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  ApoA-IV (Mr = 46 kDa) is a major component of HDL 
and chylomicrons in rats ( 1 ). Similar to apoA-I and apoE, 
apoA-IV contains repeated units mainly of 22 residues 
long that are organized in amphipathic  � -helices ( 2, 3 ) 
and have been implicated in lipid binding. In humans and 
the majority of animal species, apoA-IV is synthesized pri-
marily by the intestine and, to a lesser extent, by the liver, 
and is found in plasma, the lymph chylomicrons, and the 
cerebrospinal fl uid ( 3–5 ). An exception is the rabbit, 
where both the liver and the intestine are major sites of 
apoA-IV mRNA synthesis ( 6 ). Following synthesis in the 
intestine, apoA-IV is incorporated into chylomicrons, se-
creted into the lymph, and reaches the plasma ( 4 ). Hydro-
lysis of the triglycerides of chylomicrons by lipoprotein 
lipase in plasma causes dissociation of apoA-IV and its re-
distribution in either in HDL or the d>1.21 g/ml fraction 
( 4 ). ApoA-IV mRNA and protein synthesis in mammals is 
controlled by hormonal ( 7 ) and nutritional factors ( 8 ). 
Plasma apoA-IV levels increase following a fat meal ( 4, 9 ) 
and under conditions of hypertriglyceridemia ( 10 ). In rats 
under fasting conditions, 50% of plasma apoA-IV is pro-
duced by the intestine ( 11 ). In humans, apoA-IV has two 
common alleles, designated apoA-IV-1 and apoA-IV-2, that 
result from a Q360H substitution, and a few rare alleles 
that follow Mendelian inheritance and may affect plasma 
lipid levels ( 12 ). 

 The in vitro and in vivo properties of apoA-IV have been 
investigated extensively, and various potential physiologi-
cal functions have been suggested. These include a role in 
lipid absorption, secretion, metabolism ( 4 ), and food up-
take ( 13–15 ), and protective functions against infl amma-
tory diseases ( 16, 17 ) and atherosclerosis ( 17–19 ). ApoA-IV 
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of lipopolysaccharide in  to these human apoA-IV-trans-
genic mice in an apoE-defi cient background resulted in 
fewer atherosclerotic lesions than in apoE-defi cient mice. 
The protective effect of apoA-IV in this case was attributed 
to its antioxidant properties ( 17 ) and the stronger Th1 
response of the lymphocytes in the presence of apoA-IV. 
Lymphocytes isolated from human apoA-IV × apoE  � / �   � 
transgenic mice produced lower levels of proinfl ammatory 
cytokines as compared with apoE  � / �   mice ( 29 ). The anti-
infl ammatory properties of apoA-IV were also manifested 
by intraperitoneal injection of the recombinant protein 
in WT and apoA-IV-defi cient mice. This treatment de-
layed the onset and reduced the severity of the infl amma-
tion associated with experimentally induced colitis in rats 
( 16 ). Reduced atherosclerosis was also observed in trans-
genic mice overexpressing the apoA-IV gene in the liver 
of either normal or apoE-defi cient mice under the control 
of the hepatic control region of the apoE/apoC-I gene 
cluster ( 18 ). 

 The origin and the metabolic fate and the physiological 
signifi cance of apoA-IV that resides on the HDL particle 
are not fully understood. Here we show that apoA-IV par-
ticipates in the biogenesis of apoA-IV-containing HDL 
(HDL-A-IV) particles using the same pathway that is uti-
lized by apoA-I and apoE. The HDL-A-IV particles formed 
may explain, at least partially, the previously reported anti-
infl ammatory and atheroprotective functions of apoA-IV. 

 EXPERIMENTAL PROCEDURES 

 Materials 
 Materials not mentioned in the experimental procedures have 

been obtained from sources described previously ( 39 ). 

 Methods 
 Generation of an adenovirus expressing the human apoA-IV.   The 

apoA-IV cDNA was generated by RT-PCR of human mRNA using 
5 ′  and 3 ′  primers contained restriction sites for Bgl-II and EcoRV, 
respectively. The apoA-IV cDNA was digested with Bgl-II and 
EcoRV and cloned into the corresponding sites of the pAdTrack-
CMV vector. The recombinant adenoviruses were constructed 
and purifi ed using the Ad-Easy-1 system where the adenovirus 
construct is generated in bacteria BJ-5183 (Agilent Technologies; 
Santa Clara, CA) as described ( 39 ). Correct clones were propa-
gated in RecA DH5 �  cells (Invitrogen; Carlsbad, CA). The re-
combinant adenoviral vectors were linearized with PacI and used 
to transfect 911 cells. Following large-scale infection of HEK293 
cell cultures with virus-containing cell lysates, the recombinant 
adenoviruses were purifi ed by two consecutive Caesium chloride   
ultracentrifugation steps, dialyzed, and titrated ( 39 ). 

 Cholesterol effl ux measurements.   ATP-binding cassette trans-
porter (ABC) A1-mediated cholesterol effl ux measurements by 
lipid-free apoA-IV using HEK293-EBNA cells was performed as 
described ( 39 ). Net effl ux was calculated by subtracting the 
effl ux obtained in the untransfected cells from that of the 
ABCA1-transfected cells ( 40 ). Scavenger receptor BI (SR-BI)-
mediated cholesterol effl ux by reconstituted HDL-A-IV (rHDL-
A-IV) using CHO ldlA[mSR-BI] cells was performed as described 
( 39, 41, 42 ). Net effl ux was calculated by subtracting the effl ux 

has structural ( 2, 3 ) and several functional similarities with 
apoA-I and apoE. Thus lipid-free apoA-IV promotes cho-
lesterol effl ux from cells ( 20–22 ), and rHDL-A-IV particles 
activate LCAT ( 23 ). ApoA-IV was also shown to bind satu-
rably to cell surface sites ( 21, 24 ), as well as to hepatic cell 
membranes ( 25 ), to potentiate the apoCII-mediated acti-
vation of lipoprotein lipase ( 26 ) and the activity of choles-
teryl ester transfer protein ( 27 ). Furthermore, apoA-IV 
was reported to have anti-oxidant ( 28 ) and anti-infl amma-
tory ( 16, 29 ) properties, and similarly to apoA-I ( 30 ), and 
apoE ( 31 ), may also play some role in the development 
of Alzheimer’s disease ( 32 ). A difference between apoA-IV 
and apoA-I or apoE exists on the contribution of the 
C-terminal domain of these proteins to the solubilization 
of dimyristoyl- L - � -phosphatidyl-choline (DMPC) phospho-
lipids ( 33, 34 ). In the case of apoA-I and apoE, deletion of 
the C-terminal domain drastically reduced the ability of 
the truncated forms to solubilize DMPC phospholipids 
and to associate with preformed HDL ( 35, 36 ). In the case 
of apoA-IV, deletion of the 44 C-terminal residues in-
creased its ability to solubilize DMPC phospholipids ( 34 ). 
Subsequent studies showed that deletion of the C-terminal 
residues 333–343 strongly increased the rate of association 
of truncated apoA-IV with DMPC phospholipids, and this 
enhancement required residues 11–20 of the truncated 
apoA-IV ( 37 ). The reduced capacity of the full-length 
apoA-IV to associate with phospholipids was attributed to 
intramolecular interactions of C- and N-terminal regions 
that contain residues F334 and F335, and W12 and F15, re-
spectively ( 33 ). In cell culture studies, lipid secretion and 
the size of secreted lipoprotein particles increased dramat-
ically with the deletion of the 344–354 region that contains 
three EQQQ motifs and one EQVQ motif in human 
apoA-IV ( 38 ). Increased lipid secretion was also observed in 
newborn swine, where apoA-IV lacks the EQQQ sequences, 
suggesting that these sequences modulate chylomicron 
packaging and secretion ( 38 ). 

 Studies with transgenic mice showed that overexpres-
sion of apoA-IV in the intestine did not affect the intestinal 
absorption of cholesterol and triglycerides and fat-soluble 
vitamins or the clearance of chylomicrons. It also did not 
cause weight gain and did not alter feeding behavior in 
transgenic mice as compared with control mice ( 15 ). Simi-
lar conclusions regarding lipid absorption and weight gain 
were reached by the study of apoA-IV-defi cient mice ( 14 ). 
Previous studies had implicated apoA-IV as a satiety factor 
( 13 ). The transgenic mice expressing the mouse apoA-IV 
gene mostly in the intestine had reduced levels of athero-
sclerotic lesions in response to atherogenic diets ( 19 ). The 
lipid profi les of these mice were similar, but not identical 
to those of the control wild-type (WT) mice ( 15 ). Plasma 
isolated from the mouse apoA-IV-transgenic mice had in-
creased endogenous cholesterol esterifi cation rates, and 
their HDL, isolated following fat feeding, promoted more 
effi ciently cholesterol effl ux from cholesterol-loaded human 
monocytes, as compared with HDL obtained from WT mice 
( 19 ). Reduced atherosclerotic lesions were also observed 
in transgenic mice expressing human apoA-IV mainly in 
the intestine in an apoE-defi cient background. Injection 
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a limited-cooperativity nonreversible transition (supple-
mentary Table I and  Fig. II A,B ). Chemical denaturation 
of apoA-IV revealed single-step transition with limited co-
operativity that lacked the intermediate described for the 
thermal denaturation of apoE ( 49 ). Chemical denatur-
ation of rHDL-A-IV showed a highly noncooperative tran-
sition (supplementary  Fig. II C,D ). Overall, biophysical 
analysis of recombinant apoA-IV suggests extensive con-
formational changes upon lipid binding similar to those 
described for other apolipoproteins. Furthermore, this anal-
ysis suggests that although apoA-IV has structural and ther-
modynamic properties similar to those of apoA-I and apoE, 
it still retains a unique structural and thermodynamic pro-
fi le that may be consistent with distinct functional roles. 

 Effect of apoA-IV on lipid and lipoprotein profi les and 
the generation of HDL-A-IV 

 The changes in the lipid and lipoprotein profi les as 
a result of hepatic expression of apoA-IV were studied in 

obtained in the parent IdlA CHO cells from that of ldlA[mSR-BI] 
CHO cells. 

 Animal studies, plasma lipids, fractionation of plasma, two-
dimensional gel electrophoresis, electron microscopy, and apoA-IV 
mRNA analyses.   ApoA-I  � / �   (ApoA1 tm1Unc ) C57BL/6J mice ( 43 ) 
were purchased from Jackson Laboratories (Bar Harbor, ME). 
Mice defi cient for apoA-I and apoE were a gift of Dr. Fayanne 
Thorngate and Dr. David Williams ( 44 ). Mice defi cient in ABCA1 
( 45 ) (purchased from Jackson Laboratories) were provided by 
Dr. Mike Filtzerald. Mice defi cient for LCAT were a gift of Dr. 
Santa-Marina Fojo ( 46 ). The mice were maintained on a 12 h 
light/dark cycle and standard rodent chow. All procedures per-
formed on the mice were in accordance with National Institutes 
of Health guidelines and following an approved IACUC proto-
col. Mice, 6–8 weeks of age, were injected via the tail vein with 0.5 
to 1.5 × 10 9  pfu of recombinant adenovirus per animal. Four days 
postinjection, following a 4 h fast, blood was drawn and the livers 
were collected for further analyses. 

 The fractionation of plasma by fast-protein liquid chromatog-
raphy (FPLC) and density gradient ultracentrifugation, the two-
dimensional gel electrophoresis of plasma, the cholesterol and 
triglyceride measurements, the electron microscopy (EM) of the 
HDL fractions, and the apoA-IV mRNA quantifi cation were per-
formed as described ( 47 ). For details, please see the Supplemen-
tary Methods. 

 Statistics 
 Statistical analyses were performed by two-tailed Student’s- t  test 

with equal variance. 

 RESULTS 

 In vitro properties of apoA-IV 
 We have generated a recombinant adenovirus express-

ing apoA-IV and used it to study its in vivo and in vitro 
properties. 

 ApoA-IV secreted in the culture medium of adenovirus-
infected HTB-13 grown on a large scale was purifi ed and 
used to study its cholesterol effl ux potential and its physi-
cochemical properties. As shown in    Fig. 1A  , the ABCA1-
mediated cholesterol effl ux to lipid-free apoA-IV, which 
represents the fi rst step in the biogenesis of HDL, was compa-
rable to that of lipid-free apoA-I and apoE. Similarly the SR-
BI-mediated cholesterol effl ux of rHDL-A-IV was comparable 
to those of rHDL, containing apoA-I or apoE ( Fig. 1B ). 

 Recombinant ApoA-IV had structural and thermody-
namic properties that were reminiscent of apoA-I and 
apoE. Circular dichroism measurements revealed a signifi -
cant helical content of 41.4%, albeit reduced compared 
with apoA-I and apoE ( 48, 49 ). Upon mixing with egg yolk 
phosphatidyl-choline, recombinant apoA-IV readily formed 
HDL-like particles with increased helical content of 46.7% 
(supplementary  Fig. I A,B  and Table I). Thermal denatur-
ation of apoA-IV revealed a single limited-cooperativity 
transition with a T m  of 45.6°C (supplementary  Fig. II A ). 
The thermal denaturation of apoA-IV was largely revers-
ible, inasmuch as the protein recovered more than 95% 
of its secondary structure after cooling (supplementary 
 Fig. II A,B ). rHDL-A-IV particles were signifi cantly more sta-
ble versus thermal denaturation (T m  = 61.4°C) and exhibited 

  Fig.   1.  A: ABCA1-mediated cholesterol effl ux from HEK293 
EBNA-T cells transfected with an ABCA1-expressing plasmid using 
human apoA-I, apoE, and apoA-IV as cholesterol acceptors. Cho-
lesterol effl ux was determined as described in Experimental Proce-
dures. The concentration of the acceptor apoA-IV in the medium 
was 1  � M or 3  � M and the concentration of apoA-I and apoE was 
1  � M as indicated. The net effl ux was calculated by subtracting the 
effl ux obtained in the untransfected HEK293 EBNA-T cells from 
that of ABCA1-transfected cells. The difference in the net effl ux pro-
moted by apoA-IV, apoA-I, or apoE3 was not statistically signifi cant. 
B: SR-BI-mediated cholesterol effl ux from IdlA[mSR-BI] CHO cell 
line expressing the murine SR-BI ( 42 ), using rHDL-containing human 
apoA-I, apoE3, and apoA-IV as cholesterol acceptors. The concen-
tration of each acceptor apolipoprotein bound to rHDL in the me-
dium was 1  � M. The net effl ux was calculated by subtracting the effl ux 
obtained in the untransfected IdlA CHO cells from that of IdlA
[mSR-BI] CHO cells. Values are the means ± SE from three experiments 
performed in duplicate. The difference in the net effl ux promoted by 
rHDL-A-IV, rHDL-A-I, and rHDL-E3 was not statistically signifi cant.   
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particles (Fig. 4J). The fi ndings shown in Fig. 4A, B, E, F, I, 
and J suggest strongly that apoA-IV participates in the gen-
eration of HDL-A-IV particles. The fi ndings shown in  Fig. 
3A, B  and Fig. 4A, B show for the fi rst time that in the ab-
sence of both apoE and apoA-I, apoA-IV has increased 
affi nity for triglyceride-rich lipoproteins and that this 
increased affinity is associated with the induction of 
hypertriglyceridemia. 

 ABCA1 and LCAT are required for the biogenesis 
of HDL-A-IV 

 The next task was to determine the role of ABCA1 and 
LCAT in the biogenesis of HDL-A-IV. Adenovirus-medi-
ated gene transfer of apoA-IV in ABCA1  � / �   mice failed to 
form HDL particles. The density gradient ultracentrifuga-
tion did not show the presence of apoA-IV in the HDL re-
gion (Fig. 4C), and the EM analysis of the HDL fractions, 
combined with the two-dimensional gel electrophoresis of 
plasma, failed to demonstrate formation of HDL particles 
(Fig. 4G, K). 

 A similar picture emerged from adenovirus-mediated 
gene transfer of apoA-IV in LCAT  � / �   mice. Following 
gene transfer, apoA-IV was not present in the HDL frac-
tions (Fig. 4D). HDL particles were not detected by EM 
(Fig. 4H), and the two-dimensional gel electrophoresis of 
the plasma showed the formation of two types of particles 
with pre- � -like mobility (Fig. 4L). The relationship of these 
particles with  � -HDL particles formed in apoA-I  � / �   mice 
expressing apoA-IV was established by mixing experiments 
(Fig. 4M). 

 The role of LCAT in the biogenesis of apoA-IV-contain-
ing HDL was also explored by coexpression of apoA-IV 
and LCAT in apoA-I  � / �   mice. This treatment increased 
the plasma HDL cholesterol levels as determined by FPLC 

different mouse models by adenovirus-mediated gene 
transfer 4 days postinfection. Gene transfer of apoA-IV in 
apoA-I  � / �   mice did not signifi cantly alter total plasma lipid 
levels or the cholesterol and triglyceride FPLC profi les 
 (  Fig. 2A, B  ;   Fig. 3A, B  , , and supplementary Table II). The 
distribution of apoA-IV to different lipoprotein fractions 
was determined by density gradient ultracentrifugation of 
plasma followed by SDS-PAGE of the resulting fractions. 
This analysis showed that apoA-IV was distributed predom-
inantly to HDL3 and, to a lesser extent, to the HDL2 fraction 
 ( Fig. 4A ). EM of the HDL fractions showed that hepatic 
expression of apoA-IV promoted the formation of spheri-
cal particles (Fig. 4E). Two-dimensional gel electrophore-
sis of plasma showed that apoA-IV generated predominantly 
 � -HDL particles with smaller amount of pre- � -like parti-
cles (Fig. 4I). 

 A different picture was obtained by adenovirus mediated 
gene transfer of apoA-IV in apoA-I  � / �   × apoE  � / �   double-
defi cient mice. Hepatic apoA-IV expression in these mice 
increased plasma cholesterol to levels greater than those 
of the uninfected controls and induced hypertriglyceri-
demia ( Fig. 2A, B ). FPLC analysis showed that all the cho-
lesterol and triglycerides were found in the VLDL/IDL 
region ( Fig. 3A, B ). SDS-PAGE analyses of the lipoprotein 
fractions separated by density gradient ultracentrifugation 
of plasma, showed that the observed dyslipidemia was as-
sociated with distribution of the majority (80%) of apoA-IV 
in the VLDL/IDL/LDL region and to a lesser extend to 
the HDL2/HDL3 region (Fig. 4B). The apoA-IV fractions 
that fl oat in the VLDL/IDL/LDL region also contain large 
amounts of apoB-48 (data not shown). EM showed forma-
tion of spherical HDL (Fig. 4F) and two-dimensional gel 
electrophoresis of plasma showed predominantly the for-
mation of  � -HDL and a small amount of pre- � -like HDL 

  Fig.   2.  Changes in the plasma cholesterol (A) and triglyceride 
(B) levels caused by expression of human apoA-IV in different 
mouse models (apoA-I  � / �  , apoA-I  � / �   × apoE  � / �  , ABCA1  � / �  , and 
LCAT  � / �   mice).   

  Fig.   3.  FPLC profi les of total cholesterol (A) and triglycerides 
(B) of apoA-I  � / �   and apoA-I  � / �   × apoE  � / �   mice 4 days post-infection 
with adenoviruses expressing the human apoA-IV as indicated.   
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dissociates from lipoproteins following ultracentrifugation 
of plasma ( 53 ). This raises the question whether apoA-IV-
containing HDL particles originate from the transfer of 
apoA-IV that is displaced from chylomicrons to the surface 
of a preformed HDL molecule that contains apoA-I and in 
some instances other apolipoproteins. An alternative pos-
sibility is that HDL-A-IV particles are synthesized de novo 
by the liver. 

 Clues pertinent to this question were obtained from 
studies of transgenic mice expressing the apoA-IV gene 
under the control of its natural promoter or a heterolo-
gous hepatic promoter ( 15, 17, 19 ). Transgenic mice car-
rying the apoA-IV gene under the control of the common 
apoA-I/apoCIII/apoA-IV promoter and enhancer ( 54 ) 
express apoA-IV predominantly in the intestine and to a 
lesser extend in the liver ( 15 ). When the plasma of these 
transgenic mice was fractionated by gel fi ltration, the ma-
jority of apoA-IV was distributed in the same HDL frac-
tions where apoA-I was also found ( 15 ). Such localization 
of apoA-IV reinforces the concept that lipid-free apoA-IV 
originating from chylomicrons or secreted by the liver 

 (  Fig. 5A  ). It also promoted the fl otation of apoA-IV in the 
HDL2 and HDL3 region ( Fig. 5B ) and generated spheri-
cal HDL-A-IV particles ( Fig. 5C ). The LCAT treatment 
also increased the concentration of the mouse apoE in the 
HDL2 fraction ( Fig. 5B ). 

 The overall pathway of the biogenesis and the potential 
functions of HDL-A-IV are depicted in  Fig. 5D . 

 DISCUSSION 

 Role of apoA-IV, ABCA1, and LCAT in the biogenesis 
of HDL-A-IV 

 Although the functions of the intestinally delivered 
apoA-IV have been extensively studied during the past 
35 years, there is limited information on the physiological 
signifi cance and the functions of apoA-IV synthesized by 
the liver. Earlier studies showed that when ApoA-IV is puri-
fi ed from plasma by immunoprecipitation, immunoaffi nity, 
gel fi ltration, or nondenaturing gradient gel electrophore-
sis, it is found on the HDL density fraction ( 50–52 ), but it 

  Fig.   4.  Analyses of plasma of apoA-I  � / �  , apoA-I  � / �   × apoE  � / �  , ABCA1  � / �  , and LCAT  � / �   mice infected with 
the adenovirus expressing the human apoA-IV by density gradient ultracentrifugation and SDS-PAGE, EM, 
and two-dimensional gel electrophoresis. A–D: SDS-PAGE analysis of density gradient ultracentrifugation 
fractions. E–H: EM pictures of HDL fractions 6–7 obtained from mice expressing human apoA-IV following 
density gradient ultracentrifugation of plasma, as indicated. The photomicrographs were taken at 75,000× 
magnifi cation and enlarged three times. I–M: Analysis of plasma obtained from mice expressing the human 
apoA-IV following two-dimensional gel electrophoresis and Western blotting. A, E, I: Analyses of apoA-I  � / �   
mice. B, F, J: Analyses of apoA-I  � / �   × apoE  � / �   mice. C, G, K: Analyses of ABCA1  � / �   mice. D, H, L, M: Analyses 
of LCAT  � / �   mice.   
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particles observed in these experiments did not originate 
from apoE, we performed gene transfer experiments in 
apoA-I and apoE double-defi cient mice. These studies also 
showed the formation of spherical HDL particles and 
pre- � -like and  � -migrating HDL particles. These fi ndings 
are consistent with in vivo interactions of lipid-free apoA-IV 
with ABCA1. As shown in  Fig. 1A  and documented in 
previous studies ( 20 ), lipid free apoA-IV promotes ABCA1 
mediated cholesterol effl ux to the same extend as lipid 
free apoA-I and apoE. The functional interactions of lipid-
free apoA-IV with ABCA1 in vivo are expected to lipidate 
apoA-IV and lead to the generation of nascent HDL-A-IV 
particles. These particles may subsequently mature to spheri-
cal HDL-A-IV that can interact functionally with SR-BI. As 
shown in  Fig. 1B , rHDL-A-IV promotes SR-BI mediated 
cholesterol effl ux to similar extend as rHDL-A-I or rHDL-E 
( 41, 57 ). 

 The requirement of ABCA1 and LCAT for the forma-
tion of HDL-A-IV was established by adenovirus-mediated 
gene transfer of apoA-IV in ABCA1- and LCAT-defi cient 
mice, respectively. In these experiments, as expected, defi -
ciency in ABCA1 prevented the formation of nascent or 
mature HDL-A-IV particles. The absence of LCAT also ap-
pears to prevent the formation of nascent or mature HDL-
A-IV particles. It is possible that in the absence of LCAT, 
nascent HDL-A-IV particles formed by initial interactions 

may contribute in the de novo synthesis of HDL-A-IV 
particles. 

 We have shown previously that de novo synthesis of 
HDL particles containing apoA-I or apoE is initiated by 
interactions of the lipid-poor apolipoproteins with the 
ABCA1 lipid transporter. These functional interactions 
catalyze the transfer of phospholipids and subsequently 
cholesterol from intracellular membrane pools to lipid-
free apoA-I or apoE leading to the formation of minimally 
lipidated particles which are gradually converted to discoi-
dal particles ( 39, 47, 55, 56 ). Subsequent esterifi cation of 
the cholesterol of the nascent pre- �  and discoidal particles 
by LCAT generates the spherical HDL particles present in 
the plasma that can be visualized by EM ( 55, 56 ). In the 
present study the ability of apoA-IV to promote de novo 
formation of HDL-A-IV particles was established by adeno-
virus mediated gene transfer in four different mouse mod-
els. To ensure that pro-infl ammatory conditions resulting 
from adenovirus over expression were not reached, we 
monitored the plasma transamimase levels during the ex-
periments. Gene transfer of apoA-IV in apoA-I  � / �   mice 
showed that apoA-IV expressed in the liver was distributed 
in the HDL fraction of plasma. EM showed the presence of 
spherical particles and two-dimensional gel electrophore-
sis showed  � -migrating HDL particles and pre- � -like HDL 
particles. To exclude the possibility that the spherical HDL 

  Fig.   5.  Analysis of plasma from apoA-I  � / �   mice coinfected with 10 9  pfu adenovirus expressing human 
apoA-IV and 5 × 10 8  pfu adenovirus expressing human LCAT. A: FPLC profi les. B: SDS-PAGE of the fractions 
isolated by density gradient gel electrophoresis. C: EM analysis of the HDL2 fractions shown in B. D: Sche-
matic representation of the pathway of biogenesis and the putative benefi cial functions of HDL-A-IV.   
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