage 
and dopaminergic neuronal degeneration in the rat SN [48]. 

 The involvement of Nox in PD has also been revealed 
through other, unrelated PD models. In mesencephalic 
primary cultures, activated microglia generated Noxderived 
superoxide and enhanced lipopolysaccharide-elicited dopa- 
minergic neurodegeneration [49]. Furthermore, microglial 
Nox but not neuronal Nox, renders dopaminergic neurons 
more sensitive to rotenone, an herbicide able to reproduce 
features of PD in rats [50]. In mesencephalic neuron-glia 
cultures from gp91phox-/- mice the deleterious effect of 
microglia induced by substance P on tyrosine hydroxylase-
positive neurons was significantly attenuated [51]. The Nox 
involvement in the cytotoxic action of paraquat, another 
widely used parkinsonism inducing agent, has also been 
recently described. Apocynin attenuated paraquat-induced 
dopaminergic degeneration, Nox activation, cytochrome c 
release and caspases-9/-3 and microglia activation. 
According to the authors, paraquat induces oxidative stress 
through Nox activation and depletion of glutathione, which 
in turn activate the apoptotic machinery leading to dopa- 
minergic neurodegeneration [52]. It has been also reported 
that the Nox inhibitor diphenyleneiodonium (DPI) blocked 
the paraquat-induced ROS production and subsequent 
dopaminergic neurodegeneration [53]. 

NOX AND ALZHEIMER’S DISEASE 
 Alzheimer’s disease (AD) is characterized by an initial 
mild cognitive impairment that progressively develops into a 
loss of higher cognitive functions, resulting in dementia. 
Accumulation of amyloid-β peptide (Aβ) in the brain is 
considered one of the main pathological features of AD. 
Other AD microscopic hallmarks include abnormal protein 
folding, exacerbated activation of glial cells, and synaptic 
and neuronal loss [54]. Importantly, a growing body of 
evidence supports a role for abnormal Nox activation in this 
pathology. Activation of Nox2 in the brain of AD subjects 
has been demonstrated, as evaluated by the translocation of 
Nox2 subunits [55]. In addition, analysis of frontal lobe 
tissue of AD patients demonstrated significantly increased 
levels of Nox1 and Nox3 mRNAs, suggesting that other 
isoforms beyond Nox2 can contribute to that neuropathology 
[56]. There is also evidence that Nox-associated redox 
pathways might participate in the early pathogenesis of AD. 
By using a luminescent assay to detect Nox-dependent ROS 
production, it was shown that Nox activity is increased in the 
superior/middle temporal gyri over control levels at the 
earliest clinical manifestations of disease, but not in late-
stage AD. The observed increases of Nox activity were 
associated with increased expression of p47phox and gp91phox 
in both microglia and neurons [57]. 

 However, in vitro and in vivo studies have generated 
most of the information related to the role of Nox enzymes 
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in AD pathogenesis. It has been recently shown that  
the cholesterol oxidation product, 24-hydroxycholesterol, 
markedly potentiates the pro-apoptotic and pro-necrogenic 
effects of Aβ. This effect depends on its strong enhancement 
of the intracellular generation of Nox-derived ROS, mainly 
H2O2, and the consequent impairment of the neuronal redox 
state, measured in terms of the GSSG/GSH ratio [58]. 
Gp91ds-tat, a Nox2 inhibitory peptide, decreased both 
oxidative stress and AD pathology in aged mice [59]. Also, 
It has been recently shown that feeding AβPP/PS1 double 
transgenic mice, a mouse model of AD, with a diet containing 
phenolic antioxidant tert-butylhydroquinone, inhibits Nox2 
protein expression and suppressed lipid peroxidation in the 
cerebral cortex and hippocampus [60]. It was also found that 
age-dependent increases of Aβ had a significant linear 
relationship with both Nox4 activity and cognitive performance 
in “humanized” APP×PS1 knock-in mice [61]. Apocynin treat- 
ment reduces Aβ deposition and the number of microglial 
cells in the cortex and hippocampus of aged transgenic mice 
overexpressing the human amyloid precursor protein (hAPP 
(751)(SL), but it failed to inhibit cytosolic p67PHOX trans- 
location to the membrane and to reduce the levels of TNFα 
[62]. Similarly, apocynin did not improve cognitive and 
synaptic deficits, and did not decrease Aβ deposition, micro- 
gliosis and hyperphosphorylated tau in transgenic AD mice 
[63]. In vitro exposure of hippocampal neuronal/glial co-
cultures to Aβ peptides resulted in activation of glial Nox, 
followed by neurodegeneration [64]. In another in vitro study 
using a co-culture of microglia and neuroblastoma cells over- 
expressing the Aβ precursor protein (APP), ROS generated 
by microglia induced neurodegeneration. This effect was 
attenuated by ROS-scavengers and was dose-dependently 

inhibited by DPI, suggesting that APP-dependent microglia 
activation and subsequent ROS generation by Nox play a 
crucial role in neuronal degeneration [65]. In addition, some 
studies demontrated that Aβ-induced Nox2 activation in 
astrocytes contributes to neurodegeneration [66, 67]. Aside 
from its involvement in neurodegeneration, production of 
H2O2 from Nox2 regulated microglial proliferation induced by 
Aβ, as demonstrated in a primary mixed glial culture obtained 
from rat cerebral cortex. This effect was prevented by apocynin 
and catalase, a H2O2-degrading enzyme [68]. In summary, 
strong evidence indicates that oxidative stress in AD involves 
ROS generation by Nox enzymes, in particular Nox2. 

CONCLUSIONS 

 Regardless of the general agreement on the potential 
importance of ROS-generating Nox enzymes in the 
pathogenesis of many neurodegenerative diseases, our 
knowledge on the specific molecular mechanisms of 
activation and subsequent functional consequences of 
activating specific Nox enzymes in the brain tissue is 
limited. In addition to examining the local expression and 
activation of Nox enzymes under neurodegenerative 
conditions, the cellular consequences of a chronically 
dysregulated oxidative environment must also be taken into 
account. For instance, it is necessary to evaluate the ROS-
dependent activation of inducible transcription factors and 
modulation of gene expression. Indeed, as nonspecific 
scavenging may prevent ROS from acting in essential 
biochemical pathways, that knowledge is essential to allow 
and improve the development of specific novel therapies 
targeting Nox proteins, therefore reducing the pathological 
consequences of oxidative stress. 

Fig. (1). Nox activation, neurodegeneration and neuroprotection. In Parkinson´s and Alzheimer´s disease rodent models, increased activation 
of the Nox family of ROS-producing proteins contributes to neurodegeneration. Blockade of Nox generates neuroprotection in some 
instances. Abbreviations: 6-hydroxydopamine (6-OHDA); 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP); Lipopolysaccharide (LPS); 
amyloid-β peptide (Aβ); superoxide (O2

·−); hydrogen peroxide (H2O2) and diphenyleneiodonium (DPI). 
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