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Abstract
The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in
the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that
include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate,
clearance of neurotransmitters and buffering of extracellular K+ ions to name but a few. Many (if
not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic
concentration of two cations, Ca2+ and Na+. Intracellular concentration of these ions is tightly
controlled by several transporters and can be rapidly affected by the activation of respective fluxes
through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial
Ca2+ and Na+ signalling.

Keywords
Astrocyte; Homeostasis; Excitability; Ca2+ signalling; Na+ signalling

1. Astroglia - the homeostatic cells of the brain
The nervous system in mammals represents complex network formed by several distinct cell
types of neural crest and non-neural crest origin. In the central nervous system (CNS) the
neural cells are neurones, astrocytes, NG2 glia and myelinating oligodendrocytes, whereas
the non-neural cells are the microglia. In the peripheral nervous system the neural elements
include sensory, sympathetic and parasympathetic as well as enteric neurones and highly
diversified peripheral glia represented by satellite glial cells, enteric glia, and myelinating,
non-myelinating and perisynaptic Schwann cells. All these diverse cells are unified through
several levels of intercellular signalling accomplished by inter- and intracellular diffusion of
various molecules that either bind and stimulate the plasmalemmal receptors or penetrate
cellular membranes through specific ion channels, thus initiating electrical excitation (by
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virtue of charges carried by ions) or triggering local cytoplasmic responses by interacting
with variety of intracellular targets.

Among many neural cells forming the CNS astroglial cells have a specific role of a main
homeostatic element. Astrocytes (which means star-like cells, the name invented by Michael
von Lenhossek [1,2]) represent a highly heterogeneous cell population, which include
protoplasmic astrocytes of grey matter of the brain and the spinal cord, fibrous astrocytes
localised in the white matter, classical radial glia that acts as a pluripotent neural precursor
cell during development, radial Müller retinal glial cells, pseudo-radial cerebellar Bergmann
glial cells, velate astrocytes of cerebellum, tanycytes that connect ventricular walls with
parts of hypothalamus and spinal cord, pituicytes in the neuro-hypophysis, and perivascular
and marginal astrocytes. The brain of higher primates also contains interlaminar, polarised
and varicose projection astrocytes, with all these types being particularly developed in the
human brain (see [3–14] for details and relevant references). In addition, astroglia cover
several types of specialised cells such as ependymocytes, choroid plexus cells and retinal
pigment epithelial cells.

Astrocytes appeared early in evolution, first as supporting cells and then gained their
functional importance in the course of specialisation of the nervous system. Functions of
astrocytes are many: i) they define the brain microanatomy and provide structural support
for other cellular elements of the CNS; ii) they synthesise and store glycogen and produce
lactate, the latter being preferred metabolic substrate for neurones; iii) they control
homeostasis and turnover of several key neurotransmitters and neuromodulators (for
example, glutamate and adenosine); and iv) they regulate synaptic connectivity through
supporting synaptogenesis, controlling ion/transmitter concentrations in the synaptic cleft
and regulating synaptic plasticity via secreting various neuroactive factors [14–16].

2. S pecific nature of astroglial excitability
Excitability of neurones and neuroglia are fundamentally different. Signalling in neuronal
networks is mainly accomplished through propagating waves of transient opening of the
plasmalemmal ion channels that provide fluxes of ions underlying electrical excitability.
These propagating waves, manifested by action potentials, can rapidly (up to 100 m/s)
convey excitation through neuronal axons. Electrical signals, when reaching neuronal
terminals, activate local Ca2+ entry that initiates exocytotic release of neurotransmitters. The
latter diffuse through the synaptic cleft and transfer excitation to the postsynaptic neuronal
structures through the activation of specific receptors [17–22].

Glial cells, in contrast to neurones, cannot generate plasmalemmal action potentials, because
of low densities of voltage-operated ion channels and high expression of K+ channels that
prevent substantial depolarisations of glial membranes. Instead, glial cells use intracellular
signalling routes where local gradients of ions interact with intracellular targets and trigger
physiological reactions. In addition, glial cells, and astrocytes in particular, are physically
connected into syncytia by means of intercellular contacts represented by gap junctions. The
gap junctions are made by closely apposing plasmalemma of two neighbouring cells with a
narrow (~ 2 – 2.5 nm) intercellular cleft. Here, specialised intercellular channels, which span
both membranes and establish direct intercellular contacts, are concentrated. These
junctional channels are composed of two aligned “hemichannels” or connexons each made
up from 6 subunits or connexins [23,24]. Out of about 20 known connexins [25,26]
astroglial cells express mainly connexins Cx43, and to a lesser extent Cx30 and Cx26; as
minor constituents of their gap junctions, astrocytes can also express Cxs 45, 40 and 46 [27].
These gap junctional channels have a large pore (with a diameter of ~ 1.5 nm), which allows
intercellular passage of ions and various active substances such as second messengers [e.g.,
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inositol 1,4,5 trisphosphate (InsP3)], nucleotides (ATP, ADP) or metabolic substrates
(glucose). As a result, the gap junctions provide a specific route for intercellular and long-
range signalling, which is manifested in propagating waves of ionic (Ca2+ or Na+) signals,
or metabolic waves. The communication through gap junctions is of course much slower
when compared with the spread of action potentials (on average, for example, Ca2+ waves
propagate through astroglial syncytia with a speed of ~ 20 – 40 μm/s); however, it is more
diversified and may provide a substrate for integrating intercellular signalling. It should be
noted, however, that, although the above described gap junctional communication
contributes to intercellular Ca2+ waves, it is ATP, which gets released from astrocytes, that
serves as an extracellular signal to majorly support the intercellular Ca2+ waves [28–31].

Fast signalling in astroglial cells, which can be initiated by neuronal activity or many
different neurotransmitters and neuromodulators, is mediated by intracellular ion gradients.
In this essay, we shall concentrate on two ions, Ca2+ and Na+, which mediate signalling in
astroglia and discuss in detail glial signalling mediated by them. It should be noted that the
regulation of the Ca2+ dynamics (and possibly also of Na+) could differ in various
subcellular locations of astrocytes, which could result in local signaling, rather than the
above long-range intercellular waves. For instance, astrocyte perisynaptic processes are the
sites where synapses can evoke local Ca2+ elevations that could result in a local feedback
signalling via the gliotransmitter release [32–34].

3. Ca2+ signalling in astroglia
3.1. Molecular machinery of Ca2+ signalling

Evolutionary, Ca2+ has emerged as one of the most universal intracellular second
messengers, due to its unique qualities (flexible coordination chemistry, high affinity for
carboxylate oxygen, which is the most frequent motif in amino acids, and rapid binding
kinetics) and by its availability in the primordial ocean [35,36]. At high concentrations, Ca2+

ions cause numerous anti-life effects such as protein and nucleic acid aggregations or
precipitation of phosphates; in addition ATP-based energetics require low levels of Ca2+ in
the cytosol. These factors stipulated the general principle of Ca2+ signalling, which is based
around steep concentration gradients for Ca2+ between the cytosol and the extracellular
environment as well as various intracellular compartments. These concentration gradients
create electro-driving force for Ca2+ aimed at the cytosol where resting Ca2+ concentration
is kept at level between 50 and 100 nM. Ca2+ movements across cellular membranes occur
either via diffusion through Ca2+ permeable channels or by transport with ATP-consuming
pumps or ion-dependent exchangers; the former underlie downhill Ca2+ translocation (i.e. in
the direction of electro-chemical gradient) whereas the latter provides for up-hill (i.e. against
electro-chemical gradient) Ca2+ flux. Ca2+-permeable ion channels are represented by
several families, which include highly Ca2+ selective voltage-gated Ca2+ channels,
intracellular Ca2+ channels (InsP3 receptors or InsP3Rs and ryanodine receptors or RyRs),
and plasmalemmal Ca2+-release activated Ca2+ channels (CRAC channels, that on a
molecular level represent activity of Orai proteins) and cationic channels with various
degrees of Ca2+ permeability (Figure 1). The latter cationic channels are represented by
ligand-gated channels (or ionotropic neurotransmitter receptors such as, for example,
glutamate, ATP or nicotinic acetylcholine receptors), by extended family of transient
receptor potential (TRP) channels and some other types of cationic channels. Ca2+ transport
against concentration gradients is mainly accomplished by plasmalemmal Ca2+ ATPases
(PMCA or plasmalemmal Ca2+ pumps), by SarcoEndoplasmic reticulum ATPases (SERCA
or endoplasmic reticulum Ca2+ pumps) and by ion exchangers of which the Na+/Ca2+

exchanger (NCX) is by far the most important. Inside the cell, Ca2+ is buffered by Ca2+

binding proteins (CBPs), affinity of which to Ca2+ differs in different cellular compartments.
For example, Ca2+ affinity of cytosolic CBPs lies in a low nM range, whereas endoplasmic
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reticulum (ER) CBPs have KD for Ca2+ at ~ 0.5 mM. These different affinities determine the
range of diffusion of Ca2+ ions. In the cytosol, CBPs limit diffusion and favour development
of local high-Ca2+ concentration microdomains, whereas, in the ER, CBPs allow almost free
and long-distance Ca2+ diffusion that being instrumental for making ER Ca2+ tunnels
[37,38]. Cellular Ca2+ homeostasis is also regulated by mitochondria which are able to
accumulate Ca2+ (via electrochemically driven diffusion through Ca2+ selective channel
generally referred to as Ca2+ uniporter) and to release Ca2+ through mitochondrial Na+/Ca2+

exchanger as well as transient openings of mitochondrial permeability transition pore
[39,40].

Effectors of Ca2+ signals are Ca2+ regulated enzymes (also known as “Ca2+ sensors”),
binding of Ca2+ to which affects functional activity. These Ca2+ sensors are many; they have
different affinities to Ca2+ and are heterogeneously distributed between cellular
compartments. These specificities of Ca2+ sensors sensitivity to Ca2+ and their cellular
distribution underlie amplitude and spatial coding of Ca2+ signals.

The shape and spatio-temporal organisation of Ca2+ signals are defined by the interplay
between Ca2+ diffusional fluxes and Ca2+ transport (Figure 1). Combinations of these are
multiple and labile; as was conceptualised by Michael Berridge, cells can create and rapidly
modify “Ca2+ signalling toolkits” that adapt Ca2+ signalling to the environmental
requirements [41,42]. Another important feature of Ca2+ homeostatic/signalling system is its
autoregulation by Ca2+ ions themselves, as transient changes in Ca2+ concentration establish
multiple feedback mechanisms that modify the handling of itself. As a rule, most of Ca2+

permeable channels are subject to Ca2+-dependent inactivation, which develops either
through direct binding of Ca2+ ions to the channel or Ca2+-dependent channel
phosphorylation. Similarly, Ca2+ pumping by SERCA is regulated by Ca2+ concentration
within the ER lumen; this intraluminal Ca2+ concentration also controls the availability of
intracellular Ca2+ channels for activation. Conceptually, lowering Ca2+ concentration in the
ER facilitates Ca2+ uptake and reduces channels activation, whereas increase in intra-ER
Ca2+ concentration facilitates channels opening and reduces SERCA activity (see [43,44] for
detailed discussion). Finally Ca2+ fluxes are modulated by mitochondria which, by
providing ATP and dynamic Ca2+ buffering, regulate plasmalemmal Ca2+ entry and ER
Ca2+ uptake [45,46].

3.2. Endoplasmic reticulum as a main source of astroglial Ca2+ signalling
Astroglial cells respond with intracellular Ca2+ elevation to a broad variety of external
stimuli from direct mechanical stimulation to a multitude of neurotransmitters,
neuromodulators, hormones and other biologically active substances. The ability of astroglia
to react with [Ca2+]i elevation to almost every neuroligands it encounters was firmly
established in experiments in cell cultures [47–52]. These early experiments were
fundamental for glial research because, they demonstrated that astrocytes are potentially
capable of expressing virtually every receptor modality and that most of these receptors are
coupled to ER through the phospholipase C (PLC)/InsP3 signalling cascade. These
experiments also highlighted remarkable plasticity of astroglial cells in vitro, as indeed,
these cells were able to rapidly modify receptor expression pattern. First studies of
astrocytes in situ, in brain slices, confirmed the primary importance of InsP3-ER link in
generation of astroglial Ca2+ signals [53–56]. At the same time, these experiments also
found that receptor expression in astroglia in neural tissue is restricted to match that of
neurons, i.e. immediate neurotransmitter environment [13,16,52,57].

The ER is one of the largest intracellular organelles, which is involved in a variety of
fundamental cellular processes such as protein synthesis, protein folding and trafficking
haulage of secretory products etc. [58–61]. The ER is also a key organelle of Ca2+

Parpura and Verkhratsky Page 4

Transl Neurosci. Author manuscript; available in PMC 2012 December 12.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



signalling, being arguably the largest dynamic Ca2+ store able to accumulate, store and
release Ca2+ ions in response to (patho)physiological stimulation. Ca2+ accumulation into
the ER lumen is accomplished by SERCA pumping; the Ca2+ concentration in the ER at rest
(also known as intraluminal Ca2+ concentration, [Ca2+]L) is maintained at 0.2 – 1.0 mM
range [62–66]. Release of Ca2+ from ER in astroglia is primarily mediated by InsP3
receptors; and their inhibition by pharmacological agents (e.g., heparin) or by genetic
deletion often prevents development of Ca2+ signals in astrocytes [55,67]. Functional role of
second type of ER Ca2+ release channel, the RyR, a Ca2+-gated Ca2+ channel, in astroglial
Ca2+ dynamics remains controversial, although astrocytes express RyR both in vitro and in
situ [68–70] and RyRs contribute to Ca2+ signals necessary for glutamate release via
regulated exocytotic pathway [71]. The InsP3Rs are simultaneously controlled by InsP3 and
Ca2+ ions and therefore local increase in [Ca2+]i facilitates receptor opening and promotes
Ca2+-induced Ca2+ release through InsP3R. This feature underlies the occurrence of
propagating Ca2+ waves which, in essence, represent a wave of ER membrane excitation
manifested by propagating recruitment of InsP3 receptors and coordinated with the
extracellular spread of ATP. These Ca2+ waves are important for astrocyte physiology;
astroglial stimulation usually occurs at the level of distal processes, and Ca2+ waves convey
this excitation to the soma. Furthermore, astroglial Ca2+ wave travels through astroglial
syncytia, being therefore a substrate for astroglial long-range signalling [72,73]. In addition
to InsP3, astrocytes can also utilize other ER Ca2+-mobilizing second messengers in
response to external stimuli, most notably cyclic adenosine diphosphoribose (cyclic ADP-
ribose) [74,75] and nicotinic acid adenine dinucleotide phosphate, (NAADP) [76–78].

Ca2+ signals, produced by activation of ER Ca2+ release, control many functions of
astroglia. In particular, ER-originated Ca2+ signals are critical for inducing exocytotic
release of neurotransmitters (such as, for example, ATP, glutamate or D-serine) from
astrocytes (see [79,80] for review and references). Inhibition of Ca2+ accumulation into the
ER by specific blockade of SERCA pumps with thapsigargin, that leads to exhaustion of the
ER Ca2+ content due to an unopposed leak through the endomembrane, effectively
eliminated Ca2+-dependent release of glutamate from cultured astrocytes [71]. The same
effect was achieved after inhibition of InsP3 receptors by membrane-permeable antagonist
diphenylboric acid 2-aminoethyl ester (2-APB), which can also affect the store-operated
Ca2+ entry discussed next. The role for ER Ca2+ signalling cascade in controlling astroglial
gliotransmission was subsequently corroborated in experiments in acute slices (e.g., [81–
83]].

3.3. Plasmalemmal Ca2+ influx in astrocytes: role of TRP channels and ionotropic
receptors

Despite the fact that ER Ca2+ store acts as a main source for astroglial Ca2+ signalling,
astrocytes also possess several mechanisms for Ca2+ entry that produce physiologically
relevant Ca2+ signals (Figure 1). There is little evidence that astrocytes in situ can express
functional voltage-gated Ca2+ channels, although these channels have been detected in
several in vitro experiments (see [80] for detailed review). Two major pathways controlling
plasmalemmal Ca2+ entry in astroglial cells are represented by store-operated and ligand-
operated ion channels.

The store-operated Ca2+ entry is generally present in a majority of electrically non-excitable
cells. This Ca2+ influx pathway (initially described as a “capacitative” Ca2+ entry) [84,85] is
controlled by the Ca2+ content in the ER lumen, where decrease in [Ca2+]L results in the
opening of plasmalemmal Ca2+-permeable channels [86]. Activation of the store-operated
Ca2+ entry fulfils two functions: first, it provides Ca2+ for replenishment of the ER store (the
capacitative function), and second, it is important for producing the sustained (“plateau”)
phase of the Ca2+ signal that often outlasts the period of cell stimulation. There are several
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molecular determinants of the store-operated Ca2+ entry. Many types of cells express
specific (ICRAC) store-operated channels characterised by extremely high Ca2+ selectivity
and very low single channel conductance. Activation of these channels reflects interaction of
stromal interaction molecule (STIM) proteins (that detect ER Ca2+ concentration) with Orai
(named after Greek gate-keeping goddesses [87]) proteins that form the plasmalemmal
channel [88]. Alternatively store-operated Ca2+ influx may involve activation of TRPC
channels [89].

The store-operated Ca2+ entry is functionally expressed in astroglia [90,91]. Initial
experimental evidence indicates the role for TRPC channels. They are expressed in
astrocytes at both mRNA and protein levels, and TRPC activity is involved in shaping
astroglial Ca2+ signals [92–94]. Further analysis revealed that in astrocytes the TRPC
channels are assembles of brain native heteromultimers [92,95] containing obligatory
TRPC1 (channel forming subunit) and TRPC4 and/or TRPC5 (auxiliary subunits). Inhibition
of TRPC1 channel expression by antisense mRNA or its occlusion with blocking antibody
directed at an epitope in the pore forming region of the TRPC1 protein significantly
decreased store-operated Ca2+ influx in cultured astrocytes [92,95] and reduced plateau
phase of ATP-activated [Ca2+]i transients [95]. Likewise, immunological inhibition of
TRPC1 protein substantially decreased mechanically-induced Ca2+ signalling in astrocytes
and suppressed Ca2+-dependent glutamate release [95].

It has been recently demonstrated that astrocytes possess functional STIM1 and Orai1
molecules which play a role in thrombin-induced cytosolic Ca2+ dynamics [96]. This was
demonstrated in cultured astrocytes, investigated using immunocytochemisty and Ca2+

imaging. Overexpression and silencing (using short interfering RNA) of STIM1/Orai1 led to
enhanced or muted Ca2+ dynamics in astrocytes, respectively.

The second pathway for plasmalemmal Ca2+ entry in astrocytes is associated with ionotropic
receptors (ligand-gated Ca2+-permeable channels). Several types of ionotropic receptors are
present in astrocytes in vitro, in situ and in vivo (see [97–99]. The most important astroglial
ionotropic receptors are α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and N-methyl D-aspartate (NMDA) glutamate receptors and P2X purinoceptors. Often,
astroglial AMPA receptors do not express GluR-B (GluR2) subunit, which makes these
receptors moderately Ca2+ permeable [100,101]. The NMDA receptors identified in cortical
astrocytes [102–105] differ in their biophysics and pharmacology from the neuronal ones. In
particular, astroglial NMDA receptors are weakly (if at all) sensitive to Mg2+ block at
physiological resting potential, and their Ca2+ permeability is ~ 2 times lower as compared
to neurones (PCa/Pmonovalent ~ 3 vs. ~10 in neurones [106]. Nonetheless, synaptic activation
of astroglial NMDA receptors in cortical slices results in substantial Ca2+ signals [106].

Astrocytes express P2X1/5 and P2X7 purinoceptors, which may create Ca2+ fluxes
[102,105,107]. The P2X1/5 have moderate Ca2+ permeability (PCa/Pmonovalent ~ 2), which is
sufficient to produce physiologically relevant Ca2+ signals upon appropriate stimulation
[106]. The P2X7 receptors activation may result in massive Ca2+ influx, although this
signalling is most likely present only in pathology [108].

Astrocytes also express TRPA1 channels, which generate frequent occurrence of local,
punctate Ca2+ influx. This activity of TRPA1 contributes to the resting Ca2+ levels in
astrocytes [34]. This ion channel is best known as a chemosensor for various environmental
noxious stimuli causing pain [109–111], albeit it can also be activated by cold [112] or heat
[113].
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4. Na+ signalling in astroglia
4.1. Dynamic changes in cytoplasmic Na+ concentration in astrocytes

At rest, astrocytes have relatively high cytosolic Na+ concentration ([Na+]i); in various
astroglial preparations (i.e. in culture and in acute slices) it was determined at ~ 15 – 20 mM
(cultured hippocampal astrocytes, 15 – 16 mM [114]; cultured astrocytes from visual cortex,
17 mM [115]; astrocytes in cortical slices, 17 – 20 mM [116]; see also [117] for
comprehensive review). These levels of resting [Na+]i in astrocytes are almost twice higher
when compared to neurones (~ 4 – 10 mM; see e.g., [114,118–120]); high cytosolic Na+ in
astrocytes also has functional consequences because it sets reversal potential for many Na+-
dependent transporters/exchangers, which shall be discussed below.

Stimulation of astrocytes (either mechanical or chemical) induces transient and complex
changes in [Na+]i. For example, application of glutamate to astrocytes in vitro evoked local
[Na+]i transients and propagating Na+ waves spreading though astroglial syncytium [121–
123]. Similarly, both single-cell [Na+]i transients and astroglial Na+ waves were observed in
astroglial preparations in situ. In cerebellar Bergmann glia, glutamate induced [Na+]i
increase by 10 – 25 mM above the resting level [124,125]; in hippocampus, glutamate
induced [Na+]i rise and astroglial Na+ waves [126]. Astroglial [Na+]i in hippocampus was
also reported to rise by ~ 7 mM following stimulation with γ-aminobutyric acid (GABA)
[116]. Finally, astroglial [Na+]i increases are induced by stimulation of synaptic inputs
which has been detected in both cerebellum and hippocampus [125,127,128].

4.2. Molecular mechanisms controlling [Na+]i in astroglia
The cytosolic Na+ concentration in astrocytes is regulated by Na+ diffusion through
plasmalemmal channels, by Na+ transport through ATP-dependent pumps and by Na+

translocation by multiple ion exchangers (Figure 1). Main route for plasmalemmal diffusion
of Na+ across the plasmalemma is associated with ionotropic glutamate and purinoceptors,
which produce substantial Na+ fluxes upon activation. In Bergmann glia, for example,
stimulation of AMPA receptors with kainate increases [Na+]i by ~ 20–25 mM [124]. Na+

can also enter astrocytes through TRP channels, non-specific mechanosensitive cationic
channels and possibly through Epithelial Na+ Channel (ENaC)/Degenerin family 21
channels or proton-activated Acid Sensing Ion Channels (ASICs); for review see [117].
Astrocytes in subfornical organ express specific type of Na+ channels sensitive to
fluctuations in extracellular Na+ concentration. These channels (classified as Nax channels)
are involved in astroglial chemosensing and regulation of body Na+ homeostasis [129]. All
in all, physiological stimulation of astrocytes trigger substantial Na+ influx, which is mainly
mediated by ionotropic receptors and possibly by TRPC channels activated following
depletion of ER Ca2+ stores.

The Na+- K+ pump or Na+/K+ ATPase (NKA) is the main energy-dependent astroglial Na+

transporter. Astrocytes throughout the CNS express the NKA a1/a2 subunits. The Na+/K+

ATPase is activated following an increase in [Na+]i and hence every transient [Na+]i
elevation promotes Na+ efflux in exchange for K+ influx, which may represent a link
between cytosolic Na+ fluctuations and K+ buffering. Astrocytes are also in possession of
multiple ion exchangers or solute carriers (SLC; of which more than 50 families embracing
~ 380 members are known [130,131]) that utilise the energy stored in pre-existing ion
concentration gradients.

Arguably, the most physiologically important ion exchanger is the Na+/Ca2+ exchanger or
NCX, which belongs to the SLC8 family [132]. All 3 main isoforms, NCX1, NCX2 and
NCX3 are expressed in astroglia. Importantly, the NCX proteins are often concentrated in
astroglial perisynaptic processes where they co-localise with NKA and plasma membrane
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glutamate transporters [133]. The NCX can mediate the transport of both Na+ and Ca2+ in
both directions; generally NCX may operate either in the forward mode (Ca2+ extrusion
associated with Na+ influx) or in the reverse mode (Ca2+ entry associated with Na+

extrusion). This is determined by (i) stoichiometry of the exchanger, which is 3Na+:1Ca2+,
(ii) transmembrane concentration gradients for Na+ and Ca2+, and (iii) the level of
membrane potential. High resting [Na+]i in astrocytes sets the reversal potential of the NCX
~ −80 mV (see [117] for calculations and further details), which is very close to the resting
membrane potential. Consequently, the NCX in astrocytes dynamically fluctuates between
forward/reverse modes and mediates both Ca2+ entry and [Ca2+]i clearance as well as Na+

influx/efflux [115,124,134,135]. The reverse mode of the NCX is triggered by mild
depolarisation and by Na+ influx through either ionotropic receptors or neurotransmitter
transporters discussed below.

The Na+-dependent neurotransmitter transporters in astrocytes are mainly represented by
plasma membrane transporters for glutamate and GABA. The glutamate transporters,
generally classified as the excitatory amino acid transporters 1 to 5 (EAAT1 to EAAT5
belonging to SLC1 family), are fundamental for glutamate homeostasis. Astrocytes, which
specifically express EAAT1 and EAAT2 (homologues of which in rodents are known as
glutamate transporter 1, or GLT1, and glutamate-aspartate transporter or GLAST) act as the
main sink for glutamate in the CNS accumulating ~80% of glutamate released in the course
of synaptic transmission [136]. Glutamate accumulated into astrocytes is rapidly converted
(by another astroglia-specific enzyme glutamine synthetase [137,138]) into glutamine; the
latter is either transported to neurones, where it acts as the major precursor for glutamate and
GABA and thus is indispensable for sustained synaptic activity (the glutamate-glutamine or
GABA-glutamine shuttles), or is utilised for astroglial energetics [137]. The stoichiometry
of EAAT1/2 is 1 Glu−:3 Na+:1K+:1H+, of which Na+, proton and glutamate enter the cell in
exchange to K+ efflux. As a result of this stoichiometry and transmembrane gradients of
relevant ions, the reversal potential for glutamate transporters is more positive than 50 mV
[117]. This makes the reversal of glutamate transport impossible in physiological conditions;
only during strong pathological insults accompanied by massive [Na+]i overload and very
high extracellular K+ accumulation can the glutamate transport change direction and provide
additional glutamate, which may exacerbate excitotoxicity [139]. In physiological
conditions, activation of glutamate transport in astrocytes triggers inward Na+ current which
can elevate [Na+]i by 10 – 20 mM [117,125]. Astrocytes also express GABA transporters of
GAT1 and GAT3 types (SLC6 family), which are localised predominantly in astroglial
processes surrounding inhibitory synapses. GABA transport via GAT3 can be affected by
TRPA1 activity (decreased TRPA1 function leads to reduction in GABA uptake), which
subsequently affects nearby GABA-ergic synaptic transmission [34]. GABA transporters
provide for a transmembrane symport of 1 GABA molecule (uncharged in physiological
conditions), 2 Na+ ions and 1 Cl− anion. Activation of GABA transporters also result in Na+

influx that can elevate [Na+]i by ~ 7 mM [116]. Importantly, the reversal potential for
GABA transporters lies very close to astrocytic resting membrane potential and therefore
even small elevation in [Na+]i can switch the transporter into reverse mode and hence
facilitate GABA release from astrocytes; this release which can inhibit neuronal excitability
was indeed detected in cortical slices [116].

Cellular Na+ homeostasis is also regulated by mitochondria which are able to accumulate
Na+ through mitochondrial Na+/Ca2+ exchanger [40]. The NCLX, the solute carrier
SLC24A6, is essential molecular component of this exchanger [140].

4.3. Functional role of astroglial Na+ signalling
Dynamic fluctuations in cytoplasmic Na+ concentration can affect surprisingly wide array of
molecular targets and cascades that are critical for the homeostatic function of astroglia.
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First of all, [Na+]i modulates homeostasis of several neurotransmitters, that include principal
excitatory transmitter glutamate and inhibitory transmitters GABA and glycine. Glutamate
uptake is critical for termination of excitatory transmission and as the first step in glutamate-
glutamine/GABA-glutamine shuttle. Increase in [Na+]i decreases the efficacy of glutamate
transport; as it were glutamatergic transmission activates Na+ influx into astrocytes via
ionotropic receptors and EAATs. Thus increased [Na+]i, which coincides with the peak of
glutamatergic synaptic transmission event, temporarily decreases glutamate uptake, thus
transiently increasing the effective glutamate concentration in the synaptic cleft. Levels of
[Na+]i also influence glutamine synthetase as well as export of glutamine from astrocytes to
neurones. The latter is mediated by Na+-coupled neutral amino acid transporter SNAT3/
SLC38A3 and is directly controlled by [Na+]i [141].

Astroglial [Na+]i also regulates GABA-ergic transmission through (i) controlling astroglial
GABA uptake via GAT1/3 pathway and (ii) by maintaining GABA synthesis in neuronal
terminals by supplying glutamine. Astroglial GABA transport system is easy to reverse,
because (as mentioned before) its reversal potential is set close to the resting potential of
astrocyte. Thus, mild depolarisation and even small increases in [Na+]i may reverse the
GAT-dependent transport making astrocytes a source of GABA. Additionally, GABA-ergic
transmission turned out very sensitive to astroglial glutamine supply, and inhibition of
glutamine synthetase substantially suppresses GABA-ergic inhibitory transmission [142].
Similarly astroglial [Na+]i regulates the efficacy of glycine clearance from the relevant
synapses.

Dynamic changes in astroglial [Na+]i modulate Ca2+ signalling by defining the mode of
operation of NCX. Increase in [Na+]i were shown to induce additional Ca2+ influx that
contributed to neurotransmitter-evoked [Ca2+]i transients [124]. Such Ca2+ entry through
NCX was even demonstrated to induce exocytotic release of neurotransmitters from
astroglia [115,134,143].

Astroglial Na+ signals are coupled to several important homeostatic pathways. In particular
[Na+]i levels directly control the activity of NKA and Na+/K+/Cl− co-transporter NKCC1,
thus regulating K+ buffering. The [Na+]i controls the activity of Na+-proton exchanger and
Na+-bicarbonate transporter, both being critical for pH homeostasis (see [117] for further
discussion).

Finally, [Na+]i controls one of the most fundamental astroglial functions - that is the
metabolic support of neurones. The latter occurs in the form of astrocyte-neurone lactate
shuttle, when astrocytes supply active neurones with their preferred energy substrate lactate
[144–146]. Neuronal activity-induced elevation of astroglial [Na+]i triggers lactate synthesis
mediated through NKA; and therefore astroglial Na+ signalling is fundamental for neuronal
metabolic support.

5. Concluding remarks
Rapid astroglial signalling, that is fundamental for neuronal-glial communications, is
mediated through fluctuations of cytoplasmic concentrations of two principal cations Ca2+

and Na+. Neuronal activity can trigger complex spatio-temporal changes of [Ca2+]i and
[Na+]i in astrocytes, which in turn regulate multiple effector pathways that control
homeostatic function of these glial cells.
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Abbreviations

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

[Ca2+]i cytoplasmic free Ca2+ concentration

[Ca2+]L intra-ER (or intraluminal) free Ca2+ concentration

CNS central nervous system

CRAC Ca2+-release activated Ca2+

ER endoplasmic reticulum

GABA γ-aminobutyric acid

InsP3R inositol 1,4,5 trisphosphate (InsP3)-gated Ca2+ channel/receptor

[Na+]i cytoplasmic Na+ concentration

NCX Na+/Ca2+ exchanger

NKA Na+/K+ ATPase

NMDA N-methyl D-aspartate

PLC phospholipase C

PMCA plasmalemmal Ca2+ ATPase

RyR ryanodine receptor

SERCA sarco(endoplasmic) reticulum Ca2+ ATPase

SLC solute carrier

TRP transient receptor potential
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Figure 1.
Molecular cascades of Ca2+ and Na+ signalling in astroglia (see text for details).
Abbreviations: AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;
CBP, Ca2+ binding protein; EAAT, excitatory amino acid transporter; ER, endoplasmic
reticulum; G, G-protein; GABA, γ-aminobutyric acid; GAT, GABA transporter; GPCR, G-
protein coupled receptor; InsP3R, inositol 1,4,5 trisphosphate-gated Ca2+ channel/receptor;
NCX, Na+/Ca2+ exchanger; NKA, Na+/K+ ATPase; NMDAR, N-methyl D-aspartate
receptor; PLC, phospholipase C; PMCA, plasmalemmal Ca2+-ATPase; P2XR, purinergic
2X receptor, SERCA, sarco(endoplasmic) reticulum Ca2+ ATPase; SOCE, store-operate
Ca2+ entry; TRP, transient receptor potential.
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