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Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also produce spontaneous population patterns in
the absence of sensory drive. This population activity is often characterized experimentally by the distribution of multineuron “words”
(binary firing vectors), and a match between spontaneous and evoked word distributions has been suggested to reflect learning of a
probabilistic model of the sensory world. We analyzed multineuron word distributions in sensory cortex of anesthetized rats and cats,
and found that they are dominated by fluctuations in population firing rate rather than precise interactions between individual units.
Furthermore, cortical word distributions change when brain state shifts, and similar behavior is seen in simulated networks with fixed,
random connectivity. Our results suggest that similarity or dissimilarity in multineuron word distributions could primarily reflect
similarity or dissimilarity in population firing rate dynamics, and not necessarily the precise interactions between neurons that would

indicate learning of sensory features.

Introduction
Cortical activity, like animal behavior, has a probabilistic charac-
ter (Rao et al., 2002). Recordings of single cells have shown that
presentation of an identical stimulus can cause variable responses
from one presentation to the next; yet the probabilistic sensory
responses of any one neuron are a manifestation of a more com-
plex distribution of activity at the population level. Furthermore,
even in the absence of sensory stimuli, the cortex produces un-
predictable but structured spontaneous activity that in many
ways resembles sensory responses (Kenet et al., 2003; Fiser et al.,
2004; DeWeese and Zador, 2006; Okun and Lampl, 2008; Luczak
etal.,2009; Ringach, 2009; Tkacik et al., 2010). Characterizing the
structure and function of this probabilistic activity is an essential
step toward understanding how neuronal populations process
information.

One of the most intriguing interpretations of the probabilistic
nature of neural activity is the “sampling-based representation”
hypothesis (Hoyer and Hyvarinen, 2003; Fiser et al., 2010). Psy-
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chophysical experiments indicate that the brain acquires proba-
bilistic models of the external environment (Knill and Richards,
1996; Ernst and Banks, 2002; Kersten et al., 2004; Franklin and
Wolpert, 2011; Moreno-Bote et al., 2011). The sampling hypoth-
esis holds that these models are explicitly represented as proba-
bility distributions over neuronal spikes or membrane potentials,
with the parameters of the distribution encoded in synaptic
weights, and learned via experience-dependent synaptic plastic-
ity. This internal model causes population responses to represent
samples from a posterior distribution given a particular sensory
input.

A recent study in primary visual cortex appeared to support
this sampling hypothesis (Berkes et al., 2011). By representing
population activity as N-bit binary words, this study found that
word distributions during spontaneous activity are similar to
those elicited by presentation of natural movie clips in adult fer-
rets, but not in juveniles; furthermore, in adults, spontaneous
word distributions matched those of natural movies but not ar-
tificial drifting gratings. This is indeed what one would expect to
find if V1 responses were generated by a sampling-based internal
model of the natural visual world acquired during development.

Here we show that similarities and differences between corti-
cal word distributions are dominated not by precise interactions
between units (as would be expected from the sampling hypoth-
esis), but by variations in the dynamics of population rate: the
instantaneous summed activity of all neurons in the population.
Fluctuations in population rate are one of the most prominent
features of cortical activity. The strength of these fluctuations
varies as a function of cortical state, from strongly fluctuating
activity in synchronized states such as slow-wave sleep, to steadier
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activity found in more desynchronized states such as active be-
havior (Poulet and Petersen, 2008; Okun et al., 2010). We intro-
duce a simple phenomenological model for word distributions
(the “raster marginals model”), parameterized by measures of
population rate dynamics rather than by precise interactions be-
tween units. This model accounts for similarities between multineu-
ron word distributions in primary auditory and visual cortex of
anesthetized rats and cats, as well as in artificial networks of
integrate-and-fire neurons. It also captures the experimental find-
ings that appeared to support the sampling hypothesis (Berkes et al.,
2011), questioning the use of multineuron word distributions to
characterize the learning of sensory features.

Materials and Methods

Recordings in rat Al. Experiments were performed at Rutgers University
in accordance with protocols approved by the Animal Care and Use
Committee. The experimental details and the data used here were previ-
ously described in Marguet and Harris, 2011. Briefly, male Sprague Daw-
ley rats were anesthetized with urethane plus supplemental doses of
ketamine and xylazine. This anesthesia regime produced robust and well
controlled switches between synchronized and desynchronized states,
which either occurred spontaneously or were induced by tail pinch, and
could be detected both in the local field potential (LFP) spectrogram and
in the coefficient of variation (CV) of the population rate (see below).

Silicon probes (32 contacts) arranged in an eight tetrode configuration
(NeuroNexus Technologies) were advanced into layers V and VI of the
left primary auditory cortex (A1). Signals were amplified, digitized at 20
kHz, and stored for off-line analysis. The auditory stimulus consisted of
30-50 s intervals of amplitude-modulated noise. Stimulus presentations
were separated by intervals of silence of equal duration, in which spon-
taneous activity was recorded.

Spikes were detected and visually verified using the programs NDma-
nager and Neuroscope (Hazan et al., 2006). In the original study by
Marguet and Harris (2011) the spikes on each tetrode were sorted; here,
instead, we followed the analysis methods of Berkes et al. (2011), and
simply accumulated all unsorted spikes from each tetrode.

To quantify cortical state, we adopted the measure of Renart et al.
(2010), based on the CV of the population rate. We considered 10 s
intervals of spontaneous activity and divided them into 200 windows of
50 ms each. For each window, we determined the population rate, i.e., the
total number of spikes on all the tetrodes. We took the CV of population
rate over the 200 windows as the measure of cortical state in that time
interval. We considered values of CV = 1 to indicate synchronized states
and CV = 0.5 to indicate a desynchronized state (see Fig. 1C).

We analyzed data from three animals. In rats 1 and 2 we detected two
stable epochs of both synchronized and desynchronized activity (Fig.
1C); extracting spontaneous and sensory-evoked data from these four
epochs provided eight segments of activity for our analysis. In rat 3, the
amplitude modulated noise stimulus spanned only one period of syn-
chronized and desynchronized states; however, spontaneous activity was
recorded in additional periods of both synchronized and desynchronized
states, leading in total to six instead of eight segments.

Recordings in cat V1. Experiments were conducted at the Smith—Ket-
tlewell Eye Research Institute in accordance with protocols approved by
the Institutional Animal Care and Use Committee. The experimental
details and the data used here were previously described in Benucci et al.,
2009 and Busse et al., 2009. Briefly, female cats were anesthetized with
ketamine and xylazine for initial surgery, followed by sodium pentothal
and fentanyl for electrophysiological recordings. The signals from 96-
channel multi-electrode (Utah) array were recorded using the Cerebus
128-channel system (Blackrock Microsystems). The recordings were pri-
marily from layers IT and III. Spikes were detected on-line by a threshold
set to ~3—4 SD of the background noise. The spike waveforms were
digitized at 30 kHz and stored for off-line analysis. Only electrodes that
detected spiking activity were used in this analysis.

Estimation of the Kullback—Leibler divergence between word distribu-
tions. The firing patterns recorded by a multi-electrode array were de-
scribed by N-bit words, where a word represents the presence of a spike
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on each of the Nelectrodes (N = 8 forrat Al; N = 16 for cat V1) in a brief
interval (2 ms). In this representation the match between any two kinds
of activity recorded on the same electrodes is quantified by the Kullback—
Leibler divergence (KLdiv, measured in bits/s) between the two distribu-
tions of 2 values.

Throughout the paper we use the symmetrized version of KLdiv, given
by D[P||Q] = (D[P||Q] + D[Q||P])/2, unless stated otherwise. To
estimate KLdiv between two experimentally observed or synthetically
generated word distributions, we used the symmetrized form of the
Bayesian, bias-corrected estimator introduced in Berkes et al., 2011;
Equations S12-S14 of their supplemental material. To express the KLdiv
in bits, the value was normalized by a log(2) factor. To verify that this
estimator provides accurate results when the number of the available
samples for each of the two distributions is different, e.g., as in the case of
Figure 1F-H, we used synthetic rasters drawn from pairs of word distri-
butions whose true KLdiv was computed analytically (data not shown).

The raster marginals model. The raster marginals model (see Fig. 2B)
synthesizes a random population raster with a specified mean firing rate
(MFR) for each electrode and a specified population rate distribution
(PRd). To operate, the algorithm must be given: (1) the number of time
bins T of the raster that is to be synthesized, (2) the total number of spikes
S, occurring on electrode i during this duration for all i between 1 and the
number of electrodes N, and (3) the total number of time bins r; for
which the instantaneous Population Rate (i.e., the total spike count for
that time bin, summed over all electrodes) was i, for all i between 0 and N.
Note that 3Xor; = T'is the total number of time bins. Since it must hold
that 3, S; = 3Ni - r;, the model is described by 2 N parameters. These
parameters determine the two marginals of a binary matrix of dimen-
sions N-by-T, up to a permutation of the columns (Fig. 2B).

In general, there are many different matrices with the given marginals.
To construct one, we can begin with some random matrix that satisfies
(3), and by repeatedly shifting 1s within the same column from any row
i whose sum exceeded S; into a row j whose sum fell below S, bring it to
satisfy (2) as well. An alternative approach is to use Ryser’s (determinis-
tic) algorithm to construct the canonical matrix with such marginals
(Ryser, 1957, 1960; Brualdi, 2006). Once we have a matrix with the spec-
ified marginals, it can be randomized by repeatedly picking a 2 X 2
submatrix in which each row and each column contains 0 and 1, and
switching between the 0s and 1s. It is possible to move between any two
0/1 matrices having the same marginals (modulo column permutation)
by a sequence of applications of this operation (Ryser, 1957). Consecu-
tive application of a shift in a randomly chosen 2 X 2 submatrix can be
used to get in the limit a uniform distribution over all matrices with given
marginals (Rao et al., 1996). In our particular case of matrices that have
many columns but few rows, this can be significantly sped up by applying
the shift operation in parallel on multiple 2 X 2 submatrices from the
same pair of rows.

To the best of our knowledge, the raster marginals model represents
the first application to neuroscience of the combinatorial theory of 0/1
matrices with given marginals. The model is related to a raster shuffling
method in which pairs of spikes in different trains are exchanged (Luczak
et al., 2007; Griin, 2009). There is, however, an important conceptual
difference between the two—unlike shuffling, the model gets no knowl-
edge about the original raster beyond the 2 N parameters. Thus, one need
not be concerned with the potential problem of some structure in the
original data not being destroyed by shuffling. One additional difference
is that shuffling preserves the temporal dynamics of population rate of
the original raster, whereas the model cannot.

For an empirically observed word distribution P, we use P to denote
the word distribution produced by the raster marginals model given the
parameters corresponding to P. We use P for the word distribution con-
structed by retaining the MFRs of the original data but assuming each
spike train is independent of the others.

Estimating properties of the PRd. In many recordings the PRd resembles
the lognormal (see Results). As the support of the lognormal distribution
is real numbers >0, whereas spike counts are integers including 0, to fita
lognormal distribution to the observed PRds, we shifted the measured
spike counts upward by 1, and further added a “noise” value, uniformly
distributed between 0 and 1, to the number of spikes in each bin. We
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Table 1. Parameters for simulated PRds
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Table 2. Parameters for recurrent spiking network simulations

s “M” Symbol  Function Parameters
“Juvenile” w=150=06 w=2050=06 C(, Membrane capacitance 0.2 nf
“Adult” w=22750=08 w=248,0=08 f, Excitatory reversal potential 0mvV
E Inhibitory reversal potential —80mV
T Membrane time constant 10 £33 ms
q Leak conductance /T,
evaluated the quality of the shifted lognormal fit by the KLdiv between £ Resting potential —70 £ 3mV
the observed distribution and the fit. Specifically, if P(r) denotes the ' Spike approach threshold ] —30mv
observed probability to have r simultaneous spikes in a 2 ms bin and Q(r) Steepness of approach to spike threshold 25+ 08mV

is this probability according to the fit, its quality is given by the following:

500 i{)P(r’)log2 [%],

where the factor of 500 is used to obtain the units of bits/s (from a 2ms bin
size), and M is the maximal number of simultaneous spikes observed at
least 30 times in the given block. In our V1 data M was on average 48 =
14. The upper limit on r is required because P(r) cannot be reliably
estimated when 7 is close to 96: as r approaches this value, the occurrence
of r simultaneous spikes becomes increasingly rare.

To estimate the KLdiv between PRds of pairs of recording seg-
ments, we used the symmetrized version of the above formula. We
used this direct estimate instead of the Bayesian bias-corrected esti-
mator (used for word distributions) because the number of different
rvalues does not grow exponentially with N (r is distributed over N +
1 values at most, whereas w is distributed over 2" values), hence the
probabilities can be estimated accurately from the limited amount of
available empirical data.

Several theoretical papers derived an analytical expression for the PRd
(Amari et al., 2003; Macke et al., 2011). However, the assumptions made
in these works seem too restrictive for our application. In our case an
additional complication with using these results arises because the mul-
tiunit signal on each electrode consists of spike trains from an unknown
number of neurons surrounding it.

To simulate ferret data according to the raster marginal model (see Fig.
7B-D), we used shifted lognormal PRds with parameters specified in
Table 1. These values are within the same range as those observed in the
data from cat V1 (data not shown). As these values provide PRd for
rasters of 96 channels rather than 16, we downsampled the distribution
by computing the expectation for the number of spikes on 16 channels
given that there were i spikes in total (for every 96 = i = 0).

Simulations of random recurrent spiking network. To demonstrate that
similarity of spontaneous and evoked word distributions can occur with-
out learning, we simulated a network of 10,000 conductance-based
integrate-and-fire neurons, of which 80% were excitatory and 20% in-
hibitory. The network was implemented with the NEST simulator
(Gewaltig and Diesmann, 2007), accessed via the PyNN interface (Davi-
son et al., 2008). The time step of the simulations was 0.1 ms.

The membrane potential V of the neurons followed exponential
integrate-and-fire dynamics (Brette and Gerstner, 2005; Destexhe,
2009):

av
CmE = —ga(V—E) —gn(V—-E) - g()(V—-E)
V-V
+ g;Aexp A - w.
Here C,, is the cell’s capacitance; g,(¢) and g,(t) are the total excitatory

and inhibitory conductances due to synaptic input; E, and E; are
excitatory and inhibitory reversal potentials; g; is the leak conduc-
tance; E; is the resting potential; V. is spike approach threshold; A
controls the steepness of approach to spike threshold. Spiking was
triggered at a threshold of —40 mV, following which V was clamped at
—70 mV for the following 5 ms. V was prevented from going below
—80 mV by a hard lower bound. The current w in the above equation

a Adaptation strength 1.00 = 0.33 nS

b Postspike adaptation current (for excitatoryneurons) 0.9 = 0.3 or 0.1 = 0.03 nA
b Postspike adaptation current (for inhibitory neurons) 0

Ty Adaptation time constant 600 = 200 ms

T, Time constant of excitatory synapses 5.0 = 1.7 ms

T Time constant of inhibitory synapses 10.0 = 3.3 ms

Parameters in bold were drawn from Gaussian distributions.

models spike-frequency adaptation observed in cortical neurons, and
is governed by the following:

dw 1

T [a(V = E;) — w],
where 7,, is the time constant of w, and a controls adaptation strength.
After every spike w increases by b nA.

The neurons were randomly connected with connection probability of
2% between E-E, E-I, I-E, and I-I pairs. The synaptic conductances were
represented by « functions, with excitatory synapses having a peak
strength of 6 nS and time constant of 7,, while the corresponding values
for inhibitory synapses were 40 nS and 7,. The axonal conductance delays
were drawn randomly and uniformly between 0.2 and 3 ms.

To enforce heterogeneity across neurons, some of these parameters
(bold in Table 2) were drawn from Gaussian distributions whose means
and SDs are specified in the table. Parameters were drawn independently
of all the others, i.e., there were no correlations between the different
parameters across the network.

We operated the network in two conditions, differing in the amount of
the background excitatory drive and the strength of spike-frequency ad-
aptation. The tonic background excitation was modeled by noise consist-
ing of Poisson spike trains received by all the neurons (independent for
each of the target neurons), with a rate of 0.33 spikes/s for the first
condition and 1.5 spikes/s in the second condition, delivered via an ex-
citatory synapse with a peak conductance of 6 nS. The spike-frequency
adaptation was stronger in the first condition (average b = 0.9 nA) than
in the second condition (average b = 0.1 nA).

To simulate structured sensory input, every neuron was driven by an
external spike train, delivered via an excitatory synapse with a peak con-
ductance of 6 nS. The spike trains were synthesized by an inhomoge-
neous Poisson process whose firing rate was a lowpass filtered (by
convolving with a Gaussian with a time constant of 13.5 ms) white noise,
shared by all the neurons.

To obtain 16 multiunit spike trains we randomly selected a subset of
neurons and subdivided it into 16 groups. The size of each group was
randomly sampled from a Gaussian distribution with u = 20, o = 15.

Results

In this work, we analyzed the structure of multineuron word
distributions in rat and cat sensory cortex. We begin by illustrat-
ing how in rat auditory cortex these distributions depend
strongly on brain state. We then introduce a simple model of
firing patterns based on the dynamics of population rate, and we
apply this model to the data from rat auditory cortex, and to data
from cat visual cortex. We go on to simulate results that have
been obtained in ferret visual cortex and have been seen as a test
of the sampling hypothesis. Finally, we examine the behavior of a
simple recurrent spiking network with random connectivity.
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Figure1.

Word distributions in rat A1 are state dependent. 4, The multiunit spiking activity on eight tetrodes was converted into a binary matrix whose columns represent the presence of spikes

in consecutive, nonoverlapping 2 ms bins. B, Spontaneous and stimulus-evoked word distributions are similar when accumulated over the whole dataset. The plot shows the probability of every
8-bitword, with color representing the number of Ts it contains. C, Cortical states. Top, Spectrogram of LFP on one electrode. Bottom, Running CV of the population rate, computed from 10 s intervals
of spontaneous activity (see Materials and Methods). The CV and low-frequency power are substantially higher in synchronized-state epochs (S1and S2). D, Example rasters of spontaneous activity
during desynchronized and synchronized states (the position of these intervals within the recording shown in Cis indicated by asterisks). The corresponding population rate (spikes/50 ms bin) is
shown to the right of each raster. £, The spontaneous word distribution differs between states. F, Pseudocolor matrix showing KLdiv between spontaneous word distributions in each pair of periods.
The distributions are similar within states, but different across states. G, H, Same plot as in F, for evoked-evoked and spontaneous-evoked word distributions.

Distribution of firing patterns depends on brain state

An implicit assumption of the sampling hypothesis, at least as
currently formulated, is that the activity of the network is deter-
mined solely by the interaction of its (sensory) input, and the
synaptic connections of local neurons. While this assumption
might apply to early sensory structures such as the retina (Pillow
et al., 2008), it is not the case in cortex, where changes in brain
state rapidly and reversibly change the dynamics of neural activity

(Harris and Thiele, 2011). How do these changes in brain state
affect word distributions?

To investigate the factors affecting word distributions in sen-
sory cortex, we analyzed the joint structure of eight multiunit
spike trains recorded in primary auditory cortex (Al) of rats,
presented with amplitude-modulated frozen noise stimuli, inter-
leaved with periods of silence of similar duration (see Materials
and Methods). To experimentally quantify the probabilistic
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were highly dissimilar (Fig. 1E). In fact,
brain state was the main factor deter-
mining the similarity of word distribu-
tions. Word distributions were similar
within different epochs of the same
state, even if these were many minutes
apart, both during spontaneous activity
(Fig. 1F), and during presentation of
the auditory stimulus (Fig. 1G). When
we compared the ongoing and evoked word distributions in
the different states, we found that the effect of state change was
substantially greater than the effect of the stimulus (Fig. 1H).

These results indicate that the reason for small overall differ-
ence between the word distribution of ongoing and evoked activ-
ities that we had seen when disregarding any state changes (Fig.
1B) is that these distributions match within each state. To con-
clude, a period of spontaneous activity may show similar or dif-
ferent word distributions to a period of sensory-evoked or
spontaneous activity, dependent on cortical state.

Figure 2.

A simple model of firing patterns based on

population dynamics

What could underlie the difference in word distributions in
the synchronized and desynchronized states? Because the an-
imals were anesthetized, it is implausible that the changes re-
flected modification of internal models of auditory statistics
or any other specific synaptic weight adjustment. Nor could
the similarity of spontaneous to evoked activity within a state
reflect a learned model of the artificial and previously unheard
stimulus.

The raster marginals model. 4, PRd of spontaneous and evoked activity in each of the recording intervals shown in
Figure 1C. B, lllustration of the model. Summing the rows of the raster matrix provides the mean firing rate (MFR) for each
electrode. Summing columns provides the population rate, whose distribution (PRd) is used by the model. MFR and PRd summarize
the raster by 2N parameters, which are used to produce a synthetic raster (see Materials and Methods). €, lllustration of a
correlation structure that cannot be captured by the model. Left, Spike coincidences predominantly occur between units 1-2 (blue)
and 3—4 (green), whereas all other coincidences are rare (gray). Right, In the output produced by the model, coincident spikes
occur between any pair of units.

We hypothesized that the difference in word distributions
could instead be explained by a change in cortical dynamics, i.e.,
by the propensity of the network to exhibit globally coordinated
fluctuations in activity (Fig. 1D) (Curto et al., 2009; Harris and
Thiele, 2011). To measure this propensity, we considered the
population rate (i.e., the total number of ones in each word),
computed as a function of time in 2 ms bins. We then computed
a histogram of frequencies of population rate for each data seg-
ment, which we term the population rate distribution (PRd). As
with the full multiunit word distribution, the PRd showed a
greater dependence on state than on the presentation of a stimu-
lus (Fig. 2A).

Might similarities in PRd between conditions be sufficient to
explain the similarities in word distributions? To test this hypoth-
esis we developed a combinatorial algorithm to generate random
spike trains that conform to the observed PRd and MFR on each
electrode (Fig. 2B). Because this model uses only the summed
activity of the population, rather than interactions between indi-
vidual spike trains, we termed it the raster marginals model.

We then asked how well the raster marginals model captures
the structure of an original word distribution. The model will
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Figure 3.

provide a poor fit if there exist strong correlations between spe-
cific subgroups of units, not due to fluctuations in population
rate (Fig. 2C). On the other hand, the model should provide a
very good fit if population activity is determined by a single firing
rate function, to which all the individual train intensities are pro-
portional. Physiological data are likely to fall in between these two
extremes, and the quality of the model predictions will depend on
the extent that correlations can be predicted by fluctuations in
population rate.

I Data - raster marginals

* - Data- Data
* Data — MFR only
* Data — raster marginals

The raster marginals model accounts for the word distribution observations in rat A1. 4, Fit between the MFR and
raster marginals models to the word distribution in epoch S2 of Figure 1C. B, Summary data for the fit of the MFR and raster
marginals models to the word distributions in the eight conditions in each animal (six in one of the rats). The bars represent the
mean KLdiv. Error bars indicate SD. The gray bars indicate the KLdiv between two halves of the experimental data. €, The fit of the
MER and raster marginals models for the pairwise correlations (across all the conditions and animals). The gray points show how
well the pairwise correlation measurement from one half of the experimental data describes the second half.

tribution to the original word distribu-
100 tion. Consistent with previous reports
(Yu et al., 2008; Ohiorhenuan et al.,
2010; Berkesetal.,2011; Yuetal., 2011),
we found that MFRs alone provided a
poor approximation for the observed
word distributions, as on their own they
do not account for the correlations be-
tween the individual spike trains. On the
other hand, the word distributions pro-
duced by raster marginals model closely
matched those of the original data (Fig.
3A,B). Therefore, in this dataset the
fluctuations in population rate domi-
nate the word distributions.

Although the raster marginals model
greatly outperforms prediction from MFRs,
it still does not provide a perfect fit to the
observed word distributions (Fig. 3B, red vs
gray). To gain an intuition for the quality
of the fit, we examined how well the
model predicted specific pairwise correla-
tions. Figure 3C shows the correlation be-
tween each pair of spike trains in the
original data plotted against the correla-
tion predicted by the raster marginals
model. The spread of the points around
the diagonal indicates the extent to which
factors beyond population dynamics af-
fect pairwise correlations.

Nonetheless, the raster marginals
model was sufficient to predict the ob-
served KLdiv between pairs of word dis-
tributions. Indeed, the KLdiv measured
from the synthetic rasters produced by
the raster marginals model closely
matched the KLdiv measured from the
original data, recapitulating all the ef-
fects of cortical state and stimulus pres-
ence that we had observed in the actual
data (Fig. 4A,B). To put the model to a
further test, we computed the KLdiv be-
tween pairs of word distributions in
which one was observed while the other was synthetic. These
KLdiv values were also found to be close to the corresponding
values of KLdiv between pairs of the original word distribu-
tions (Fig. 4C), with a small additive offset approximately
equal to the residual distance between the original and model
data (compare Fig. 3B).

The raster marginals model, however, could not be further
simplified. For instance, producing uncorrelated random spike
trains according to MFRs alone did not provide an accurate pre-
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diction (Fig. 4D). Thus, while a model based on firing rates alone
is poor at predicting KLdiv between word distributions, popula-
tion rate dynamics provides a good approximation of individual
word distributions and can therefore accurately predict KLdiv
between pairs of distributions.

The raster marginals model accounts for distributions of
firing patterns in cat V1

To further test the validity of the raster marginals model, we
asked if it can also account for the firing patterns of neurons in the
visual cortex. We analyzed a set of acute recordings from cat V1
made with a 96-channel multi-electrode array (Benucci et al.,
2009; Busse et al., 2009). Every experiment lasted for many hours,
during which blocks of specific visual stimuli were presented,
including drifting and flashing gratings, plaids, random bars, nat-
ural movies, and others. In total, we analyzed data from 64 blocks
of data (each lasting 1450 min) from nine animals, yielding 200
pairs of blocks in which word distributions could be compared.
For each animal we selected a random subset of 16 of the 96
electrodes, and compared the word distributions in the different
blocks across these electrodes. This procedure was repeated five
times, producing a total of 1000 comparisons.

In these recordings, the stimulus presentation did make a dif-
ference in terms of word distributions. We compared the activity
measured during spontaneous activity with those measured dur-
ing responses to gratings and natural movies (Fig. 5A). Similarly
to earlier results in ferret V1 (Berkes et al., 2011), we found that
spontaneous word distributions were more similar to those of
natural movies than to gratings (Fig. 5B).

However, this dependence of word distribution on stimulus
type was fully explained by the raster marginals model (Fig. 5C).
In fact, the model accurately predicted the measured KLdiv
across all pairs of stimuli in the dataset, not just gratings and
natural movies (Fig. 5D). The success of the raster marginals
model in explaining this large body of data indicates that here, as
in the data from rat Al discussed earlier, word distributions pri-
marily reflect changes in population rate dynamics, rather than
interactions between individual spike trains.

Statistical properties of the PRd

The success of the raster marginals model suggests that to under-
stand word distributions, it is desirable to have a succinct model
of the PRd. We found that a lognormal distribution, with a fur-
ther shift to allow for bins of zero firing rate (see Materials and
Methods), provided an accurate fit to the PRd measured in cat V1
experiments (Fig. 6A). To quantify the quality of the fit, we com-
puted for each block the KLdiv between the shifted lognormal fit

and the actual PRd (see Materials and Methods). In eight of the
nine animals, we found a good fit between the two in most of the
blocks (Fig. 6B).

One of the mathematical motivations for the raster marginals
model is the decomposition of the KLdiv into two parts, one of
which depends only on the PRd. In more detail, let P(w) and
Q(w) be two distributions of N-bit words w (for example with P
representing the word distribution for spontaneous activity and
Q that evoked by a particular sensory stimulus). Let r = r(w)
denote the total number of spikes (i.e., 1s) in a word w. Since r is
fully determined by w, it holds that

D[P(w)||Q(w)] = D[P(w,r)||Q(w,r)] = D[P(r)||Q(r)]
+ D[P(w|r)||Q(w|r)]. (1)

The second equality is known as the chain rule for relative en-
tropy (Cover and Thomas, 1991). Equation 1 implies that the
KLdiv is a sum of a component determined solely by the popula-
tion rate dynamics (i.e., the PRd) and of a component deter-
mined by differences in the firing patterns across similar levels of
population activation in P(w) and Q(w). Equation 1 has several
additional implications, one of which is that D[P(r)||Q(r)] is a
lower bound on D[P(w)||Q(w)]. Figure 6C shows the relationship
between the (symmetrized) KLdiv of the full word distribution
for blocks of cat data, and the (symmetrized) KLdiv of the PRds.
As predicted, the KLdiv of the PRds forms a lower bound for the
KLdiv of the full word distribution. However, the poor match
seen in Figure 6C also indicates a significant contribution of the
conditional KLdiv (the last term in Eq. 1). The fact that the raster
marginals model makes a good prediction of KLdiv implies that it
accurately approximates this conditional KLdiv term.

Explaining the apparent effect of development on
word distributions
Cortical dynamics changes markedly over development: the ju-
venile visual cortex exhibits a state of primarily silent activity
punctuated by occasional large population bursts that changes by
adulthood into a more continuous pattern (Colonnese et al.,
2010). These changes in cortical dynamics occur even in dark-
reared animals (Golshani et al., 2009; Rochefort et al., 2009), so
they cannot reflect learning of the visual environment. Could
changes in cortical dynamics explain the developmental increase
in similarity between spontaneous and evoked word distribu-
tions reported in ferrets by Berkes et al. (2011) (Fig. 7A)?

To answer this question, we used the raster marginals model
to construct synthetic word distributions using parameters de-
rived from previously published reports. According to Fiser et al.
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(2004), mean V1 firing rates in juvenile ferrets during periods of
ongoing and sensory-evoked activities were 20 and 40 spikes/s,
while the corresponding values for adult ferrets were 60 and 75
spikes/s. We synthesized “spontaneous” and “evoked” activity by
allocating each electrode’s MFR according to a Gaussian distri-
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bution with these means, with a PRd sampled from a shifted
lognormal distribution as in our own V1 data (Fig. 7B; see Mate-
rials and Methods). Similarly to the ferret data, KLdiv between
synthetic “juvenile” word distributions was several times higher
than in synthetic “adult” data (Fig. 7C,D). As in the ferret data,
comparison with synthetic trains computed from MFRs alone
confirmed that these differences did not simply reflect changes in
firing rates, but changes in correlation; however, the success of
the raster marginals model indicated that these correlations could
again be explained by population rate dynamics (Fig. 7D,
bottom).

Word distributions in a randomly connected network

The above analyses suggest that changes in cortical dynamics,
rather than learning-related synaptic plasticity, underlie the
increased match of spontaneous to evoked word distributions
in adult animals. But what could cause these changed dynam-
ics? In adult animals, changes in cortical dynamics are believed
to reflect changes in neuromodulatory and tonic glutamater-
gic drive (Harris and Thiele, 2011); across development,
changes in cellular conductances (Kasper et al., 1994; Ether-
ington and Williams, 2011; Guan et al., 2011) could also con-
tribute to changed dynamics.

To demonstrate how such changes could alter word distribu-
tions even without synaptic weight modifications, we analyzed
the joint structure of 16 multiunit spike trains in a simulated
network of randomly connected neurons (Fig. 8A). As usual, we
compared multineuron word distributions measured during
spontaneous activity with those measured during driven activity.
To mimic sensory stimulation, this driven activity was obtained
by providing the network with an external spatiotemporally
structured input (see Materials and Methods).

With a fixed synaptic weight matrix, we simulated two condi-
tions: one in which neurons exhibited strong cellular spike-
frequency adaptation and received little background depolarization,
and a second condition of weak adaptation and high background
rate. As shown in previous computational models (Compte et al.,
2003; Hill and Tononi, 2005; Holcman and Tsodyks, 2006;
Destexhe, 2009), the first condition produced slow global fluctu-
ations in activity, alternating spontaneously between active peri-
ods where recurrent excitation causes self-sustaining activity
(“up states”), and silent periods that occur after sufficient adap-
tation has occurred to prevent their continuation (“down
states”). Conversely, the second condition provided a state of
more constant population activity.

The results obtained with this fixed artificial network recapit-
ulated the main findings obtained with actual recordings: a
change in the dynamics of population firing rate determined the
match or mismatch between the word distributions seen in spon-
taneous and evoked activity. Indeed, while a mismatch between
the spontaneous and evoked word distributions was found in the
first condition (Fig. 8B), a close match was observed in the second
(Fig. 8C).

To investigate the role of correlations in producing the KLdivs
observed in these simulations, we again computed the KLdiv be-
tween word distributions of the original data and of synthetic
rasters obtained using only the MFRs (Fig. 8D). As with the ferret
data and raster marginals model (Fig. 7), differences between the
original data and MFR-only model indicate the presence of cor-
relations in the network, which became more pronounced in the
second condition. The distinct KLdiv measures within conditions
(e.g., gray vs pink bars) are qualitatively different from Figure 7,
likely reflecting a difference in the shape of the PRds produced by
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not sufficient to predict the KLdiv between observed word
distributions, indicating that correlations also contributed

the network, when compared with V1 (compare Figs. 8E, 6A).
Finally, we note that the raster marginals model provided an

accurate approximation for the structure of word distributions
produced by the network (Fig. 8F) and for the KLdiv between
pairs of word distributions in the different conditions (data not
shown). We conclude that changes in the dynamical state of even
a randomly connected network can cause a change from low to
high match between spontaneous and evoked activity, without
any form of synaptic plasticity.

Discussion

We assessed similarities and differences between probability
distributions of cortical population activity using the KLdiv
between multiunit word distributions. KLdiv depended on
both cortical state and sensory stimuli. Changes in MFRs were

substantially. Nevertheless, the experimentally measured
KLdiv could be accurately predicted by the raster marginals
model, in which all correlations resulted from population rate
dynamics, rather than precise interactions between cells. A
simulated spiking network model of fixed random connectiv-
ity could exhibit either similarity or difference between spon-
taneous and sensory-evoked word distributions, according to
its cellular parameters. We conclude that similarities and dif-
ferences in KLdiv between multiunit word distributions can
primarily reflect changes in population dynamics, rather than
the precise interactions between spike trains that would be a
hallmark of learning.
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Spontaneous and input-driven word distributions in a randomly connected recurrent spiking network can shift from a mismatch to a match upon change in intrinsic properties of the

network. A, Schematic of the network, containing 80% excitatory and 20% inhibitory neurons. B, In condition 1, background depolarization is weak and firing adaptation of the excitatory neurons
is strong. In this condition, the spontaneous and evoked word distributions produced by the network substantially differ. , In condition 2, background depolarization is strong and adaptation weak.
In this condition, spontaneous and evoked word distributions are similar. D, Same analysis as in Figure 7 A, D (bottom) for spiking network data (S, spontaneous; /d, input driven). E, PRd for
spontaneous (left) and external input driven (right) conditions in the spiking network. Note that the PRds for spontaneous and evoked activity differ greatly for condition 1, but not for condition 2.
F, Same analysis as in Figure 3B for spiking network data. Error bars indicate SDs over the four conditions in which we examined the network dynamics (spontaneous and input-driven, in conditions

Tand?2).

The raster marginals model

Itis important to distinguish the raster marginals model from the
maximum entropy models typically used to describe the word
distribution structure (Schneidman et al., 2006; Shlens et al.,
2006; Yu et al., 2008; Roudi et al., 2009; Ohiorhenuan et al., 2010;
Ganmor et al., 2011a, b; Yu et al., 2011). In the latter, a distribu-
tion is fit that matches specific pairwise or higher order correla-
tions, usually requiring at least an order of N* parameters for a
population of N neurons. In the raster marginals model, how-
ever, correlations are only produced as a result of population rate
dynamics as measured by the summed rate of all neurons, and the
temporal structure of the spike trains is discarded. The simplicity
of the model is reflected by the fact that it uses only 2N
parameters.

Because of its simplicity, we do not expect the model to pro-
vide an entirely accurate description of multiunit word distribu-
tions: indeed, the match between the word distributions of the
model and original data, while significantly better than for distri-
butions produced by MFRs alone, was not perfect (Figs. 3B,C
8F). Nevertheless, the ability of this simple model to accurately
predict the KLdiv between experimental conditions (Figs. 4B,
5D) indicates that KLdiv is dominated by changes in population
dynamics as parameterized by the model. Therefore, the raster
marginals model may provide a useful tool to disentangle genu-
ine higher order interactions from correlations induced by pop-
ulation rate dynamics.

Sampling-based representation and learning

Theoretical support for the sampling-based representation hy-
pothesis comes from a class of artificial neural network models
(“generative networks”), which produce such a behavior (Ackley
et al., 1985; Dayan et al., 1995; Hinton and Salakhutdinov, 2006;
Buesing et al., 2011; Pecevski et al., 2011). A recent analysis of

recordings from ferret visual cortex over the course of develop-
ment found a gradual decrease in the KLdiv between the word
distribution of spontaneous and evoked activity, as would be seen
across training of a generative network. Moreover, the spontaneous
word distribution in adult ferret V1 was similar to the distribution
during the presentation of natural movies, which presumably shared
statistical structure with the animal’s previous experience, but not of
artificial drifting gratings (Berkes et al., 2011).

Here we provide a potentially more parsimonious explanation
for these findings. We show that similar results can be obtained
from the raster marginals model, suggesting that they are not
evidence that a probabilistic model of the environment has been
learned and encoded in synaptic weights, but rather of similar
population rate dynamics in the two conditions (Figs. 5A-C, 7).
Without replicating the experiments with animals of different
ages we cannot altogether dismiss the possibility that population
rate dynamics is not the explanation for the developmental
changes reported in (Berkes et al., 2011). However, if population
dynamics does not account for these findings, one has to con-
clude that neural population dynamics in ferret V1 and in the
data analyzed here differs in some profound manner. This would
be an important and unexpected finding that would require fur-
ther investigation.

Our results demonstrate that in auditory and visual cortices as
well as simulated recurrent networks, word distributions reflect
not only on the interaction of external inputs with the synaptic
weight matrix, but also dynamical properties of the networks.
Such dynamical properties can change rapidly and reversibly
with cortical state (Fig. 1 C—E), and be caused by changes in prop-
erties such as cellular adaptation and background input (Fig. 8),
which are in turn controlled by neuromodulatory tone and tonic
glutamatergic input (Harris and Thiele, 2011; Poulet et al., 2012),
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as well as changing over development (Kasper et al., 1994; Ether-
ington and Williams, 2011; Guan et al., 2011).

Convincingly demonstrating that learning has occurred by
comparing word distributions is difficult for a number of rea-
sons. First, as the current work shows, word distribution struc-
ture is dominated by population dynamics, whereas learning
would be expected to primarily manifest itself as a change in
firing statistics of specific subgroups of neurons. Therefore, to
unveil the effect of learning, it is necessary to quantify the specific
pairwise and higher order interactions between spike trains, be-
yond those induced by fluctuations in population rate. Whereas
several computational approaches for doing so exist (one of them
being to measure deviations between observed pairwise correla-
tions and those predicted from population rate; Fig. 3C), there is
no reason to think that any one of them is of particular biological
significance. The real challenge, however, is not in measuring the
specific interactions, but in showing that their change across con-
ditions is due to learning, rather than other processes. To dem-
onstrate this point, we have presented several different examples
of processes, which are not learning-related but have a profound
effect on the structure of word distribution. In summary, the level
of similarity between spontaneous and evoked activity must be
interpreted with caution: its changes need not be a signature of
learning-related modifications in synaptic strength; and high
similarity does not imply that a network has learned a model of
the environment.

Notes

MATLAB implementation of the raster marginals model is available at
http://www.carandinilab.net/code/RasterMarginals.zip. This material
has not been peer reviewed.
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