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SUMMARY

A major biomedical goal associated with evaluating a candidate biomarker or developing a predictive
model score for event-time outcomes is to accurately distinguish between incident cases from the con-
trols surviving beyond t throughout the entire study period. Extensions of standard binary classification
measures like time-dependent sensitivity, specificity, and receiver operating characteristic (ROC) curves
have been developed in this context (Heagerty, P. J., and others, 2000. Time-dependent ROC curves for cen-
sored survival data and a diagnostic marker. Biometrics 56, 337–344). We propose a direct, non-parametric
method to estimate the time-dependent Area under the curve (AUC) which we refer to as the weighted mean
rank (WMR) estimator. The proposed estimator performs well relative to the semi-parametric AUC curve
estimator of Heagerty and Zheng (2005. Survival model predictive accuracy and ROC curves. Biometrics
61, 92–105). We establish the asymptotic properties of the proposed estimator and show that the accu-
racy of markers can be compared very simply using the difference in the WMR statistics. Estimators of
pointwise standard errors are provided.

Keywords: AUC curve; Survival analysis; Time-dependent ROC.

1. INTRODUCTION

In order to choose among candidate management options and to make medical decisions, the prediction
of an individual’s future health status is often necessary. The predictive objective can frequently be eval-
uated by quantifying how well a set of potential biomarkers or a model score can predict those subjects
who subsequently experience a primary transition of health status such as the onset of disease or progres-
sion to death. One area of clinical management where predictive models or markers are used to guide
treatment decisions is the general area of organ transplantation. For example, in staging patients for lung
transplantation, the lung allocation score is used to prioritize transplantation candidates (Gries and others,
2010). In this setting, a good predictive model or marker would accurately identify those subjects who are
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still under study but otherwise likely to die in the near future (imminent “cases”), yet not falsely identify
subjects who will not have an urgent need for transplantation (near term “controls”). A second example
comes from liver disease where the model for end-stage liver disease (MELD) score is used for treatment
decision making. As reviewed by Coombes and Trotter (2005, p. 87) “The MELD score has emerged as an
excellent predictor of short-term mortality in patients with advanced liver disease, and patients listed for
liver transplantation are now ranked on their respective MELD scores.” One useful descriptive summary
of the potential performance of the MELD score would be to use cohort data and show where incident
death cases actually rank among their corresponding risk-set members. If the MELD score were an ideal
marker, then incident cases at any time would always rank higher than all of their corresponding risk-
set members. The goal of this manuscript is to show that such an empirical risk-set ranking of incident
cases is directly linked to previously proposed time-dependent accuracy concepts, and also to show that
risk-set ranking provides the basis for non-parametric estimation of time-dependent accuracy summary
measures.

To incorporate time into predictive classification criterion, time-dependent versions of sensitivity and
specificity have been proposed (Heagerty and others, 2000; Heagerty and Zheng, 2005). Time-dependent
receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) functions can charac-
terize how well candidate markers can distinguish between those cases who experience a clinical transition
from those subjects who remain event-free. Time-dependent measures describe the accuracy of a model
score sequentially over time as opposed to simply providing an overall summary measure of the predictive
accuracy like the C-index (Harrell and others, 1982) or some of its recent extensions (Antolini and others,
2005; Gonen and Heller, 2005). Heagerty and Zheng (2005) proposed a semi-parametric estimator for the
time-dependent summary curve AUC(t). However, their estimation was “indirect” in that first estimates
of time-dependent ROC curves for all observed event times are obtained. Each time-dependent ROC curve
can then be integrated to provide an estimate of AUC(t).

The goal of this manuscript is to propose an alternative direct non-parametric estimator of the
time-dependent accuracy curve, AUC(t). Relative to the semi-parametric estimators proposed by
Heagerty and Zheng (2005), a non-parametric estimator has the major advantage of not requiring spec-
ification of a conditional hazard regression model linking the marker to the event time, and therefore the
proposed methods provide valid inference for AUC(t) under minimal assumptions. In addition, we pro-
vide analytic approximations for point-wise standard errors and thus permit inference without needing to
employ resampling methods.

To motivate the proposed non-parametric approach, we first note that an estimator of AUC that is
commonly used in case–control studies is the empirical proportion of concordant case–control pairs (C-
index). Specifically, concordance counts the pairs whose marker orderings correctly reflect the ordering
of their outcomes. Such a non-parametric approach can be considered for each riskset in a time-to-event
setting with incident cases. However, frequently only a small number of subjects experience an event at
any given time, t , and therefore some smoothing is warranted to provide function estimation with desir-
able statistical properties. In this article, we propose the local rank-based concordance estimation using
weighted U-statistics. We introduce the notation and motivate the estimation of the time-dependent AUC
curve as a locally weighted concordance measure. We detail the large-sample properties of the proposed
non-parametric estimator and discuss the estimation of asymptotic standard errors in Section 2. We also
propose methods for comparison of correlated markers using difference in AUC curves. Finally, we exam-
ine the finite sample properties of the proposed AUC function estimator as well as the difference estimator
via simulation studies in Section 4. In Section 5, we apply the method to Mayo PBC data and Breast cancer
mortality data. We conclude the article with a brief discussion (Section 6).
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2. ESTIMATION OF A TIME-DEPENDENT ACCURACY FUNCTION

2.1 Notation

Let n denote the total number of subjects in the study. Let Ti and Ci denote the survival time and censoring
time for subject i . We assume that T1, T2, . . . , Tn are independent and identically distributed and so are
C1,C2, . . . ,Cn . For each subject, Ti is assumed to be independent with Ci . Let 1{·} denote the indicator
function. We observe the follow-up time Zi = min{Ti ,Ci } and the censoring indicator δi = 1{Ti � Ci }. Let
Ri (t)= 1{Zi � t} denote the at-risk indicator. Let M1,M2, . . . ,Mn denote independently distributed base-
line markers for the subjects. Note that the marker may be a single covariate X or based on a set of (time-
independent or time-dependent) covariates X1, X2, . . . , X p, via a possibly time-dependent score generated
through any regression or predictive model such as the proportional hazard model. Higher marker values
are assumed to be more indicative of disease and therefore shorter survival time. Let Rt = {i : Ri (t)= 1}
denotes the subjects that are in the riskset at time t . Among the subjects in Rt , we denote by R1

t the
subjects who had an event at t or cases: R1

t = {i : Ti = t}. The subjects who did not have an event by t
are the controls: R0

t = {i : Ti > t}. We denote by nt the size of the control set at time t : nt = |R0
t | and

dt = |R1
t |. Thus, cases are incident (I) cases and controls are dynamic (D) controls (Heagerty and Zheng,

2005). In the next subsection, we introduce non-parametric, time-dependent, concordance measures for
a baseline marker and motivate the modification for a longitudinal marker. The following definitions of
time-dependent accuracy are adopted:

TPI

t (c)= pr(Mi > c|Ti = t),

FPD

t (c)= pr(Mi > c|Ti > t),

ROCI/D
t (p)= TPI

t {[FPD

t ]−1(p)},
AUC(t)= pr(Mi > M j |Ti = t, Tj > t).

2.2 Weighted mean rank: a local concordance measure

We first consider a baseline marker M and introduce a new approach to evaluate the predictive accuracy
of this marker for a time-to-event outcome T by extending the standard binary diagnostic accuracy sum-
maries. Note that the risk-set at time t can be represented as Rt = {R1

t ∪ R0
t }. A non-parametric estimator

of AUC that is frequently used in case–control studies is the proportion of concordant case–control pairs,
i.e. proportion of case–control pairs where the marker value for the case is higher than the marker value
for the control. This statistic can be adapted in this situation using the incident case and dynamic control
definition:

A(t)= 1

dt × nt

∑
i∈R1

t

∑
j∈R0

t

1{Mi > M j }.

Note that at a given event time t , A(t) can be considered as an estimator of a time-dependent
concordance measure AUC(t)= pr(Mi > M j |Ti = t, Tj > t), which represents the area under the inci-
dent/dynamic time-dependent ROC curve defined by Heagerty and Zheng (2005). However, frequently,
there are only a few cases at t and often dt = 1. In this situation, the information within a neighborhood
around t can be utilized to estimate marker concordance at t . When dt = 1, nt × A(t)=∑ j∈R0

t
1{M∗ >

M j |T ∗ = t, Tj > t} is the rank of the case marker value among the control markers. We propose using the
locally weighted mean rank (WMR) for the case markers among the available controls as an estimator of
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the local concordance:

WMR(t) := 1

|Nt (hn)|
∑

t j ∈Nt (hn)

A(t j ),

where Nt (hn)= {t j : |t − t j |< hn} denotes a neighborhood around t . This is a nearest-neighbor estimator
of the AUC and can be generalized to

ÂUC(t)=
∑

j

Khn (t − t j ) · A(t j ),

where Khn is a standardized kernel function such that
∑

j Khn (t − t j )= 1.

2.3 Asymptotic distribution of WMR estimator

For simplicity, we assume that no two subjects fail at the same time and no subjects are censored. We
denote the ordered observed failure times as t(1) < t(2) < · · · t(M). In this section we focus on the estimation
of AUC(t) at a fixed t using WMR(t). Given a bandwidth hn , such that hn → 0 and nhn → ∞, we restrict
our attention to a neighborhood around t : Nt (hn)= {t j : |t − t j |< hn} and |Nt (hn)| = mt . Furthermore,
we assume that, for any fixed t , the observed number of subjects at risk, nt + 1, is O(n) (proportional
to the sample size) and therefore → ∞. This assumption results when a fixed censoring distribution is
assumed, and when t is within the support of the event time and censoring time distributions.

In order to detail the large sample properties of the proposed local estimator, we define the indices of
ordered event times that fall within the neighborhood Nt (hn). Let Lt = |{t( j) : t( j) < t − hn}| denote the
number of failures that are observed before the start of the neighborhood of interest (e.g. before time t −
hn). The indices of the observed failure times within the neighborhood are then Lt + 1, Lt + 2, . . . , Lt +
mt and that t(Lt +1) < t(Lt +2) < · · ·< t(Lt +mt ) are the corresponding unique event times within Nt (hn).

For the estimation of AUC(t) based on information specific to the neighborhood Nt (hn), any failure
time that is observed after the right boundary of the neighborhood (e.g. > t(Lt +mt ) ) is only used as a
“control” for all of the observed events in the neighborhood. Therefore, we effectively censor subjects
surviving past t(Lt +mt ) at this time.

First, we also assume that all event times are reordered such that for the i th subject with event time Ti

and marker Mi this individual corresponds to the ordered time Ti = t(i). Secondly, for local estimation at
time t , all subjects with event times beyond the right edge of the window contribute only as local “control”
observations and we use only the information that they have Ti > t(Lt +mt ). We can therefore equivalently
represent the WMR estimator in terms of the locally censored observations T ∗

i = min[Ti , t(Lt +mt +1)]:

WMR(t)= 1

|Nt (hn)|
∑

t(i)∈Nt (hn)

A(t(i))

= 1

mt

Lt +mt∑
i=Lt +1

A(ti )

= 1

mt

Lt +mt∑
i=Lt +1

1

nt(i)

n∑
j=i+1

1{Mi > M j } × 1{T ∗
i < T ∗

j }

=
∑
i �= j

1

2 × mt × nt(i)

1{Mi > M j } × 1{T ∗
i < T ∗

j }.
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Note that for two subjects i and j with i, j > Lt + mt , we cannot order the failure times, Hence, we assume
that 1{T ∗

i < T ∗
j } = 0 and 1{T ∗

j < T ∗
i } = 0.

From the above representation of the WMR(t), it can be seen that WMR(t) is a linear transformation
of weighted U-statistic: WMR(t)= 1

2 (U + 1) defined as

U =
∑
i �= j

wi j sgn( j − i) sgn(Ri − R j ),

where sgn(x)= 1 if x > 0 and sgn(x)= −1 if x < 0, Ri is the rank of the marker M corresponding to
the i th-ordered observed failure time and 1/wi j = 2 × mt × nt(i) = 2 × mt × |R0

min{t(i),t( j)}|. Since higher

marker values are more indicative of a shorter survival time, the definition of U is slightly different than
the standard U-statistic.

Conditioning on the event times, we can show that standardized WMR(t) has an asymptotic normal dis-
tribution since, in this case, the weightswi j can be treated as constants. We state the result in the following
theorem, and explicitly denote the sample size for the proposed estimator using the notation WMRn(t):

THEOREM 1 Suppose n − (Lt + mt )→ ∞ when n → ∞ where n − (Lt + mt ) denotes the number of
subjects surviving past t(Lt +mt ) or equivalently, surviving past t + hn and let hn → 0, nnn → ∞. Then

V −1/2
n [WMRn(t)− AUC(t)− bn(t)]

D−→ N (0, 1),

where Vn = var[WMRn(t)] given below, and bn(t) denotes the bias: E[WMRn(t)] = AUC(t)+ bn(t).

Proof. See Appendix for details. �

Since the WMR using a nearest-neighbor kernel is equivalent to the Nadaraya–Watson estimator, at an
interior point t WMRn(t) has a bias of bn(t)= 2

3 h2
n B(t) for a given bandwidth hn (Hardle, 1992). Here

B(t)= 1
2 AUC(2)(t)+ f −1(t)AUC(1)(t) f (1)(t), where AUC(1)(t) (AUC(2)(t)) denotes the first (second)

derivative of the AUC, f (·) denotes the probability density function of the survival time and f (1)(·) denotes
the first derivative. Characterization of the finite-sample bias can be used to correct confidence interval
estimates to ensure proper coverage rates. Each of the elements of bias can be estimated using standard
smoothing techniques. It can be shown that for a bandwidth hn satisfying hn = o(n−2/5), the bias will be
asymptotically negligible relative to V −1/2

n , but using a bandwidth O(n−1/5) is optimal for minimizing
integrated mean squared error (IMSE), yet then requires the bias correction for proper confidence interval
construction.

2.4 Estimation of variance

Because WMR(t) is an average of random variables, we can write

var{WMR(t)} = 1

m2
t

⎡⎣ ∑
j∈Nt (hn)

var{A(t j )} +
∑
j �=k

cov{A(t j ), A(tk)}
⎤⎦ .
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We propose the following as estimators of the variance of A(t) and covariance between A(t) and
A(s), t < s:

v̂ar{A(t)} = (nt − 1)

nt
{Q̂2(t)− Q̂0(t)

2} + 1

nt
[Q̂0(t){1 − Q̂0(t)}],

ĉov{A(t), A(s)} = 1

nt
[{Q̂3(t, s)− Q̂3.0(t, s)} + {Q̂4(t, s)− Q̂4.0(t, s)}].

Q·(·) is defined in Appendix. So, var{WMR(t)} = O(m−1
t ). Further, Q̂0(t), Q̂2(t), etc. are obtained using a

normal approximation for the case and control markers after a rank-based Z-score transformation and then
empirically estimating the parameters of the approximating normal distributions. Ultimately, our imple-
mentation of variance estimation is based solely on the marginal ranks of the marker measurements and
survival times since, as we describe in the appendix, we first rank the raw marker values and then apply a
Z-score transformation to these ranks. Secondly, we use a normal approximation to the conditional distri-
butions, M∗|T = t and M∗|T > t , where M∗ denote the transformed marker values. Although the normal
approximation is not an exact characterization, we have found that the approximation, coupled with the
rank-based Z-score transformation, provides accurate standard error estimates for even highly skewed
marginal marker distributions. Details of our simulation evaluations are presented in the next section.

2.5 Selection of bandwidth

We note that estimation of AUC via WMR is similar in spirit with several smoothing techniques that
are widely used in practice and selection of a bandwidth, hn for Nt (hn) is important to the estimation of
WMR. The optimal bandwidth balances bias and variance, and optimizes the estimation of time-dependent
concordance. Since we want to estimate the time-dependent concordance, we focus on a criterion directly
related to it. We adopt a bandwidth that minimizes the asymptotic IMSE of WMR:

hopt
n = argmin

h>0

∫
T

MSE[WMRhn (t)] dt.

In practice, cross-validation or a data-driven method can be employed to estimate the asymptotically opti-
mal bandwidth.

Replacing the integration over time by a sum over k unique event times, the optimal bandwidth is a
minimizer of

k∑
i=1

(W −i
hn
(ti )− A(ti ))

2,

where

W −i
hn
(ti )= 1

|Nti (hn)| − 1

∑
j �=i

j∈Nti (hn)

A(t j ).

Similar to other smoothing techniques, alternative types of neighborhood selection can also be
employed. For example, instead of a fixed bandwidth for the entire support, we can employ a nearest-
neighbor method with fixed number of “neighbor” or failure times. Fixing the number of “neighbors”
instead of a fixed bandwidth will especially be useful when either the events are sparse or the sizes of
risksets are small. A cross-validation method based on IMSE can be employed to estimate the optimal
number of “neighbors” as before.
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3. COMPARISON OF MARKERS

Suppose that it is of interest to compare the two markers A (MA) and B (MB) for their predictive accuracy.
Comparison of the AUCs for these two markers is one simple approach to determine whether marker A is
more accurate than marker B in correctly classifying the incident cases and dynamic controls at t . This can
be done via the difference in the WMR statistic for the respective markers. For the marker-specific AUCs
at t , define dAUC(t) = AUCA (t) − AUCB (t) and dWMR(t) = WMRA (t) − WMRB (t). Then dWMR(t)
can be used as an estimator of dAUC(t).

The estimation of the variance of dWMR(t) is straightforward for two uncorrelated markers since, in
this case,

var{dWMR(t)} = var{WMRA(t)} + var{WMRB(t)}.
This is true when markers are measured on different sub-groups. However, frequently, both the markers
are assessed on the same set of subjects and hence the covariance between the two WMR statistics cannot
be ignored in general. For correlated markers, the variance of dWMR(t) can be written as

var{dWMR(t)} = var{WMRA(t)} + var{WMRB(t)} − 2 cov{WMRA(t),WMRB(t)}.

For estimating the covariance, one needs to evaluate terms of the form

cov{AA(t), AB(t)}, cov{AA(t), AB(s)}, and cov{AA(s), AB(t)}, t < s,

where AA(t)= (1/nt )
∑

j 1{MA > MA
j |T = t, Tj > t}, etc. The estimation of these covariance terms par-

allels the approach for variance estimation for single marker.
An optimal bandwidth may be selected for marker comparison as before. In particular, an optimal

bandwidth for marker comparison is a minimizer of

k∑
i=1

{dW −i
hn
(ti )−dA(ti )}2,

where

dW −i
hn
(ti )= 1

|Nti (hn)| − 1

∑
j �=i

j∈Nti (hn)

dA(t j ),

dA(ti )= 1

nti

∑
j

1{Mi
A > M j

A|Ti = ti , Tj > ti } − 1

nti

∑
j

1{Mi
B > M j

B|Ti = ti , Tj > ti }.

4. SIMULATION STUDY

4.1 Single marker

To demonstrate the use of the WMR to estimate time-dependent concordance and the rank-based variance
estimator, we conducted a set of simulation studies. Suppose that T denotes the (log) time until failure and
M denotes the marker. We assumed that (T,M) jointly follows a bivariate normal distribution with means
0, variances 1, and correlation ρ = −0.7. For each of N = 1000 simulated datasets, a sample of n = 200
marker values M and survival times T were generated. An additional independent censoring (log) time was
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Table 1. Simulation results for WMR and comparison with semi-parametric method. We assumed
(log(T ),M)∼ N2(0, 0, 1, 1,−0.7). An independent censoring time was generated such that either 20%
or 40% subjects were censored. The results are based on 1000 such simulations. The MLE and semi-
parametric estimates are cited from Heagerty and Zheng (2005). MCSD denotes the Monte-Carlo SD. The
nominal coverage is 95.0. Estimate of integrated AUC (iAUC) and its variance is based on 10 equi-spaced

quantiles of time. The variance of integrated AUC is estimated assuming a constant weight

MLE Semi-parametric WMR (n = 200)

Log time AUC(t) Mean SD Mean SD Mean MCSD EstSD Coverage

20% censoring
−2.0 0.884 0.884 0.018 0.881 0.044 0.876 0.055 0.050 90.2
−1.5 0.833 0.834 0.019 0.829 0.035 0.828 0.040 0.041 93.4
−1.0 0.782 0.782 0.019 0.771 0.033 0.780 0.037 0.036 93.2
−0.5 0.734 0.734 0.019 0.720 0.033 0.734 0.035 0.034 94.1

0.0 0.693 0.693 0.018 0.686 0.034 0.695 0.037 0.037 94.0
0.5 0.660 0.660 0.016 0.657 0.040 0.664 0.047 0.045 94.9
1.0 0.634 0.634 0.015 0.637 0.041 0.638 0.066 0.064 93.0

iAUC 0.741 0.741 0.016 0.740 0.018 0.738 0.020 0.017 89.6

40% censoring
−2.0 0.884 0.884 0.019 0.875 0.048 0.876 0.056 0.050 89.9
−1.5 0.833 0.834 0.021 0.827 0.037 0.828 0.041 0.042 92.9
−1.0 0.782 0.782 0.021 0.772 0.035 0.781 0.038 0.037 92.7
−0.5 0.734 0.734 0.020 0.722 0.039 0.735 0.039 0.038 94.3

0.0 0.693 0.693 0.019 0.687 0.041 0.696 0.044 0.043 93.5
0.5 0.660 0.660 0.018 0.655 0.043 0.666 0.061 0.059 92.6
1.0 0.634 0.635 0.016 0.637 0.048 0.640 0.108 0.100 91.8

iAUC 0.741 0.741 0.017 0.742 0.021 0.739 0.023 0.019 88.3

generated such that either 20% or 40% subjects are censored. To estimate that WMR, a bandwidth of n−1/5

(b = 1) was considered. For each simulated dataset, we estimated that WMR at t = −2.0,−1.5, . . . , 1.0.
The average WMR over 1000 simulations, the Monte-Carlo standard deviation (MCSD), the estimated SD
(EstSD) using the proposed variance estimator and the coverage can be found in Table 1. For comparison
purposes, we also cite the maximum likelihood estimate (MLE) and semi-parametric estimates of time-
dependent AUC as in Heagerty and Zheng (2005). Additionally, simulation results for comparison of two
markers can be found in Table 2.

We find that when 20% observations are censored, the relative bias of WMR is < 1%. For example, at
log(t)= 1.0, the mean WMR is 0.638 while the true concordance is 0.634 with a relative bias of 0.6%. The
relative bias is reduced with an increasing sample size. The estimated standard deviation is comparable with
the MCSD with a coverage close to the nominal level except for the edges. This kind of edge behavior is
typical of many other scatter plot smoothing techniques like LOWESS. Thus, the variance estimator can be
used in practice for inference instead of a resampling-based variance estimator since the variance estimator
may be less computationally intensive than, say, bootstrap.

4.2 Comparison between semi-parametric and non-parametric approaches

To demonstrate the potential robustness advantage of the proposed non-parametric rank-based estimators
over the semi-parametric estimator of Heagerty and Zheng (2005) (henceforth HZ2005), we carried out
additional simulations. Here we focus on an underlying heterogeneous population where one subset has a
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Table 2. Simulation results for comparison of two markers via the difference in respective WMR estima-
tors. We assumed (log T,MA,MB) follows a multivariate normal distribution with cor(log T,MA)= −0.7,
cor(log T,MB)= −0.5, and cor(MA,MB)= 0.8. An independent censoring time was generated such that
either 20% or 40% subjects were censored. We show the difference between the theoretical AUC for
marker A versus marker B (dAUC(t)), the difference between the corresponding estimated WMR statistics
(dWMR(t)), the Monte-Carlo SD (MCSD) and the SD estimated using the proposed variance estimator

(EstSD) and the coverage (nominal: 95.0)

Log time dAUC(t) dWMR(t) MCSD EstSD Coverage

20% censoring
−2.0 0.101 0.099 0.062 0.054 88.8
−1.5 0.098 0.096 0.040 0.040 94.5
−1.0 0.091 0.090 0.032 0.032 94.6
−0.5 0.080 0.078 0.029 0.029 94.8

0.0 0.070 0.069 0.030 0.029 94.9
0.5 0.060 0.060 0.037 0.035 93.2
1.0 0.051 0.053 0.054 0.051 93.3

40% censoring
−2.0 0.101 0.099 0.062 0.054 88.8
−1.5 0.098 0.096 0.041 0.040 94.7
−1.0 0.091 0.090 0.033 0.033 95.0
−0.5 0.080 0.079 0.031 0.031 94.8

0.0 0.070 0.071 0.035 0.035 94.5
0.5 0.060 0.061 0.048 0.047 94.8
1.0 0.051 0.053 0.100 0.089 93.3

normal (low) value of the marker, yet is likely to die relatively quickly, while a second major subset of the
population does have the marker predictive of time until death. Biologically this scenario is plausible in
situations where the disease group under study is not homogeneous, and the marker of interest correlates
only with the outcome for one disease subgroup. Specifically, we assumed that the (log) time until failure
T and the marker M comes from a mixture distribution where

(T,M)=
{
(T (I ),M (I )) if Z = 1,

(T (N ),M (N )) if Z = 0,

with T (I ) ∼ N (−1.5, 1), independent of M (I ) ∼ N (−1.5, 1), (T (N ),M (N ))∼ N2(0, 0, 1, 1, ρ), and Z ∼
Bernoulli(p).

Further, ρ = −0.8 and p = 0.2. An independent censoring time was generated such that 20% of the
subjects were censored. For each of the N = 1000 simulated datasets, a sample of n = 1000 marker values
M and survival time T were generated. For both HZ2005 and WMR, a bandwidth of 0.1 was considered.
For each simulated dataset, we estimated WMR and HZ2005 at t = −2.5,−2.0, . . . , 1.0. The average
WMR, HZ2005, MCSD for both the estimators and EstSD and coverage of WMR can be found in Table 3.
We found that, for such a scenario, the relative bias for WMR is < 1% at all times while the relative bias
for HZ2005 can be as high as 54% and the relative absolute bias for HZ2005 was greater than that of WMR
at all times. The WMR estimator in general was less efficient than HZ2005, but not terribly so. However,
the bias in HZ2005 remained substantial when compared with WMR at all times.
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Table 3. Simulation results for comparison of semi-parametric approach of Heagerty and Zheng (2005)
(HZ2005) and non-parametric approach WMR. We assumed (log T,M) follows a mixture of two multi-
variate normal distributions: (log T (I ),M (I ))∼ N2(−1.5,−1.5, 1, 1, 0) if Z = 1 and (log T (N ),M (N ))∼
N2(0, 0, 1, 1,−0.8) if Z = 0, where Z ∼ Bernoulli (0.2). An independent censoring time was generated
such that 20% of the subjects were censored. We show the estimated HZ2005, WMR, MCSDs, and the SD

estimated using the proposed variance estimator (EstSD) and the coverage (nominal: 95.0) for WMR

Log time AUC(t) HZ2005 MCSD WMR MCSD EstSD Coverage

−2.5 0.378 0.173 0.069 0.376 0.109 0.097 87.7
−2.0 0.481 0.346 0.087 0.477 0.083 0.075 91.1
−1.5 0.591 0.551 0.071 0.595 0.062 0.057 92.0
−1.0 0.673 0.660 0.048 0.674 0.048 0.043 91.6
−0.5 0.709 0.689 0.032 0.708 0.035 0.034 93.7

0.0 0.709 0.684 0.023 0.710 0.030 0.030 94.8
0.5 0.691 0.666 0.022 0.692 0.034 0.033 92.5
1.0 0.669 0.646 0.022 0.669 0.042 0.041 93.9

5. EXAMPLES

5.1 Example 1

We now illustrate the proposed methods using data from 312 randomized subjects from the Mayo primary
biliary cirrhosis (PBC) study, a randomized, placebo-controlled trial of the drug D-penicillamine (DPCA)
for the treatment of PBC conducted at the Mayo clinic between 1974 and 1984 (Fleming and Harrington,
1991). Among these subjects, 125 died by the end of the follow-up. We demonstrate AUC curves asso-
ciated with four-covariate and five-covariate model, their difference and the associated point-wise 95%
confidence interval.

We consider a score from Cox model with covariates: log(bilirubin), log(prothrombin time), edema,
albumin, and age. The log hazard ratios under PH assumption can be found in (Heagerty and Zheng,
2005, Table 3). The prognostic score from this model has been used previously (Costa and Shaw, 2009;
Fleming and Harrington, 1991). Here, we address the question: how well does this score discriminate
between subjects who are at risk of an imminent failure from those who are not. We plot the WMR curve
and associated point-wise 95% confidence interval (Figure 1(a)). A bandwidth of 504 days was used such
that the IMSE is minimized (h = 0.8). Another WMR curve based on a four-covariate model (bandwidth
= 504 days) (log(prothrombin time), edema, albumin, and age) with point-wise 95% confidence interval is
plotted in Figure 1(b). This modified Mayo score is less predictive than the score from the five-covariate
model and the time-specific accuracy decreases steadily over time. We further compared the predictive
accuracy of the five-covariate and four-covariate model scores using the difference in the respective WMR
curves. We plotted the difference in the WMRs in Figure 2 along with the point-wise 95% confidence inter-
val for the difference using the proposed variance estimator of the dWMR(t) (see Section 3). Throughout
the entire time period considered here, the predictive accuracy of the five-covariate model is generally
better than the four-covariate model.

In Figure 1(a), we show the proposed estimator, and show the result of using a simple LOWESS
smoother (solid, blue line) that tends to dampen the fluctuation observed after 2000 days. We do not have
any biological explanation for the late increase, and expect this to likely reflect variability and/or be the
result of cross-validation choosing a relatively small bandwidth. One additional analysis that could explain
the observed pattern would be to consider bandwidth estimation based on IMSE separately over the first
2000 days and the later times—this would likely allow a larger bandwidth at later times and therefore
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Fig. 1. (a) and (b) The WMR curve and point-wise confidence interval for Mayo PBC data (bandwidth = 504 days). (c)
The dWMR curve for the difference in AUC from five-covariate and four-covariate models and point-wise confidence
interval for Mayo PBC data (bandwidth = 504 days). (a) Five-covariate model. (b) Four-covariate model. (c) Difference
between five- and four-covariate models.

tend to smooth this part of the curve in more agreement with the LOWESS estimator. We have introduced
IMSE as one objective method for choosing the bandwidth, but other options are worth consideration.
Figure 1(b) uses a different composite marker (excludes bilirubin) and shows a similar yet dampened pat-
tern after 2000 days. The WMR curves, dWMR curve and the associated confidence intervals based on
leave-one-out cross-validation were very similar to those estimated without cross-validation.

5.2 Example 2

In the second example, we focus on comparison of a new pathology measurement with a standard one
as predictors of mortality among young breast cancer patients. A cohort of young (onset before age 45)
subjects had primary tumor samples analyzed for the percent of cells in the S-phase of the replication
cycle. A standard measurement of S-phase (in %) was obtained in addition to a new measurement (in %)
based exclusively on epithelial cells that were sorted using flow cytometry. Survival subsequent to disease
diagnosis was recorded on n = 253 subjects with a median observed follow-up time of 62 months. A prior
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Fig. 2. The dWMR curve for the difference between AUC (solid, middle line) from the new and standard percent
S-phase measurements and point-wise confidence interval (solid, top and bottom lines) among young-onset breast
cancer patients. The raw differences are indicated by diamonds.

analysis of the data (Heagerty and others, 2000) using cumulative events inferred that the new marker
was only superior during the first 60 months. Our proposed WMR methods allow us to directly compare
the riskset rank based on the standard measure versus the new measure to see whether improvement is
obtained, and to see whether improvement is uniform across time. Figure 2 shows the difference in the
WMR as a function of time and clearly shows an advantage for the new marker but only during the first
60 months where cases ranked using the new measurement had an average percentile that was 12% higher.
Thus, the use of the new graphical method allows a direct evaluation of both how much of an improvement
is obtained, and of when improvement is obtained.

6. DISCUSSION

In this article, we introduce a non-parametric estimator of a time-dependent predictive accuracy function
that is useful for characterizing the accuracy of a predictive score or scalar marker for a survival time that
may be censored. For the entire study duration, we look at the ability of the score to discriminate between
subjects who are at risk of an impending failure (incident cases) from those who are not (dynamic controls).
We use AUC(t) as a measure of predictive accuracy at t and show that a non-parametric estimator of AUC,
namely the locally weighted average of the proportion of concordant case–control pairs, can be used to esti-
mate this time-dependent concordance. The proposed estimator, WMR at t , is a smoothed version of time-
specific AUCs within a neighborhood around each t and is similar to other smoothing approaches, yet is
based on local U-statistic summaries. Furthermore, we showed that under certain conditions on the size of
the control set when compared with the number of failures, the standardized estimator WMR(t) asymptoti-
cally follows a normal distribution. We provide an estimator of the asymptotic variance. Both the estimator
and the variance can be easily estimated. We examined the estimator WMR(t) and the variance estimator
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via simulation studies and showed that both perform satisfactorily under realistic censoring proportions.
We introduced a simple approach for comparing the predictive accuracy of two correlated markers using
the difference in the respective WMR estimates. We proposed a variance estimator for this difference and
evaluated the properties of the estimator via simulation. We applied the methods to the well-known Mayo
PBC dataset, and compared the results with a semi-parametric estimator and drew similar conclusions.

For any given time point t , construction of a confidence interval for WMR(t) is straight-forward using
the asymptotic properties presented here. In many applications, however, it may be desirable to obtain
simultaneous confidence bands for the function WMR(t), so that a single probability statement can be
made regarding the predictive accuracy curve over the entire time span of interest. While estimation of
simultaneous confidence band (e.g. for cumulative hazard, survival curve, etc.) has received a wide atten-
tion in the survival analysis literature (Hall and Wellner, 1980; Parzen and others, 1997), the associated
theory may not be applicable in our case (since the limiting process of WMR(·) may not possess an indepen-
dent increment structure). When an estimator in such situations does not possess independent incremental
structure, a well-known approach is to simulate a Gaussian process while keeping the observations fixed
to approximate the distribution of the process and to estimate the appropriate quantiles based on the per-
turbed distribution. This approach has been used in the literature for the estimation of subject-specific
cumulative hazard and survival function (Lin and others, 1994), the difference in two survival functions
(Parzen and others, 1997), and contrast in two hazard functions (Gilbert and others, 2002) and may be
applicable for the estimation of simultaneous confidence bands for the WMR curve. Computationally
simpler Bonferroni-type bands may also be useful in our setting. A third approach, stemming from litera-
ture on kernel smoothing (Wu and others, 1998), first establishes simultaneous confidence intervals for a
set of grid points and then bridges the gap between the grid points via smoothness conditions of the curve.
However, additional careful work is needed to extend simultaneous methods to our application and is an
important direction for future research.

For the basic development, we assume that the censoring time, Ci , is independent of the survival time,
Ti . Estimation that allows this assumption to be relaxed to permit the weaker assumption of conditional
independence between the failure and censoring times given the marker would be appropriate in certain
settings and therefore warrants further development.
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APPENDIX A

A.1 Asymptotic Normality of WMR

Suppose that we are interested in characterizing the predictive accuracy of the marker at t using
(1/|N |)�t j ∈N A(t j ), where N = {t j : |t − t j |< hn}. We assume that sLt +1 < sLt +2 < · · ·< sLt +mt ∈N
denotes the unique failure times with |N | = mt . We first assume that no subjects were censored in
(sLt +1, sLt +mt ) and the subjects surviving sLt +mt are considered censored at sLt +mt , so that the event times
of these subjects cannot be ordered.

We first restate the following theorem from Lee (1990).
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THEOREM A1 Let Wn =∑(n.k) w(S)ψ(S) be a weighted U-statistic of order k = 2 and define

wi,n =
∑
S:i∈S

w(S),

W ∗
n =

n∑
i=1

wi,nψi (Xi ).

Suppose that the following conditions hold when n → ∞:

(i)

max
1�i�n

|wi,n|2∑n
i=1w

2
i,n → 0

.

(ii) ∑
(n,2) w

2(S)∑n
i=1w

2
i,n → 0

.

(iii) E |ψ1(X1)|2+δ <∞ for some δ > 0.

Then (Wn − θ)/(var Wn)
1/2 D−→ N (0, 1).

Here ψi (x)= E(ψ(Xi , X j )|Xi = x) is the conditional expectation given Xi = x .
For asymptotic normality of WMR, consider X = (T,M∗)= (T,−M). We define a U-statistic with

event time T and a baseline marker M∗ as

U =
∑
i �= j

wi j sgn(i − j) sgn(Ri − R j ),

where Ri is the rank of the marker value M∗ for a subject a(i) who experienced the i th ordered failure:
Ta(i) = si . Also

sgn(x − y)=

⎧⎪⎨⎪⎩
1 if x > y,

−1 if x < y,

0 otherwise.

Note that, the event times Tl1 , Tl2 for two subjects surviving past sLt +mt cannot be ordered; we assume that
sgn(l1 − l2)= 0 for those subjects. Finally, we assume that the weights are as follows:

wi j = 1

2 × mt × |R0
min{si ,s j }|

if si and s j can be ordered and wi j = 0 when the event times si and s j cannot be ordered. We now state the
asymptotic normality of WMR as in the following theorem.

THEOREM A2 Suppose n − (Lt + mt )→ ∞ when n → ∞, where n − (Lt + mt ) denotes the number of
subjects surviving past t(Lt +mt ) or equivalently, surviving past t + hn and let hn → 0, nnn → ∞. Then

V −1/2
n [WMRn(t)− AUC(t)− bn(t)]D−→ N (0, 1),

where Vn = var[WMRn(t)] and bn(t) denotes the bias: E[WMRn(t)] = AUC(t)+ bn(t).
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Proof. To prove the asymptotic normality of WMR(t), we note that WMR(t)= 1
2 (U + 1) and simply

verify conditions (i)–(iii).
Note that the assumption (iii) holds for ψ(Xi ,X j )= sgn(i − j) sgn(Ri − R j ) since |ψ(Xi ,X j )| � 1.
Dropping subscript n from wi,n to simplify the notation, we see

wi =
∑

j

wi j

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

2mt

⎛⎝1 +
∑
j<i

1

|R0
s j
|

⎞⎠ i = Lt + 1, Lt + 2, . . . , Lt + mt ,

1

2mt

Lt +mt∑
j=Lt +1

1

|R0
s j
| i > Lt + mt ,

so that

max
Lt +1�i�n

|wi |2 =w2
Lt +mt

� 1

4m2
t

(
1 + mt

nLt +mt

)2

,

where |R0
si
| = ni = (n − i). Also,

4m2
t ×

∑
i

w2
i = 1 +

(
1 + 1

nLt +1

)2

+
(

1 + 1

nLt +1
+ 1

nLt +2

)2

+ · · · +
(

1 + 1

nLt +1
+ 1

nLt +2
+ · · · + 1

nLt +mt −1

)2

+ (n − (Lt + mt ))×
(

1

nLt +1
+ 1

nLt +2
+ · · · + 1

nLt +mt −1
+ 1

nLt +mt

)2

� (n − (Lt + mt ))×
(

mt

nLt +1

)2

⇒ maxLt +1�i�n |wi |2∑
i w

2
i

� (1 + mt/(nLt +mt ))
2

(n − (Lt + mt ))× (mt/nLt +1)2
−→ 0 if n − (Lt + mt )→ ∞ as n → ∞.

Thus, condition (i) is satisfied. If subjects were censored between sLt +1 and sLt +mt , the inequality above
will still hold. Finally,

4m2
t

∑
i �= j

w2
i j =

⎛⎜⎜⎜⎜⎜⎝
1

n2
Lt +1

+ · · · + 1

n2
Lt +1︸ ︷︷ ︸

nLt +1 times

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
1

n2
Lt +1

+ 1

n2
Lt +2

+ · · · + 1

n2
Lt +2︸ ︷︷ ︸

nLt +2 times

⎞⎟⎟⎟⎟⎟⎠

+ · · ·+

⎛⎜⎜⎜⎜⎜⎝
1

n2
Lt +1

+ 1

n2
Lt +2

+ · · · + 1

n2
Lt +mt −1

+ 1

n2
Lt +mt

+ · · · + 1

n2
Lt +mt︸ ︷︷ ︸

nLt +mt times

⎞⎟⎟⎟⎟⎟⎠
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+ (n − (Lt + mt ))×
(

1

n2
Lt +1

+ 1

n2
Lt +2

+ · · · + 1

n2
Lt +mt −1

+ 1

n2
Lt +mt

)

= 1

nLt +1
+
(

1

n2
Lt +1

+ 1

nLt +2

)
+
(

1

n2
Lt +1

+ 1

n2
Lt +2

+ 1

nLt +3

)

+ · · · +
(

1

n2
Lt +1

+ 1

n2
Lt +2

+ · · · + 1

n2
Lt +mt −1

+ 1

nLt +m

)

+ (n − (Lt + m))×
(

1

n2
Lt +1

+ 1

n2
Lt +2

+ · · · + 1

n2
Lt +mt −1

+ 1

n2
Lt +mt

)

= 2

(
1

nLt +1
+ 1

nLt +2
+ · · · + 1

nLt +mt

)
� 2mt

nLt +mt

and hence condition (ii) is also satisfied (whether subjects were censored between sLt +1 and sLt +mt ) if
n − (Lt + mt )→ ∞ as n → ∞. �

APPENDIX B

B.1 Variance of WMR

As before, we want to characterize the predictive accuracy of the marker at t using (1/|N |)�t j ∈N A(t j ),
where N = {t j : |t − t j |< hn}. Suppose, t, s ∈N . Note that

A(t)= 1

nt

∑
R(t)

1{M j < Mi |Ti = t, Tj > t},

⇒ E{A(t)} ≈ Q0(t),

var{A(t)} ≈ 1

nt
[Q0(t){1 − Q0(t)} + (nt − 1){Q2(t)− Q0(t)

2}],

cov{A(t), A(s)} ≈ 1

nt
[{Q3(t, s)− Q3.0(t, s)} + {Q4(t, s)− Q4.0(t, s)}], with t < s

where

Q0(t)= pr(M j < Mi |Ti = t, Tj > t),

Q2(t)= pr(M j < Mi ,Mk < Mi |Ti = t, Tj > t, Tk > t),

Q3(t, s)= pr(M j < Mi ,M j < Ml |Ti = t, Tl = s, Tj > s),

Q3.0(t, s)= pr(M j < Mi |Ti = t, Tj > s)× pr(M j < Ml |Tl = s, Tj > s),

Q4(t, s)= pr(Ml < Mi ,M j < Ml |Ti = t, Tl = s, Tj > s),

Q4.0(t, s)= pr(Ml < Mi |Ti = t, Tl = s)× pr(M j < Ml |Tl = s, Tj > s).
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The variance is the same as the variance of an AUC estimator using the proportion of concordant case–
control pairs as obtained from a case-control study (Pepe, 2003). When there are dt events at t ,

var{A(t)} ≈ 1

nt × dt
[Q0(t){1 − Q0(t)} + (dt − 1){Q1(t)− Q0(t)

2} + (nt − 1){Q2(t)− Q0(t)
2}],

where
Q1(t)= pr(M j < Mi ,M j < Ml |Ti = t, Tl = t, Tk > t).

However, the expression for cov{A(t), A(s)} remains the same.
To estimate the variance, we use the empirical normal quantiles of the rank of the markers instead of the

markers themselves. Finally, the quantities of interest are estimated assuming normality of the transformed
marker:

Q0(t)=̂�
(

− μ0(t)− μ1(t)√
(σ 2

0 (t)+ σ 2
1 (t))

)
,

Q2(t)= pr(M j < Mi ,Mk < Mi |Ti = t, Tj > t, Tk > t)

=̂�2(0|μ̃2, �̃2),

Q3(t, s)= pr(M j < Mi ,M j < Ml |Ti = t, Tl = s, Tj > s)

=̂�2(0|μ̃3, �̃3),

Q3.0(t, s)= pr(M j < Mi |Ti = t, Tj > s)× pr(M j < Ml |Tl = s, Tj > s)

=̂�
(

− μ0(s)− μ1(t)√
(σ 2

0 (s)+ σ 2
1 (t))

)
×�

(
− μ0(s)− μ1(s)√

(σ 2
0 (s)+ σ 2

1 (s))

)
,

Q4(t, s)= pr(Ml < Mi ,M j < Ml |Ti = t, Tl = s, Tj > s)

=̂�2(0|μ̃4, �̃4),

Q4.0(t, s)= pr(Ml < Mi |Ti = t, Tl = s)× pr(M j < Ml |Tl = s, Tj > s)

=̂�
(

− μ1(s)− μ1(t)√
(σ 2

1 (s)+ σ 2
1 (t))

)
×�

(
− μ0(s)− μ1(s)√

(σ 2
0 (s)+ σ 2

1 (s))

)
,

μ̃2 =
(
μ0(t)− μ1(t)
μ0(t)− μ1(t)

)
�̃2 =

(
σ 2

0 (t)+ σ 2
1 (t) σ 2

1 (t)
σ 2

1 (t) σ 2
0 (t)+ σ 2

1 (t)

)
,

μ̃3 =
(
μ0(s)− μ1(t)
μ0(s)− μ1(s)

)
�̃3 =

(
σ 2

0 (s)+ σ 2
1 (t) σ 2

0 (s)
σ 2

0 (s) σ 2
0 (s)+ σ 2

1 (s)

)
,

μ̃4 =
(
μ1(s)− μ1(t)
μ0(t)− μ1(s)

)
�̃4 =

(
σ 2

1 (s)+ σ 2
1 (t) −σ 2

0 (s)
−σ 2

0 (s) σ 2
0 (s)+ σ 2

1 (s)

)
.

If there are more than one case at t , μ1(t) and σ 2
1 (t) can be estimated as the mean and variance of the

(transformed) marker of the cases at t , while μ0(t) and σ 2
0 (t) are estimated as the mean and variance of

the (transformed) marker of the controls at t . However, usually there is only a single incident event at t .
Hence, we assume that the mean marker values for the cases within the neighborhood of interest N (or
Ñ ⊂N ) is constant: μ1(t)=μ1(s) and σ 2

1 (t)= σ 2
1 (s), and use all the cases within the neighborhood to

estimate μ1(t) and σ 2
1 (t).
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