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SUMMARY

In the case-cohort studies conducted within the Atherosclerosis Risk in Communities (ARIC) study, it is of
interest to assess and compare the effect of high-sensitivity C-reactive protein (hs-CRP) on the increased
risks of incident coronary heart disease and incident ischemic stroke. Empirical cumulative hazards func-
tions for different levels of hs-CRP reveal an additive structure for the risks for each disease outcome.
Additionally, we are interested in estimating the difference in the risk for the different hs-CRP groups.
Motivated by this, we consider fitting marginal additive hazards regression models for case-cohort studies
with multiple disease outcomes. We consider a weighted estimating equations approach for the estimation
of model parameters. The asymptotic properties of the proposed estimators are derived and their finite-
sample properties are assessed via simulation studies. The proposed method is applied to analyze the
ARIC Study.

Keywords: Additive hazards model; ARIC study; Case-cohort study; Multivariate failure times; Weighted estimating
equations.

1. INTRODUCTION

Modern analyses of survival data focus on multiplicative models for relative risk using proportional hazards
models (Cox, 1972), mostly due to desirable theoretical properties along with a simple interpretation of the
results and the wide availability of computer programs. However, epidemiologists often are interested in
the risk difference attributed to the exposure, and the risk difference is known to be more relevant to public
health because it translates directly into the number of disease cases that would be avoided by eliminating
a particular exposure (Kulich and Lin, 2000). Also, the proportional hazards assumption, which is critical
for proportional hazards models, is often violated in practice. Consequently, the additive hazards model,
which model risk differences, has often been suggested as an alternative to the proportional hazards model.
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Fig. 1. Plots of Nelson—Aalen type cumulative hazards function estimates versus time for three different levels of
hs-CRP by event type. (a) For CHD as the event. (b) For stroke as the event.

An interesting example is a study conducted for the Atherosclerosis Risk in Communities (ARIC) study
participants (Ballantyne and others, 2004, 2005). It is of interest to: (1) examine the association of high-
sensitivity C-reactive protein (hs-CRP) with an increased risk for incident coronary heart disease (CHD)
and incident ischemic stroke for the ARIC study subjects, and (2) compare the effect of hs-CRP on the
risks of incident CHD and stroke. Hs-CRP is a well-known biomarker for inflammation and has been
associated with the increased risks for CHD and stroke (Ridker and others, 1998; Rost and others, 2001).
Figure 1 shows that, as time (measured in days) increases, the differences in the cumulative hazards function
estimates for three different levels of hs-CRP increase approximately in a linear fashion. Therefore, it is
reasonable to assume the additive effect of hs-CRP on the hazards functions both for CHD and stroke.

For full cohort data assuming random samples, Lin and Ying (1994) proposed a semiparametric esti-
mating procedure and derived the large-sample theory of the proposed estimators. This was extended
to multivariate failure times (Pipper and Martinussen, 2004; Yin and Cai, 2004), to current status data
(Lin and others, 1998), and to the variable selection problem (Martinussen and Scheike, 2009). However,
conducting epidemiologic cohort studies often involve follow-up of a large number of subjects for a long
period of time, which makes them potentially tremendously expensive. The case-cohort study design
(Prentice, 1986) is one of several study designs that have been proposed to achieve the goals of cohort
studies in a more efficient way. The key idea of this study design is to obtain the covariate measurements
only on a subset of the entire cohort (subcohort) and all the subjects who experience the disease of interest
(cases) in the cohort. Thus, the case-cohort study designs are particularly useful for large-scale cohort stud-
ies with a low disease rate or for cohort studies with covariates expensive to measure. The ARIC study in
the aforementioned example is a large cohort study that involves 15 792 participants. Considering its size,
measuring hs-CRP for all the participants in the ARIC study would have been too expensive. Therefore, to
reduce costs as well as preserve stored plasma samples, a case-cohort study was carried out: hs-CRP levels
were obtained only for the CHD or stroke cases or a random subcohort. Since a subject could experience
both the incident CHD and ischemic stroke, times to these two types of events observed from the same
subject might be correlated. In order to compare the effect of hs-CRP on the risks of incident CHD and
stroke, one needs to consider a possible correlation induced by this clustering of the times to these two
types of events within a subject.

Motivated by this, we consider fitting failure time data for more than one disease outcome from case-
cohort studies under additive hazards models. Despite the progress in the methods for analyzing case-
cohort data, methodologies to address the analysis of case-cohort data with multiple disease outcomes
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have been limited. For a single disease outcome, Kulich and Lin (2000) developed the semiparametric
inference procedure for failure time data from case-cohort studies. Sun and others (2004) extended this
approach to competing risks analysis. Since more than one failure time from a subject could induce correla-
tions, statistical methods assuming independence among failure times can no longer be applied. Recently,
Kang and Cai (2009) proposed methods for fitting failure time data from case-cohort studies with multi-
ple disease outcomes under marginal proportional hazards models. However, to the best of our knowledge,
additive hazard models have not yet been explored for failure time data from case-cohort studies with
multiple disease outcomes.

In this article, we propose a weighted estimating equations approach for estimating the parameters in
the marginal additive hazards regression models for the multivariate failure time data from case-cohort
studies with multiple disease outcomes. We consider the generalized case-cohort study design, which is
more appropriate for multiple disease outcomes.

2. MODELING AND ESTIMATION

Suppose a cohort is composed of n subjects with K different disease outcomes being of interest. Let 7j;
and C;; denote, respectively, the potential failure time and the potential censoring time for disease outcome
k(k=1,...,K) of subjecti(i =1, ...,n). The observed time is X;; = min(7j;, Cix). Let Nz () denote
the counting process for outcome k of subject i, Yz (t) = I (X > t) denote an “at risk” indicator process,
and A;; = I (T;; < Ci;) denote an indicator for failure, where 7(-) is an indicator function. Let Z;; () be
a possibly time-dependent p x 1 covariate vector for outcome k of subject i at time ¢. We restrict our
attention to the “external” time-dependent covariates Z;;(¢) (Kalbfleisch and Prentice, 2002). We assume
that Cj; is independent of Tj; given Z;;(-).
We assume that the marginal hazard function A;; () is associated with Z;(¢) as the following:

Mirlt|1Zix (1)) = hox(t) + By Zix (1), (2.1)

where Ao (f) is a baseline hazard function for outcome k& and B, is a p x 1 vector of regres-
sion parameters. Note that disease-specific effects of Z}, (f) can be accommodated in (2.1) by
defining B, and Z;(¢) in the following manner: ﬂoz(ﬂgl,...,ﬁgk,...,,BOTK)T and Z; ()=
[Ol-Tl,...,OiT(k_D, {Z;",c(t)}T,()I-T(,(Jrl),...,OZ-TK]T where 0,; are zero vectors. Let M (B, t) = Nix(t) —
fot Yir(u){hox () + ﬂgZ,—k(u)}du denote a martingale with respect to the marginal filtration Fj;(¢) =
o {Nik(s), Yir(s), Zi;(s) : 0<s <t} and 7 denote the study end time.

2.1 Generalized case-cohort study design

The generalized case-cohort design described in this subsection follows the framework of Kang and Cai
(2009). In the generalized case-cohort studies with multiple disease outcomes, a subcohort of size 7 is
selected from the full cohort via simple random sampling without replacement. Let & and 7; denote the
subcohort sampling indicator and the subcohort sampling probability for the ith subject in the cohort,
respectively. Due to the sampling scheme, each subject has equal probability of being sampled into the
subcohort,i.e.m; =Pr(§; = 1) =a =n/n,and &, ..., §, are correlated. After the sampling of a subcohort,
subsequent samplings of cases outside the subcohort follow. Specifically, for the kth disease, we sample a
fixed number of m® cases who are outside the subcohort by simple random sampling. Let 7;; denote the
indicator for the ith subject outside the subcohort with the kth disease being selected into the sample and
Gr=Pri=11Au=1,&=0=m®/(n® — 7®) denote the sampling probability of the kth disease
outcome of the ith subject outside the subcohort where n®) and 7#¥' denote the number of the kth disease
cases in the cohort and in the subcohort, respectively. Note that (g, ..., n7,x) are correlated, however,
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Mks -+ Max) and (Mg, . . ., nap) are independent for k # k. Covariate measurements are taken only on
the subcohort members and the sampled cases outside the subcohort. Thus, the observable information for
the kth disease outcome of the ith subject is { Xz, Ak, &, nik, Zix(¢), 0 <t < X} when §; =1 orny =1
and is { Xk, A, &, nix} when & = 0 and 7n;; = 0. Note that the case-cohort design, which samples all the
cases outside the subcohort, is a special case of the generalized case-cohort design and can be obtained
by setting g = 1 for all k. This special case will be referred to as the “original” case-cohort design to
distinguish it from the “generalized” case-cohort design.

2.2 Estimation

If the full cohort data were available, the estimate of the true regression parameter f, in (2.1) could be
obtained by solving the following estimating function (Yin and Cai, 2004)

n K T
up)=> > /0 {Zik(t) = ZeOWAN () — Yi () B" Zix (1) dt}, 22)

i=1 k=1

where Z, (1) = S Y ®OZi(t)) > 1, Yir(#). Unlike the Cox model, there exists an explicit solution to
the estimating equations U(B) = 0, taking the following form:

n K T -1 n K T
[ZZ /0 Y (O1Zix (1) — Z(1)}*? dr] [ZZ /0 Yie(O{Zix(t) — Z(0)}dNi(1) |

i=1 k=1 i=1 k=1

where a®? = aa”.

For data from case-cohort studies, since Z;;(-)’s are not available for cohort members outside the case-
cohort samples, (2.2) cannot be calculated. Motivated by inversely weighting the incomplete observations
(Horvitz and Thompson, 1951), we propose the weighted estimating function

n K T
vB=>"% /O o OIZi(0) — ZLONIN(0) — YO8 Zig (1) i), 23)

i=1 k=1

where  Z/(t) = Y, ouDZu ) Yir()/ I_ oY) and o) = (1 = Ai)&é; ' (1) +
NiE + A1 — E,-)n,—kék_l(t) is a possibly time-varying weight function, d&()=3 . _ (1 —
Ai)& Y (1)) 35 (1 = D) Yig (1), and Gu (1) = 377y Aire (1 = Emiac Yo (1) / 220y Akl = &) Y (0).
Note that > w; (1) Yir (1) = Zi « Yir(2) forany t > 0; the risk set size is exact with time-varying weights.
With fixed weights, i.e. with & and gy in place of &, (¢) and g, (¢), respectively, equality only holds at# = 0.
The estimator of the hazards regression parameter 8 is defined as the solution to Up) = 0,.1. We

shall denote this estimator by [9 and it has the following explicit form:

i=1 k=1 i=1 k=1

n K T -1 n K T
B= [ZZ/O i) Yir(OZi (1) — Z;, (1)} dt] [ZZ/O ik (O(Zi (1) — Z; ()} dNip (1) | .

The proposed weight function was motivated by the sampling scheme for the study design we have con-
sidered in this paper. Under this study design, the subcohort is sampled first and then the cases outside of
the subcohort are sampled. Our weight function reflects this two-phased sampling scheme. Specifically,
at time ¢, individuals censored for disease k in the subcohort are weighted by ay (1), the inverse of their
estimated sampling probabilities, while subcohort cases are weighted by 1 as they represent themselves in
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the cohort. Likewise, the sampled non-subcohort cases are weighted by the inverse of their estimated sam-
pling probabilities, g, (), where g, () denotes the number of sampled non-subcohort cases with the kth
disease outcome divided by the number of non-subcohort cases with the kth disease outcome remaining
in the risk set at time 7.

Let Agi(2) = fot Aox (1) du. A Breslow—Aalen-type estimator of the cumulative baseline hazard function
is given by
" i @) (AN @) — Y (B Zix () du)

> it ik () Yig (u)

Ao(B, 1) =
0

REMARK 1 For the original case-cohort study, the weight function reduces to w;;(¥) = (1 —
A& (1) + A

REMARK 2 Simpler versions of the weight function can be obtained by replacing & (¢) and g (¢) with &
and gy, true sampling probabilities, respectively. Note that the resulting weight function no longer depends
on time. For example, w; (t) = w;r = (1 — Ajp)&a " + Ak + A (1 — gi)n[kd,;l. Throughout this arti-
cle, whenever it is necessary, we shall use subscript or superscript I and II to denote the estimators with
the time-invariant weight function (B and f\IOk (f! 1» 1)) and with the time-varying weight function (f! i and

Al (Byy. 1)), respectively.

3. ASYMPTOTIC PROPERTIES

In this section, we study the asymptotlc propertles of the proposed estimates for 8, and AOk(t) with time-
varying welght functions (,BII and AOk(,BH, t)). Asymptotic properties for /31 and AOk(ﬂI, t) are special
cases of B u and AOk(,B - ) and will be briefly described at the end of this section. Here and hereafter the
norms for the vector a, matrix A4, and function " are defined as ||a|| = max; |a;|, [|4]| = max; ; | 4;;|, and
II.f 1l = sup, | f(¢)], respectively. R

We summarize the asymptotic behavior of the regression parameter estimator fy; in the following
theorem.

THEOREM 1 Under the regularity conditions listed in Section A of the supplementary material (available at
Biostatistics online), B, solving (2.3) is a consistent estimator of 8. In addition, n'/2(B;, — B,) converges
to a zero-mean normal random variable with variance matrix Xy (f).

To study the asymptotic properties of AL (By. 1)(k =1, ..., K), we define the following metric space.
Let D[0, 71X be a metric space consisting of right-continuous functions f(¢) with left-hand limits where
fFO={fi@®),..., fx®}T and fi(¢):[0, 1] — R. The metric for this space is defined as dg (f, g) =
supy reqo.o) /() — g()]: 1 <k < K} for f, g € D[O, 7]¥. We summarize the asymptotic properties of

A{)Ik(ﬁll, t)(k=1,..., K) in the following theorem.

THEOREM 2 Under the regularity conditions listed in Section A of the supplementary material (available
at Biostatistics online), for each k=1, ..., K, [\gk(ﬁn, t) converges in probability to A () uniformly
in t € [0, t]. In addition, W' (¢) =n1/2[{f\gl(l§n, 1) — Ao (D)}, ..., {AIOIK(ﬁII, 1) — Aox ()}]7 converges
weakly to a zero-mean Gaussian process W(¢) in D[0, 1% where W!(¢) = (Wik(1), ..., WE(®)}T.

The proofs of the theorems are outlined in Section A of the supplementary material (available at Bio-
statistics online). Explicit forms of the asymptotic variance functions in Theorems 1 and 2 as well as their
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consistent estimators are provided in Section B of the supplementary material (available at Biostatistics
online).

REMARK 3 Asymptotic properties of B; and Al (B,. ) are similar to those of B;; and AL (8. 1), respec-
tively, with simpler forms of the asymptotic variances. The simplified version is also provided in Section
B of the supplementary material (available at Biostatistics online).

REMARK 4 Asymptotic properties of the estimates for B8, and Ao (B, t) under the original case-cohort
study can also be easily derived from Theorems 1 and 2. Since all ¢;s are equal to 1 forallk=1,..., K,
terms involving ¢;’s in the asymptotic variances will simply vanish.

4. SIMULATIONS

We conducted simulation studies to investigate the finite-sample properties of the proposed estimates.
Correlated failure times were generated from the Clayton and Cuzick model (Clayton and Cuzick, 1985)
where the joint survival function for (71, ..., Tx) given (Zy, ..., Zg) is
-6
— (K — 1)) .

Here, 0 (> 0) is a parameter that controls the degree of dependence between 7y and Ty (k, k' =1, --- , K).
A smaller 6 represents a larger correlation. We considered two types of events (K = 2). Here Ao; was set
to be equal to 2 for k£ = 1 and 4 for k = 2. Two types of covariates were considered: Bernoulli with proba-
bility 0.3 and Uniform (0, 3). We examined regression parameters at 8y = 0 and 0.2 for both Bernoulli and
uniform covariates. Four different values for 6 (0.1, 0.8, 1.25, or 4) were considered to account for strong
to weak correlations. The corresponding values of Kendall’s tau’s are 0.83, 0.43, 0.29, and 0.09. The cen-
soring time distribution were generated from uniform distribution (0, ) with u chosen to depend on the
desired percentage of censoring. We considered event proportion of Pp = [2%, 4%] and Pp = [7%, 13%]
for rare diseases, and Pp =[18%, 32%] and Pp = [30%, 40%] for non-rare diseases. For rare diseases,
we sample all the cases outside the subcohort (¢ =[1, 1]). For non-rare diseases, we sample all as well
as a fraction of cases outside the subcohort. The sampling proportions for the cases outside the subcohort
areq =[0.5,0.5]and ¢ =[0.37, 0.37] for Pp =[18%, 32%] and Pp = [30%, 40%], respectively. For each
configuration, we simulated full cohort samples of size » = 1000 and then selected case-cohort samples
from each full cohort dataset. The sampling of the subcohort was conducted via simple random sampling.
For rare diseases, two different fixed sample sizes (7 = 100 and 200) were considered. For non-rare events,
with Pp =[18%, 32%], the subcohort size was set to 333. This would result in approximately the same
number of cases and controls when all the cases are sampled. With Pp =[30%, 40%], the subcohort size
was set to 300, which would give us roughly the same number of cases and controls when sampling a
fraction of cases outside the subcohort (¢ =[0.37, 0.37]). For each data configuration, we ran R = 2000
simulations.

We first considered rare events and sampled all the cases. Table 1 shows simulation summary statistics
with Bernoulli covariate Z;; with Pr(Z;; = 1) = 0.3 for ,31 and 311, respectively. The notation “mean (B D’
or “mean (fill)” denotes the average of the estimates of 8, “SE” denotes the average of standard error
estimates based on the proposed method, “SD(B )’ or “SD(B )" denotes the sample standard deviation of
the 2000 estimates, and “CR” denotes the coverage rate of the nominal 95% confidence interval. The sim-
ulation results suggest that the coefficient estimates were approximately unbiased across the setups consid-
ered for By = 0 and By = 0.2 with both event proportion situations. The proposed estimated standard errors

K *Oor(t) + BYZ (1)) de
S(t1’~~’tK|Z1w-wZK)=<Zexp lfo{ ok (1) gﬂ (1)}

k=1
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Table 1. Summary of simulation results with rare events for 51 and BII-’ Zir ~ Bern(0.3)

A~

B Au
Bo Event proportion 7 79  Mean (/§1) SE SD (,31) CR  Mean (ﬁn) SE SD (ﬁn) CR
0 [2%, 4%] 100 0.83 0.002 0.064 0.064 0.946 0.002 0.063  0.064  0.945

043 —0.001 0.061 0.061 0.946 —0.001 0.061  0.062 0.948
0.29 —0.001 0.061 0.059 0.954 —0.001 0.060  0.059 0.954
0.09 —0.002 0.061 0.062 0.948 —0.002 0.061  0.062 0.946
200 0.83 0.002 0.056  0.057  0.940 0.002 0.056  0.057 0.940
0.43  —0.001 0.053  0.052 0.949 —0.001 0.053  0.052 0.945
0.29 —0.001 0.052 0.052 0.948 —0.001 0.052  0.052 0.948
0.09 —0.001 0.052  0.051 0.948 —0.000 0.052  0.051 0.948
[7%, 13%] 100 0.83 —0.000 0.089 0.091 0.953 —0.000 0.088 0.091 0.951
0.43 0.002 0.085 0.088 0.953 0.003 0.085 0.088  0.949
0.29 0.002 0.085 0.085 0.954 0.002 0.085 0.085 0.955
0.09 0.001 0.084 0.086 0.949 0.001 0.084 0.086 0.944

200 0.83 0.003 0.070  0.071  0.951 0.003 0.070  0.071  0.951
0.43 0.003 0.066 0.066 0.957 0.003 0.066  0.066  0.952
0.29 0.001 0.066  0.066  0.949 0.001 0.066  0.066  0.949
0.09 —0.001 0.065 0.065 0.957 —0.001 0.065 0.065 0.957

0.2 [2%, 4%] 100 0.83 0.201 0.088 0.084 0.950 0.201 0.087  0.083  0.951
0.43 0.203 0.084 0.080 0.954 0.203 0.083  0.080 0.955
0.29 0.203 0.083  0.079 0.952 0.203 0.082  0.078  0.952
0.09 0.202 0.083  0.082 0.948 0.202 0.082  0.082 0951
200 0.83 0.206 0.077 0.074 0.952 0.205 0.076  0.074  0.953
0.43 0.200 0.072  0.069  0.947 0.200 0.071  0.069  0.950
0.29 0.199 0.071  0.070  0.943 0.199 0.070  0.070  0.940
0.09 0.201 0.071  0.069  0.952 0.201 0.070  0.069  0.949
[7%, 13%] 100 0.83 0.202 0.105  0.105  0.961 0.201 0.105  0.104  0.959
0.43 0.205 0.101 ~ 0.100  0.960 0.205 0.100  0.100  0.961
0.29 0.204 0.100  0.102  0.954 0.204 0.099 0.102 0951
0.09 0.203 0.099 0.101  0.958 0.203 0.098 0.101  0.958
200 0.83 0.202 0.084 0.085 0.951 0.201 0.083  0.085 0.950
0.43 0.202 0.078  0.080  0.943 0.202 0.078  0.080  0.942
0.29 0.203 0.078 0.077 0.953 0.203 0.077  0.077  0.952
0.09 0.202 0.077  0.078  0.952 0.202 0.076 ~ 0.078  0.951

appeared to closely approximate the true variabilities of ﬁs in most of the cases. Increasing subcohort sizes
(100-200) resulted in smaller standard errors as expected. Smaller values of Kendall’s tau that correspond
to a weaker correlation among failure times led to a smaller standard deviation in general. The coverage
rate of the nominal 95% confidence intervals using the proposed method were in the 94.0-96.1% range.
Overall, ,31 and ,311 performed reasonably well and showed similar results. For all data configuration, the
true variabilities of the regression parameter estimates for /§1 and ,311 were similar.

Table 2 provides simulation summary statistics for ,31 and ,311 with the Bernoulli and the Uniform covari-
ates for non-rare events with a non-zero regression coefficient (8y = 0.2) and both sampling all and a por-
tion of the cases, respectively. Overall, the findings were similar to those in Table 1: small biases in the
coefficient estimates (<4%) and in the estimated standard errors (<5%), and good coverage rates for most
of'the cases considered (93—96%). While sampling half of the cases led to larger sample standard deviations
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Table 2. Summary of simulation results with non-rare events: fy = 0.2
B Au
Event proportion q n 19 Mean (,31) SE SD (31) CR Mean (/§H) SE SD (ﬁn) CR
Zix ~ Bern(0.3)
[18%, 32%)] [1,1] 333 0.83  0.207  0.094 0.093 0.949 0.207 0.094 0.093 0.951
0.43 0.204 0.088 0.087 0.955 0.204 0.088 0.087 0.954
0.29 0.204 0.086 0.086 0.949 0.204 0.086 0.086 0.948
0.09 0.206 0.083 0.086 0.935 0.206 0.083 0.087 0.935
[0.5,0.5] 333 0.83 0.207 0.100 0.100 0.947 0.207 0.100  0.100 0.944
0.43  0.204 0.094 0.094 0.955 0.204 0.094 0.094 0.954
0.29  0.205 0.093 0.092 0.955 0.204 0.093  0.093 0.952
0.09 0.206 0.090 0.093 0.937 0.206 0.091 0.093 0.938
[30%, 40%] [1,1] 300 0.83  0.207  0.099 0.101 0.948 0.207 0.100  0.102 0.946
0.43 0.204  0.094 0.097 0.944 0.204 0.094 0.097 0.945
0.29  0.198  0.092 0.091 0.945 0.198 0.092  0.091 0.941
0.09 0.204 0.088 0.089 0.945 0.204 0.088 0.090 0.946
[0.37,0.37] 300 0.83 0.206  0.108 0.108 0.951 0.206 0.109 0.109 0.951
0.43  0.203 0.103 0.106 0.955 0.203 0.104 0.107 0.959
0.29 0.203 0.104 0.107 0.959 0.196 0.101  0.100 0.947
0.09 0204 0.098 0.101 0.942 0.204 0.099 0.102 0.948
Zix ~ U0, 3]
[18%, 32%] [1,1] 333 0.83  0.200 0.058 0.057 0.954 0.200 0.057 0.057 0.957
0.43 0.202  0.053 0.051 0.959 0.202 0.053 0.051 0.960
0.29  0.201 0.052 0.053 0.944 0.201 0.052  0.052 0.944
0.09  0.201 0.051 0.051 0.949 0.201 0.051 0.051 0.949
[0.5,0.5] 333 0.83 0.200  0.064 0.064 0.946 0.200 0.063 0.064 0.941
0.43  0.202 0.059 0.058 0.959 0.202 0.059 0.059 0.957
0.29  0.201 0.059 0.059 0.938 0.200 0.059 0.059 0.937
0.09 0202 0.057 0.058 0.946 0.201 0.057 0.059 0.942
[30%, 40%] [1,1] 300 0.83  0.202  0.061 0.062 0.942 0.202 0.061 0.062 0.944
0.43 0202 0.057 0.058 0.946 0.202 0.057 0.058 0.939
0.29 0.205 0.057 0.056 0.944 0.205 0.056 0.056 0.942
0.09 0.200 0.054 0.055 0.953 0.200 0.054 0.055 0.947
[0.37,0.37] 300 0.83 0.202 0.066 0.067 0.941 0.202 0.067 0.067 0.943
0.43 0.201 0.063 0.067 0.943 0.202 0.063 0.064 0.945
0.29  0.205 0.062 0.062 0.947 0.204 0.062 0.063 0.946
0.09 0.199 0.060 0.060 0.954 0.199 0.061 0.061 0.954

compared with those from sampling all the cases, the magnitude of increase was relatively small. There are
only about 7-8% increases in the SEs for the Pp = [18%, 32%] situation. When S, = 0, simulation results
were similar but slightly better in terms of the accuracy of the estimates in general (results not shown).

5. STRATIFIED CASE-COHORT DESIGN

Suppose that a cohort of size n can be partitioned into L mutually exclusive strata based on some covariates
available for the entire cohort. We then extend the method to stratified case-cohort studies, whereby sam-
pling is conducted within each stratum with possibly different sampling probabilities. Specifically, let n;
denote the number of subjects in the /th stratum in the cohort (/ =1, ..., L)andn =n; + --- + ny. Then,
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within the /th stratum, we sample 7; subcohort members via simple random sampling with the sampling
probability being equal to &; where &; = Pr(§; = 1) = n;/n;. The total subcohort sizeisn =n; + -+ -+ ny.
Subsequently, for the kth disease outcome within the /th stratum, we sample m,(k) cases outside the sub-
cohort Via simple random sampling with the sampling probability being equal to g,z = mfk) / (n;k) — fz;k)),
where n b and i 7, 7 are the numbers of subjects with the kth disease outcome in the /th stratum in the cohort
and in the subcohort, respectively.

Now, for 7j;; given Z;;;(t), we consider the following marginal additive hazards model, A {#|Z;;1 (1)} =
Aok () + ﬂgZ 11k (1) where Ajx (+), Tpix and Zj;;(-) denote the marginal hazard function, failure time, and a
vector-valued covariate for the ith subject with the kth disease outcome in the /th stratum, respectively.
Note that subscript /(/ =1, ..., L) denotes quantities for the /th stratum. Estimation procedures for 3,
and Ao, (-) described in Sectlon 2.2 can be extended to accommodate the stratified sampling design.

Specifically, /35,, the estimator of 8, can be obtained by solving U st(B) = 0,1 where

L

U (B)= Z Z / ik (O Zi(6) = Z, (AN (8) = Y (OB Zisi (1) dt},

=1 i=1 k=1

Z}(0) = Yoy i o Zu (0 V(0] Y1y Yo7y 00k () Yia(6) and () = (1= M) () +
Ak + A (1 — Szl)mzkél; (t). The estimator g, also has an explicit form where B, =

Z/ DY 1Zk 1y @ik Y (OfZ i (1) —ft(f)}®2 dr]™ Z, DY Zf:] Jo @i OAZ1x (1) —
Zz (1)} dNyix(2)]. A Breslow—Aalen-type estimator of A (?) is given by

At [ S S ik )Nk () — Yiig () BT Z g () due}
Ok(ﬂ’ t) - L n .
0 Dot Doy ik () Yy (u)

By arguments similar to those in the supplementary material (available at Biostatistics online), the
consistency and the asymptotic normality of n'/2(8,, — B,) can be proved. Likewise, n'/2[{AS (B,,. 1)
Aoi(D)}, ..., {IA\‘(‘)’K (ﬁst, t) — Aok (¢)}] can be shown to converge weakly to a zero mean Gaussian process
WIL(#) based on the arguments similar to those in the supplementary material (available at Biostatistics
online). Explicit forms of the components in the asymptotic variance functions are provided in Section C
of the supplementary material (available at Biostatistics online).

6. ANALYSIS OF THE ARIC STUDY DATA

We applied the proposed inference procedures to a dataset from the ARIC study (Ballantyne and others,
2004, 2005). This study is a large-cohort study involving 15 792 individuals aged 45-64 years old who
were sampled from four U.S. communities. After a baseline examination during 1987-1989, subjects in
this study were prospectively followed for the development of an incident CHD, including CHD-related
death, and for an incident ischemic stroke, a first definite or probable hospitalized stroke through to 1998.
Subjects who missed their second visit in 1990-1992, did not have information on CHD or stroke history,
had transient ischemic attack or stroke, were under-represented minorities other than blacks, or had no
valid follow-up time were excluded from the study. A total of 12 363 subjects comprised the potential full
cohort. Those who were alive or free of disease by the end of 1998 or lost to follow-up in the middle of
the study periods were treated as censored.

Our primary interest in this analysis was to examine whether levels of hs-CRP were associated with
an increased risk for incident CHD and incident ischemic stroke for the ARIC subjects. It is claimed that
inflammation plays an important role in cerebrovascular disease as well as CHD and hs-CRP is one of
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Table 3. Baseline characteristics of the case-cohort and the full cohort samples

CHD (n=604) Stroke (n =183) Subcohort (n =777) Full (n =12108)

Age (SD), years 58.6 (5.44) 59.7 (5.54) 56.9 (5.57) 56.8 (5.70)
Female, % 323 443 57.3 57.8
African American, % 22.9 432 24.8 24.4
Current smoker, % 29.1 344 20.1 22.0
Diabetes, % 28.5 37.7 16.4 13.3
Systolic blood pressure 129.3 (20.78) 133.5(21.14) 121.7 (18.89) 121.1 (18.52)
(SD), mmHg

LDL-C (SD), mm/dL 147.1 (38.37) 140.9 (42.53) 132.0 (36.37) 132.8 (36.71)
HDL-C (SD), mm/dL 42.2 (12.28) 45.6 (13.59) 50.8 (17.21) 50.5 (16.69)
hs-CRP (SD), mm/dL 3.9(3.45) 4.1(3.44) 3.1(3.37) N/A

several biomarkers of inflammation that have been associated with an increased risk for CHD and stroke
(Ballantyne and others, 2004, 2005).

In order to preserve stored plasma samples and reduce costs, a case-cohort design was implemented.
The levels of hs-CRP were measured only on a subset of the ARIC study: individuals who subsequently
developed an incident CHD or ischemic stroke and a random subcohort. The subcohort in this study was
selected via a stratified random sampling design where the strata were based on sex, race (black ver-
sus white), and age at baseline (< 55 versus >55). After excluding the subjects with missing values,
604 incident CHD cases, 183 incident ischemic stroke cases, and 777 subcohort members were used for
the analysis. Due to the overlap between CHD/stroke cases and the random subcohort, the total number
of assayed sera samples was 1470. To control for confounding factors, the following covariates includ-
ing several traditional cardiovascular risk factors were considered in the model: age at baseline, sex,
race, smoking status, diabetes, systolic blood pressure, LDL cholesterol (LDL-C), and HDL cholesterol
(HDL-C). Table 3 shows the baseline characteristics of the subjects in the case-cohort sample and the full
cohort. The weighted means and proportions from the subcohort members were similar to those from the
full cohort members, which means the subcohort is a well represented subset of the full cohort.

Table 4 presents hazards regression parameters estimates (Estimate) for hs-CRP, the associated esti-
mated standard errors (SE), and the associated p-values from fitting a marginal additive hazards model
for CHD and stroke, which is adjusted for age, sex, race, smoking status, systolic blood pressure, LDL-C,
HDL-C, and diabetes. While elevated LDL-C is a well-known risk factor for CHD and a major component
of national guidelines for the prevention of CHD, many people still experience CHD events without ele-
vated LDL-C (Ballantyne and others, 2004). The effect of hs-CRP might be different for those with and
without an elevated LDL-C level. To allow for this, we added an interaction term between hs-CRP level
and a dichotomized LDL-C level (LDL-C < 130 mg/dL or LDL-C > 130 mg/dL).

Tertiles of hs-CRP were used to define the low (<1.0mg/L), middle (1.0-3.0mg/L), and high
(>3.0mg/L) hs-CRP groups. Since, as can be seen in Figure 1, the empirical cumulative hazards functions
for the different hs-CRP groups increase approximately in a linear fashion, the additive hazards model is a
reasonable choice. For the stroke event, however, the empirical cumulative hazard functions for the differ-
ent hs-CRP groups are 0 until the first event occurs at 1069 days. To capture this, we added an interaction
term between the hs-CRP level and 7 (z > 1069), a time-dependent indicator variable, for the stroke event,
to allow the effect of hs-CRP to be different before and after day 1069. We fit model (2.1) to study the
effect of hs-CRP and the results are presented in Table 4. “CRP2” and “CRP3” in the “Variable” column
in Table 4 denote the indicator variables for the middle hs-CRP and the high hs-CRP levels, respectively.
The low hs-CRP group was used as the reference group. We fit the models with type-specific effects of
hs-CRP on CHD and stroke.
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Table 4. Analysis results for the effect (risk difference) of hs-CRP from the ARIC study. The model is
adjusted for age, sex, race, smoking status, systolic blood pressure, LDL-C, HDL-C, and diabetes

Time-invariant weight Time-varying weight
Variable Estimate (x10°) SE(x10%) p-value  Estimate (x10°) SE (x10%) p-value

For the CHD event

CRP2 0.991 0.360 0.006 0.974 0.373 0.009
CRP3 1.770 0.464 <0.001 1.693 0.460 <0.001
CRP2*(LDL-C < 130) —1.021 0.427 0.017 —1.038 0.443 0.019
CRP3*(LDL-C < 130) —1.204 0.511 0.019 —1.147 0.504 0.023
For the stroke event

CRP2 —0.327 0.150 0.029 —0.274 0.153 0.073
CRP3 —0.409 0.159 0.010 —0.331 0.159 0.040
CRP2*(LDL-C < 130) 0.243 0.249 0.329 0.216 0.259 0.405
CRP3*(LDL-C < 130) 0.170 0.252 0.501 0.141 0.254 0.578
CRP2*(t >1069) 0.255 0.121 0.035 0.247 0.118 0.035
CRP3*(t >1069) 0.603 0.120 < 0.001 0.576 0.110 <0.001

The results using time-invariant weight show that, after adjusting for age, sex, race, smoking status,
systolic blood pressure, LDL-C, HDL-C, and diabetes, subjects in both the middle and high hs-CRP groups
with the elevated LDL-C level were significantly associated with increased risks of CHD compared with
those in the low hs-CRP group (p-values < 0.01). Without the elevated LDL-C level, the effect of the high
hs-CRP group was marginal (p-value = 0.053). The difference in the risk of CHD comparing the high with
the low hs-CRP group was estimated to be 5.66 x 10~ per person-day or 2.07 per 1000 person-years. The
middle hs-CRP level was not associated with an elevated CHD risk (p-value = 0.919). For those without
the elevated LDL-C level, neither the high nor middle hs-CRP level showed a statistically significant effect
on the risk of stroke.

We further conducted Wald-type tests to check whether a common effect of hs-CRP on the risks of
CHD and stroke could be assumed. The test results show that the effects of high hs-CRP group were
significantly different for CHD and stroke with the elevated LDL-C level (x2 = 25.952, p-value < 0.001)
and without the elevated LDL-C level (x> = 10.503, p-value = 0.001). Similarly, the effects of middle hs-
CRP group were significantly different for CHD and stroke with the elevated LDL-C level (2 = 16.293,
p-value < 0.001) and without the elevated LDL-C level (x? = 12.742, p-value < 0.001). Therefore, we
conclude that the hs-CRP level has a different effect for the risks of CHD and of stroke. The results based
on time-varying weights were similar.

To check the marginal additive hazards assumption under model (2.1), we adapted the methods
in Spiekerman and Lin (1996) to case-cohort data with multiple disease outcomes by incorporating
weights in the score-type process, a cumulative sum of martingale residuals with the following form:
Yoy Z,le wiZ, ikMik(B, t). Figure S1 in the supplementary material (available at Biostatistics online)
provides graphical representations of the observed score-type processes versus 20 simulated score-type
processes for the hs-CRP variables. From the plots, the marginal additive hazards assumption seems
reasonable.

7. CONCLUDING REMARKS

We have proposed methods of fitting marginal additive hazard regression models for case-cohort stud-
ies with multiple disease outcomes. Risk differences can provide information valuable to public health
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intervention. Specifically, risk differences can provide information regarding the reduction in the number
of cases developing a certain disease due to a decrease in a particular exposure. One advantage of the addi-
tive hazards model is that risk differences between different exposure groups can be readily derived from
the coefficients in the additive hazards models. For the ARIC study, our results indicate that for individuals
without an elevated LDL-C and with the same age, gender, and race, a reduction of 3.0 CHD cases per
1000 person-years is expected if the hs-CRP level reduces from high to low. This information cannot be
casily obtained from the Cox model.

One advantage for the case-cohort design is that the same random subcohort can be used for studying
different diseases. By joint modeling different diseases, we are able to compare the effect of exposure on
the different diseases. For the ARIC study, without the elevated LDL-C, our results indicate that the effect
of high hs-CRP on CHD is significantly larger than that on stroke (p-value =0.001). This information
cannot be obtained if we follow the usual practice that analyzes the two case-cohort studies separately.

We considered two types of weight functions: time-invariant and time-varying. In general, the latter
requires more time and effort than the former since the form of the asymptotic variance for the former is
more complicated than that for the latter, and weight functions for the latter need to be enumerated at each
failure time. More importantly, time-varying weight function requires additional information on failure
and censoring times of the entire cohort members, which are not always available. For Cox proportional
hazards models, the time-varying weighted estimator is known to be more efficient when failure times
are independent (Barlow, 1994; Borgan and others, 2000). However, based on our simulation results, no
obvious gain in efficiency is guaranteed for multivariate failure times. For these reasons, we recommend
using the time-invariant weighted estimator.

Extensions of the proposed weight function w;, (¢) in several directions would be worthwhile to consider.
One such extension, as pointed out by the Associate Editor, is to modify w;;(¢) so that it can utilize some
available information which are not incorporated in the current form of w;;(#), such as sampled cases for
other diseases. Another extension of the proposed weight function is to incorporate some always observed
auxiliary covariates when estimating the sampling probability in the weight function. For univariate failure
time data from case-cohort studies, this type of inverse probability-weighted (IPW) estimators using avail-
able auxiliary covariates was considered by several authors (Kulich and Lin, 2004; Breslow and Wellner,
2007; Breslow and others, 2009). Similar ideas could be adapted to analyzing case-cohort data with mul-
tiple disease outcomes. For example, the doubly weighted estimator proposed by Kulich and Lin (2004)
includes the time-varying weighted estimator we considered in this paper as a special case. Specifically, the
doubly weighted estimator considers p-dimensional arbitrary random processes in place of at-risk indica-
tor processes. Thus, the implementation of this type of IPW estimator involves the choice and estimation of
the p-dimensional random processes in the weight. Following the arguments employed by Kulich and Lin
(2004, Section 4) or Breslow and others (2009, p. 40) with some modifications to multiple disease out-
comes, and to additive hazards models, one could possibly implement the IPW estimator, which is expected
to improve efficiency further.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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