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Abstract
The values of data elements stored in biomedical databases often draw from biomedical
ontologies. Authorization rules can be defined on these ontologies to control access to sensitive
and private data elements in such databases. Authorization rules may be specified by different
authorities at different times for various purposes. Since such policy rules can conflict with each
other, access to sensitive information may inadvertently be allowed. Another problem in
biomedical data protection is inference attacks, in which a user who has legitimate access to some
data elements is able to infer information related to other data elements. We propose and evaluate
two strategies; one for detecting policy inconsistencies to avoid potential inference attacks and the
other for detecting policy conflicts.
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I. Introduction
Securing biomedical information presents challenges to information systems. An increasing
number of biomedical databases make use of ontologies and semantic information; data that
reside in such databases are mapped to domain ontologies. For instance, studies supported
by the Atlanta Clinical and Translational Science Institute, which are the main motivating
applications for our work, employ a variety of controlled terminologies including
SNOMED-CT (Systematized Nomenclature of Medicine - Clinical Terms) concepts,
LOINC (Logical Observation Identifiers Names and Codes) terms, and ICD9 (International
Classification of Diseases) codes for the values of data elements. Queries against semantic

NIH Public Access
Author Manuscript
Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC
2012 December 12.

Published in final edited form as:
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2012 January 2; 2011: 590–594. doi:10.1109/
BIBM.2011.79.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



databases can return results based on not only the values of individual data elements, but
also explicit and inferred relationships, such as class-subclass relationships, specified in
ontologies. Moreover, biomedical databases can be accessed by a wide range of users and, in
the case of large scale collaborative studies, across multiple institutions. This requirement
dictates that multiple data access control policies be implemented and managed. Thus, the
security infrastructure for large databases of biomedical data must (1) ensure that policies do
not conflict with each other, new policies or changes to policies do not create conflicts that
may allow unauthorized access to data, and (2) take into account semantic information in
biomedical databases, support policies defined on concepts from ontologies, and be able to
detect conflicts in such policies.

In this work, we present strategies for conflict detection when access control policies are
defined on taxonomies, which represent hierarchical relationships (i.e., class-subclass
relationships) between concepts. Access control rules can be defined for any of the concepts
in the taxonomy. That is, a rule specifies whether a request on data elements, whose values
are mapped to the corresponding concept, should be granted or denied. Access control rules
for a concept can differ from its children and they can be in conflict. Detecting and resolving
these conflicts is non-trivial because it involves identification of applicable rules and
detecting conflicts among them dynamically during execution of data access requests. We
propose a dynamic conflict detection and resolution strategy and we have developed an
efficient algorithm to carry out this strategy. Our work is also concerned with attacks where
a principal who has legitimate access to some node is able to infer data related to another
node. Our approach to prevent this type of inadvertent data disclosure is by ensuring policy
consistency, meaning that the framework ensures that a node which can lead to inference
about other nodes is protected by the same level of authorization policies as the other nodes.
We have developed an algorithm to check policy consistency to detect potential information
inference vulnerabilities. The execution times of these two algorithms are evaluated
empirically.

Prior work most closely related to our research is the work by Jajodia, et al. [3], which
proposes some strategies for conflict resolution and authorization propagation. However,
their work does not consider inference relations nor dynamic analysis of conflicts. Inference
attacks are common against statistical databases [4], [7], where the results of repeated
statistical queries are used to try to infer specific database elements. Some approaches used
to protect privacy against these attacks are: k-anonymity [11], l-diversity [6], and t-closeness
[5]. Here, we consider inference attacks where some specific elements of the database (not
statistical results) can be used to infer other database values. Researchers have proposed
various methods to reduce an attacker’s access to data that is highly correlated to sensitive
protected data, e.g. [2]. These methods are not designed against attackers who have
legitimate access to some information that is highly correlated to the non-accessible
protected information. Several works have considered how to represent inference relations
between different data items [14], but are not focused on detection. Thuraisingham et al.
developed methods for detecting inference relations during database design time and
presenting them to the system administrator [12]. In contrast to [12], our approach addresses
the problem using consistent policies and is not concerned with database design. Several
projects have developed support for detecting inferences related to duplicated data protected
using inconsistent policies [10], [13]. These approaches consider only data elements that are
exact copies of each other.

II. Problem Description
A taxonomy can be represented as a tree, in which different levels in the tree correspond to
class-subclass hierarchies. For example, if ‘flu’ is a class (or concept), then the specific
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types of ‘flu’ will be its sub-classes and will be represented as child nodes in the hierarchy.
Our approach views a biomedical ontology as a resource tree, as is illustrated in Figure 1.
Each node in the tree corresponds to an ontology concept and represents a resource to be
protected. Access control policies defined on a given node (concept) specify whether access
requests to data elements, whose values are mapped to the corresponding concept, are to be
granted or denied and under what conditions. In the figure, some tree nodes, such as n1, n2,
n8, n9, and n19, have an access control rule displayed next to them. The effect of a rule is
denoted by the letter ‘P’ or ‘D’ representing a response of ‘Permit’ or ‘Deny’ – that is, the
request is either Permitted or Denied. The elements on the left denote the subject,
environmental, and action attributes represented by ‘s’, ‘e’ and ‘a’.

Authorization flows are always from any node towards its children nodes as shown in Figure
1. That is, an access policy defined on a node should be enforced for all its children as well.
For instance, assume ’flu’ has two subclasses; ’common flu’ and ’swine flu’. If a ’Deny’
policy is defined on ’flu’ – any request to retrieve data mapped to ’flu’ is denied –, all
requests to the subclasses of ’flu’ should also be denied.

Different authorization rules can be specified on different levels of ontologies. Each node
either has its own access control rules or inherits them from its parent. Conflicts and
inconsistencies may be introduced because different granularity of data are protected by
different policy rules. In case a node’s access control rules conflict with its parent, conflict
resolution should be performed. It is required that policies on all ontological classifications
(nodes on the resource tree) in a database are synchronized. This is required to ensure
consistency in authorization decisions on multiple paths leading to the same resource. If this
is not done, then a user may be permitted to access a resource if he selects one access path,
while he may be denied access through another path.

In addition to conflicts, inconsistencies may arise when there is an inference relationship
between classifications on ontologies (nodes on a resource tree). In databases inference
attacks are used to infer sensitive information which a subject does not have access to by
using sensitive or non-sensitive information that he has access to. Inference relations
between different nodes exist when one or more nodes can be inferred from some related
node. We treat this condition as a policy inconsistency and refer to such a condition as
inference inconsistency. In the current research we assume that inference relations between
concepts in an ontology are pre-determined and provided to our conflict and inconsistency
detection algorithms as input.

To illustrate inference inconsistency, let us consider a patient who is diagnosed as HIV
positive. The patient’s documents are stored in a database where the data elements are
mapped to a medical ontology. Since the patient’s condition is highly sensitive, access to his
diagnosis information should only be provided to individuals with appropriate authorization
such as the patient’s doctor. Assume that a node L1 in the ontology maps to the HIV status
data elements. This node must be protected by a policy rule that denies access by any user
but the patient’s doctor, Dr. Brown:

1. {(Dr. Brown), (Node L1), (Read, Write)} = Permit

2. {(*), (Node L1), (*)} = Deny

The second rule uses the wildcard * which represents all the users other than the ones in the
adjoining rule (Rule 1). The second rule denies any other user access to node L1. However,
it is possible to infer a patient’s HIV status from his/her laboratory tests. Consider nodes L3,
L4 and L5 which correspond to different types of blood tests. The patient’s document in
these categories may have highly sensitive information which may lead to an inference
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about the patient’s diagnosis. The following policy rules allow any researcher and volunteer
nurse to access these nodes:

1. {(Any researcher), (Node L3, Node L4, Node L5), (Read, Write)} = Permit

2. {(Any volunteer nurse), (Node L3, Node L4, Node L5), (Read)} = Permit

In this case, these rules create an inference inconsistency, since while the authorization
system limits access to node L1, the rules allow access to nodes L3, L4, and L5, thus
enabling an unauthorized person to deduce the patient’s disease status. The authorization
system should implement mechanisms to detect such inconsistencies to properly protect
information.

III. Conflict and Inconsistency Detection Methods
Our work handles two problems - i) Authorization policy conflicts among different
hierarchical levels in a resource tree; and ii) detection of inconsistencies in authorization
policies specified for inference related nodes. We address the former by resolving the
conflicts and inform these inconsistencies to the system administrator. In the latter case,
inference inconsistencies can be by mistake or by design (e.g., as a result of a data collection
and analysis workflow). As such our approach does not resolve them but provides a
mechanism to detect and inform a system administrator of the inconsistencies. The
inconsistencies can be classified into strong and weak inconsistencies and reported
accordingly so that the database administrator can handle them according to their priority.

Policy analysis can be done in a static or dynamic manner. In the static analysis mode, all
the authorization rules for a particular node will be compared with authorization rules for
nodes above and below it to determine if there are some conflicts. In the dynamic analysis
mode, on the other hand, policy checks are performed in real time when an access request is
received by the system. When an access request for a node is received, the authorization
system detects and resolves conflicts with the parents and children of the requested node and
determines the data subset which the requesting user can access. Dynamic analysis is faster,
but analyzes only the rules that are applicable to the current request and determines conflicts
in them. Dynamic analysis also considers all the nodes above and below in hierarchy
compared to the current node, but only considers the specific combinations of subject and
environmental attributes present in the current access request.

We have employed the dynamic analysis mode, because conflict resolution and
inconsistency detection can be done quickly (as is also shown in the experimental evaluation
in Section IV). Our approach allows users to access only those data sets which they need in
order to complete their tasks, while enforcing access control. In Figure 1, for example, if a
user needs data sets n18 and n19, then the user will get access to n12, which contains only
these data sets.

A. Conflict Handling Algorithm
We now describe the dynamic conflict analysis and handling algorithm and illustrate how it
works with an example. The conflict handling algorithm is presented in greater detail in an
accompanying technical report [8].

The user requests all the data associated with a node n. We create several arrays to help with
data processing. Array1 contains the nodes at a level for which we have to evaluate policy
rules; Array2 contains nodes from Array1 which allow data access for the user; ReportArray
contains the children of node n which have a conflict with the policy specified for node n;
and FinalArray contains the leaf nodes which are the children of node n children and are
accessible by the user. The algorithm performs the following main steps:
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1. An access request for node n is received with specified subject, environment, and
action attributes.

2. The request is evaluated for each parent of node n. If the response is ‘Deny’ for any
one of the parent nodes, the final response is set to ‘Deny’. That is, the access
request is denied.1

3. Node n is stored in Array2.

4. The request is evaluated for all the children of all nodes in Array2. The child nodes
which have access decision different from node n are stored in the ReportArray.

5. The child nodes, which have a response of ‘Permit’ associated with them and are
leaf nodes, are stored in the FinalArray.2

6. In the previous step, non-leaf child nodes with access decision ‘Permit’ are stored
in an intermediate array and the ones with ‘Deny’ are neglected. Others are stored
in Array2 which contains nodes whose children will be evaluated in the next
iteration.3

7. We repeat steps 4 to 6 above till Array2 is empty.

8. The ReportArray is sent to the system administrator. The data elements based on
the concepts (nodes) in the FinalArray are returned as the response to the user.4

B. Inference Inconsistency Detection Algorithm
The inference inconsistencies detection algorithm is presented in greater detail in an
accompanying technical report [8]. The algorithm performs the following steps:

1. Access request for the node n is received with specified subject, environment, and
action attributes.

2. The algorithm retrieves the list of all the nodes ninferencenodelist which can be
inferred from the requested node n.

3. The access policy for node n is evaluated.

4. Access policy for each node in ninferencenodelist is evaluated and the ones which
have access policy responses different from that of node n are reported to the
system administrator.

Inference inconsistencies in the system can be a result of a mistake or can be included by
design (e.g., as a result of a data collection and analysis workflow). Differentiating between
these two is a reasoning problem and as such our approach does not resolve them but
provides a mechanism to detect them and inform a system administrator of the
inconsistencies. We assume that the system administrator will distinguish between the two
and manually resolve them.

1An explicit ‘Deny’ rule is set on a node to prevent holders of those attributes from accessing any data on or below that node.
2If the decision on a node is ‘Permit’ or ‘NotApplicable’, then the more specific rule on the child node overrides. Since the actual data
is only held on the lead nodes, we need to find all the lead nodes which are children of node n and see if the current requester is
permitted or denied access to data on that lead node.
3This is in congruence with the two steps above. If there is an explicit ‘Deny’ on a node, the requester is prohibited from accessing
data form any of the children of that node. On the other hand, if the decision is either ‘permit’ or ‘NotApplicable’, we continue to
search for rules on child nodes which would override them.
4The ReportArray contains the nodes which have conflicting permissions than node n. The FinalArray contains leaf nodes whose data
can be accessed by the requester.
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IV. Experimental Evaluation
We have implemented the algorithms described in the previous section in Java programming
language and used the XACML policy language and Sun’s open source XACML engine [1]
for specifying authorization policies. We have implemented some enhancements for
performance improvement and to support the conflict detection and resolutions algorithms,
in the policy component of the open source XACML engine. The experimental evaluation is
targeted at examining the execution time of the conflict and inconsistency detection
algorithms. We executed the experiments on a Linux server running Ubuntu 4.4.1. The
hardware platform has 8 GB of RAM and Intel quad core Xeon(R) CPU 5150, 2.66GHz
processor with 4096KB cache on each processor. We used the ontology provided in the i2b2
system [9]. We created synthetic policies for evaluation of performance of the algorithms in
a controlled way.

A. Execution Time to Detect and Resolve Conflicts
This set of experiments investigates how long it takes to execute checks for policy conflicts
in a hierarchical ontology. We have created a sample ontology from the ontology provided
by i2b2 with a total of 10200 nodes (concepts). In our test setup, the root node represents the
entire ontology and has three levels below it, where level 1 nodes are the direct children of
the root node, and level 3 nodes are the leaf nodes.

We have measured system performance at three points while scaling down the number of
nodes at 10,000, 6,000, and 2,000 nodes. For each level of the tree, a node is selected at
random and an access request is generated to access the resource represented by that node.
Permission to access data elements is evaluated according to the conflict detection
algorithm. The performance results for this test case are presented in Figures 2 and 3.

For these experiments, we created policies by randomly selecting 10% of the total nodes and
setting a rule with ‘Permit’ decision for a specified combination of subject, environment and
action attributes. We repeated this procedure by setting 10% of the rules with ‘Deny’ rules.

Figure 2 shows the elapsed time to find all the authorized nodes for an access request for
10,000, 6,000, and 2,000 nodes for each level in the resource tree hierarchy with about 10%
of the total nodes containing ’permit’ authorization rules5. According to the conflict
detection algorithm, if a parent node of the requested node has an explicit deny rule on it,
then the child nodes are not searched and the request is denied. We show the total elapsed
time as the sum of time for searching deny rules on parent nodes and time to search child
nodes, which is the total elapsed time. We observe that if the access query is sufficiently
narrowed down such that the resource is at level 2 or 3, then the time required for conflict
detection and resolution is under one second. Figure 3 shows the elapsed time with the same
parameters as Figure 2, but in this case the 10% authorization rules have the effect ’deny’6.

A key observation from the results is that the total conflict handling time for a node is
directly proportional to the number of its children in the subtrees.

B. Execution Time to Perform Consistency Check
In these experiments, we evaluate the execution time of consistency checks on policies
involving nodes with inference relations. For example, if the requester requested to access
node A and it has inference relationships with nodes B, C, and D s.t. (B; C; D) → A, then

5If this authorization rule is matched, then the final effect is ‘Permit’
6If this authorization rule is matched, then the final effect is ‘Deny’
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we have to make sure that node A, B, C, and D have the same level of protection. This check
is required so that a user, who can access node A with a lower level authorization policies
would not inadvertently learn about nodes B, C and D which are protected by more stringent
policies.

In the evaluation, we generate a set of nodes which have an inference relationship with other
nodes. As in the previous example, nodes B, C or D can be inferred by node A, i.e., (B; C;
D) → A. Other nodes E, F, G lead a user to infer node A, i.e. A → (E; F; G). When an
access request for node A is received by the authorization system, it checks whether the
access control rules for node A are consistent with nodes B, C, and D. On the other hand, if
an access request is received from nodes E, F, or G then it checks whether their access
control rules are consistent with node A.

Typically the number of data classifications that can be inferred from another classification
is relatively low, so we choose the number of related classifications accordingly. We assume
that each randomly selected node can lead to an inference of about 3, 5, 10 and 20 nodes
respectively and evaluate the time required to check the policy consistency for all these
nodes by evaluating the algorithm presented in III-B. In Figure 4, we see that up to 10
nodes, the time to check policy consistency is under one second.

V. Conclusions
Security is a critical component in making biomedical data available for research purposes.
Because of complexity of semantic databases and the variation of user access privileges,
conflicts and inconsistencies may arise in a group of access control policies defined on
ontology concepts for a database. Our work has investigated two algorithms designed to
support (1) detection and handling of conflicting policies defined at different levels of a
hierarchical ontology and (2) detecting and reporting policy inconsistencies among policies
defined on inference related concepts in an ontology. These algorithms provide a tool for the
database administrators to better protect sensitive and private data. Our empirical evaluation
of the execution times of these algorithms indicates that the algorithms are fast and likely to
incur little overhead to the overall execution of the security infrastructure and database
system. Our current work assumes the inference relationships among concepts in an
ontology are provided explicitly. We plan to investigate methods to detect such inference
relationships in a future work.
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Figure 1.
An example tree with data element hierarchy.
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Figure 2.
Evaluation time to detect conflicts with permit rules.
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Figure 3.
Evaluation time to detect conflicts with deny rules.
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Figure 4.
Policy consistency checking time.
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