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to arterial structure and function. The inverse correlation 
between plasma HDL cholesterol levels and CVD is gener-
ally assumed to be an indication of the atheroprotective 
activity of HDL ( 1 ). An important emerging concept in this 
fi eld is that HDL quality and function are more important 
than its circulating concentration for the antiatheroscle-
rotic activity, as suggested by observational studies ( 2 ) and 
pharmacological HDL modulation attempts ( 3 ). However, 
the importance of HDL functionality has been assessed 
only in a case-control setting ( 4 ) and further investigations 
are needed. 

 The ability of serum HDL to promote cholesterol effl ux 
from cells is thought to play a key role in HDL atheropro-
tection ( 5 ). This function, called cholesterol effl ux capacity 
(CEC), measured through standardized in vitro techniques, 
has been recently demonstrated to be inversely related to 
intima-media thickness (IMT), an index of arterial struc-
tural changes in subclinical atherosclerosis, and coronary 
artery disease, independently of serum HDL cholesterol 
level ( 4 ). Moreover, hypoalphalipoproteinemic subjects 
with the apolipoprotein A-I (apoA-I) Milano  mutation or leci-
thin cholesterol acyltransferase defi ciency, who are not 
always at increased cardiovascular risk ( 6, 7 ), have an effi -
cient serum CEC despite very low total HDL levels ( 8, 9 ). 
These observations are consistent with the notion of a spe-
cifi c ability of HDL, depending on its composition, to in-
teract with plasma membrane receptors or transporters 
involved in cholesterol handling ( 10–12 ). Among these, 
ABCA1 is particularly relevant for macrophage cholesterol 
effl ux because it promotes plasma membrane cholesterol 
availability for HDL and has been suggested to play a major 
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 The PWV, the vessel vasodilative function ( 23 ), and en-
dothelial function ( 24 ) are interrelated through a com-
plex network of cellular and biochemical factors, including 
PGI-2 and NO ( 13 ). 

 Because HDL function determination could be a useful 
tool to better defi ne vessel health and preclinical vascular 
risk, the aim of this study was to evaluate the relationship 
between serum CEC, as a metabolic parameter refl ecting 
HDL function, and PWV, as an index of arterial stiffness, 
in a population of healthy subjects in the absence of phar-
macological treatment. The inverse correlation that we found 
between ABCA1-mediated CEC and PWV in a healthy pop-
ulation provides insights into the mechanisms of early 
atherosclerotic process and HDL atheroprotection. 

 MATERIALS AND METHODS 

 Study design 
 Healthy subjects were selected among those enrolled in the 

Brisighella Heart Study (BHS) ( 25 ). The general protocol of the 
BHS and of its substudies have been approved by the Ethical 
Committee of the University of Bologna and conform to the prin-
ciples outlined in the Helsinki Declaration. Written informed 
consent was obtained from all study participants. 

 The BHS is a prospective, population-based, longitudinal, epi-
demiological investigation started in 1972 and involving ran-
domly selected subjects, aged 14 to 84 years and free of CVD at 
enrolment, all resident in the rural town of Brisighella, an area 
characterized by life-style homogeneity and a very low migration 
rate from other countries ( 26 ). Participants were clinically evalu-
ated at baseline and every 4 years thereafter by extensively assess-
ing clinical and laboratory profi les according to a standardized 
protocol that has been described in detail elsewhere ( 27, 28 ). 

 Subjects 
 The fi nal enrolled population sample consisted of 167 subjects 

(54 male and 113 female) who were nonsmokers; nondiabetics; 
untreated with antihypertensive, antihyperlipidaemic, or antidi-
abetic drugs; and free from echographically detectable athero-
sclerotic plaques (  Table 1  ).  Beyond the standard procedures 
enlisted in the BHS protocol, these subjects underwent serum 
cholesterol effl ux capacity determination and carotid-femoral 
PWV measurement. 

role in cardioprotection ( 11 ). The interaction between 
HDL and ABCA1 is followed by the activation of distinct 
intracellular signaling pathways in macrophages and in 
endothelial cells, resulting in preservation of vessel health 
( 13 ). Isolated aortic endothelial cells from transgenic mice 
overexpressing hABCA1 show enhanced cholesterol effl ux 
and elevated levels of eNOS mRNA ( 14 ). Moreover, a 
more recent study demonstrated that binding of apoA-I to 
ABCA1 increases prostaglandin I-2 (PGI-2) secretion in 
endothelial cells, resulting in atheroprotection through 
vasodilation as well as the inhibition of platelet aggrega-
tion and monocyte adhesion ( 13, 15 ). 

 Pulse wave velocity (PWV), the propagation speed of 
the pulse pressure wave, is one of the major determinants 
of pulse pressure and is widely used as an index of arterial 
stiffness. Arterial stiffness is determined by several structural 
and functional factors, including the cross-sectional ar-
rangement of cells and interstitial components (particularly 
collagen and elastin) in the vessel wall, the characteristics 
and number of smooth muscle cells, endothelium-mediated 
vasodilation, hormones, and electrolyte balance. The cor-
relation between arterial stiffness and end-organ damage 
in cardiovascular diseases is widely accepted on the basis of 
clinical studies and pathophysiology mechanisms ( 16, 17 ). 
In particular, PWV has been demonstrated to be a predic-
tor for adverse cardiovascular events in hypertension and 
CVD in many patient populations ( 18 ) and has been indi-
cated as a useful diagnostic tool for increased cardiovascu-
lar risk by international guidelines ( 19, 20 ). The relevance 
of PWV derives not only from the fact that it refl ects the 
structure of elastic arteries (i.e., the composition and orga-
nization of vessel wall) but also from its involvement in the 
evolution of heart and vessel function in time. In fact, if 
PWV increases, the backward pressure wave refl ections re-
turn from the distal arterial compartment earlier than 
normal, during systole instead of diastole, increasing ven-
tricular and aortic systolic pressure and decreasing aortic 
pressure during diastole. These changes augment left ven-
tricular afterload and myocardial oxygen demand, reduce 
coronary perfusion, and cause mismatch between ventri-
cle emptying and arterial pulse wave transmission, leading 
to ventricular hypertrophy ( 21, 22 ). 

 TABLE 1. Mean and SD of age and of anthropometric and metabolic parameters 
of the healthy population studied 

Variable Mean SD Variable Mean SD

Age (years) 55.27 11.45 TC (mg/dl) 205.68 30.72
BMI (kg/m 2 ) 25.51 4.75 TG (mg/dl) 88.51 40.00
Waist C. (cm) 87.80 12.74 HDL-C (mg/dl) 51.38 11.15
Hip C. (cm) 95.86 11.39 LDL-C (mg/dl) 136.60 27.16
Waist/hip ratio 0.92 0.08 ApoB (mg/dl) 96.23 23.36
SBP (mm Hg) 132.82 17.20 ApoA1 (mg/dl) 164.66 33.04
DBP (mm Hg) 79.15 8.29 Lp(a) (mg/dl) 8.03* 14.09*
PP (mm Hg) 53.66 14.23 FPG (mg/dl) 97.11 10.20
MAP (mm Hg) 97.04 9.97 SUA (mg/dl) 4.76 1.29
HR (bpm) 63.82 10.59 Creatinine (mg/dl) 0.89 0.15

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-C, HDL cholesterol; 
Hip C, hip circumference; HR, heart rate; LDL-C, LDL cholesterol; Lp(a), lipoprotein(a); MAP, mean arterial 
pressure; PP, pulse pressure; SBP, systolic blood pressure; SUA, serum uric acid; TC, total cholesterol; TG, 
triglycerides; Waist C, waist circumference.

* Lp(a) levels are expressed as median (interquartile range) because of their asymmetric distribution.
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of variation of PWV measurements with PulsePen device was 
5.7% ( 37 ). 

 Statistical analysis 
 Statistical analyses were performed with STATA 11.0, Version 

for Windows. Mean and standard deviation were used to describe 
the studied variables except for lipoprotein(a), which was sum-
marized by means of median and interquartile range due to its 
natural asymmetric distribution. A multiple linear regression 
analysis with nested design was then performed to investigate the 
relationship between PWV and CEC. A nested design allowed us 
to assess the effect of each variable and potential confounder and 
to evaluate the improvement in model fi t produced by the intro-
duction of such variable (or set of variables). This latter statistical 
element informs how well the model predicts the outcome. All 
the variables included in the models are continuous. Because age 
has a non-normal distribution, as emerged from application of 
the Shapiro-Wilk test for normality, all the models were estimated 
with Huber-White sandwich robust estimator of standard errors, 
which limits the effects of non-normality of explanatory variables. 
In the nested design, model 1 estimates the effect of individual 
characteristics (age and sex) on PWV, model 2 checks for the in-
fl uence of cardio-circulatory risk factors (body mass index, mean 
arterial pressure, LDL-cholesterol, fasting plasma glucose), and 
models 3 and 4 assess, respectively, the effect of HDL-C and 
ABCA1 once controlled for the previous variables. A further 

 CEC 
 We quantifi ed serum CEC by using a validated ex vivo system 

that involves incubation of macrophages with whole serum from 
the study participants ( 4, 8, 9 ). Effl ux studies were performed 
using macrophages labeled with [1,2- 3 H] cholesterol in the pres-
ence of an ACAT inhibitor (Sandoz 58035) used at 2  � g/ml. 
Aqueous diffusion-dependent process was evaluated in J774 mu-
rine macrophages, which, under basal conditions, express low 
levels of ABCA1, ABCG1, and SR-BI and release membrane cho-
lesterol to extracellular acceptors mainly by aqueous diffusion 
( 4, 29 ). Stimulation of J774 murine macrophages with cAMP (0.3 
mM) for 18 h up-regulates the ABCA1 protein ( 30, 31 ). In such 
conditions, total release of cholesterol occurs mainly by ABCA1 
and aqueous diffusion ( 4, 32 ). ABCA1-mediated CEC was calcu-
lated as the difference in effl ux between ABCA1 expressing J774 
and J774 in basal conditions ( 33 ). The effl ux was promoted for 
4 h to 2% (v/v) serum samples. CEC was expressed as a percent-
age of the radioactivity released to the medium over the total ra-
dioactivity incorporated by cells ( 33 ). Whole serum was used to 
measure ABCA1-mediated CEC because the specifi c acceptor for 
ABCA1 is lipid free or lipid poor apoA-I, which characterizes na-
scent HDL ( 8, 34, 35 ); thus, the presence of apoB lipoprotein 
during the procedure does not affect the fi nal result ( 29 ). 

 To minimize the intra-assay variability, every serum sample was 
run in triplicate, and average values and standard deviations were 
calculated for each percentage of effl ux obtained ( 29 ). cAMP-
induced ABCA1 expression was verifi ed by the increase in effl ux 
to 10  � g/ml apoA-I used as ABCA1 specifi c extracellular accep-
tor ( 31, 32 ). A pool of human sera as reference standard 1 (St1) 
was tested in each assay, and its effl ux capacity was used to nor-
malize the patient sample values from different experiments to 
correct for the interassay variability. A second pool of human sera 
as reference standard 2 (St2) was tested in each assay, and its effl ux 
capacity, after normalization, was the index of the intra-assay vari-
ability ( 32 ). Calculated mean intra- and interassay coeffi cients of 
variation were 5.95% and 9.53%, respectively. 

 To prevent HDL remodeling at room temperature, all serum 
samples were immediately stored at  � 80°C after drawing, and 
the aliquots were defrosted in ice just before use. All sera used in 
the study underwent one cycle of freezing and thawing. 

 Vascular investigations 
 Carotid-femoral PWV was measured using the PulsePen device 

(DiaTecne srl, Milan, Italy), which is a validated, easy-to-use, 
high-fi delity tonometer that has been described in detail previ-
ously ( 36 ). PWV is determined by a single probe at two intervals 
in a highly rapid succession, using the electrocardiogram trace as 
reference: the detector is fi rst positioned at the common carotid 
artery, the central detection site, simultaneously performing elec-
trocardiogram and tonometry, and then on the femoral artery. 
When the difference between heart rate recorded during the ca-
rotid measurement and that recorded during the femoral mea-
surement is  � 10%, the PWV evaluation is repeated (the difference 
in heart rate is indicated in the PulsePen software). The PWV is 
calculated as the distance between the measurement sites divided 
by transit time delay between femoral and carotid pulse wave. 
The distance of the pulse wave transit is the difference between 
the distance from suprasternal notch to femoral point of applica-
tion of the tonometer and the distance from carotid point of 
tonometer application and the suprasternal notch. The time de-
lay is measured between the foot of the femoral artery and ca-
rotid waveforms. The wave foot is defi ned at the end of diastole, 
when the steep rise of the waveform begins. 

 To avoid methodological bias, a single senior investigator per-
formed all of the PWV measurements. The intraobserver coeffi cient 

  Fig.   1.  Correlation between carotid-femoral PWV and ABCA1-
dependent CEC or serum HDL-C. Upper panel: ABCA1, ABCA1-
dependent CEC (%) after a 4 h incubation with 2% individual 
serum. Lower panel: HDL (mg/dl), serum HDL-C.   
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Finally, ABCA1-mediated CEC shows a signifi cant negative 
relationship with PWV. Once controlled for the previous 
factors, a one-unit change in ABCA1 produces a signifi -
cant decrease of 0.179 m/s in PWV (95% CI,  � 0.363 to 
0.006) and a 0.015 increase in adjusted  R  2  with respect to 
model 3. The VIF statistic does not support the hypothetic 
existence of multicollinearity issues (  Table 3  ).  

 DISCUSSION 

 The main fi ndings of this work are that serum ABCA1-
mediated CEC inversely correlates with PWV indepen-
dently of total HDL-C serum concentration and is a strong 
independent predictor of arterial stiffness in a healthy 
population not receiving pharmacological therapy. These 
fi ndings point to the relevance of HDL function in the 
maintenance of vessel health. 

 Our new observation that ABCA1-dependent serum 
CEC is the fi rst strong parameter that follows those well 
known to be predictive of PWV (age, blood pressure, and 
BMI) ( 38, 39 ) is consistent with the idea that functionally 
conserved HDL, infl uencing cholesterol traffi cking in the 
arterial wall, may contribute to limit vessel stiffness. A very 
recent work showed that arterial stiffness, evaluated as 
PWV, correlates with circulating oxidized LDL in healthy 
subjects, pointing to the importance of lipid metabolism 
on this parameter ( 40 ). Our fi ndings support the emerg-
ing concept that HDL-mediated atheroprotection is de-
pendent on its function rather than quantity and, most 
importantly, is relevant in clinically healthy subjects. In-
deed, only ABCA1-dependent serum CEC, an index of HDL 
functionality ( 8 ), and not aqueous diffusion-dependent 
CEC, which refl ects a bidirectional nonspecifi c effl ux with 
variable impact on cellular cholesterol content ( 31 ), is a 
good indicator of arterial compliance in our study. The 

 TABLE 2. Linear regression with nested design. Coeffi cients for the association between cfPWV and other parameters 
in the healthy population studied 

Model 1 Model 2 Model 3 Model 4 Model 5

Coeff. SE  P  value Coeff. SE  P  value Coeff. SE  P  value Coeff. SE  P  value Coeff. SE  P  value

Indiv. characteristics
 Age 0.059 0.008 0.000 0.044 0.008 0.000 0.043 0.008 0.000 0.042 0.008 0.000 0.042 0.008 0.000
 Female (ref. male)  � 0.202 0.201 0.317  � 0.005 0.202 0.980  � 0.036 0.213 0.868  � 0.031 0.213 0.885  � 0.499 0.863 0.564
Risk factors
 BMI 0.052 0.016 0.001 0.055 0.017 0.002 0.052 0.017 0.002 0.051 0.017 0.003
 MAP 0.056 0.009 0.000 0.056 0.009 0.000 0.056 0.009 0.000 0.056 0.009 0.000
 FPG  � 0.009 0.010 0.377  � 0.009 0.010 0.383  � 0.008 0.010 0.419  � 0.008 0.010 0.417
 LDL-C  � 0.004 0.003 0.168  � 0.004 0.003 0.153  � 0.004 0.003 0.244  � 0.004 0.003 0.218
Effl ux parameter
 HDL-C 0.005 0.009 0.525 0.004 0.009 0.677 0.004 0.009 0.663
 ABCA1-CEC  � 0.179 0.083 0.033  � 0.261 0.182 0.154
Interaction Sex × 
  ABCA1

0.129 0.210 0.538

 Constant 4.514 0.584 0.000  � 0.254 1.479 0.864  � 0.529 1.496 0.724 0.152 1.550 0.922 0.955 2.267 0.674
 Observations 167 167 167 167 167
  R  2  adj 0.247 0.426 0.425 0.440 0.439
 Log-likelihood  � 264.5  � 239.2  � 238.9  � 236.5  � 236.3
 LR test ( P  value) <0.001 <0.001 0.475 0.029 0.441

ABCA1-CEC, ABCA1-dependent cholesterol effl ux capacity; BMI, body mass index; FPG, fasting plasma glucose; HDL-C, HDL cholesterol; 
LDL-C, LDL cholesterol; MAP, mean arterial pressure.

model (model 5), including an interaction between ABCA1 and 
sex, was estimated. The improvement in model fi t after the esti-
mation of every model was assessed by means of adjusted  R  2  and 
a likelihood ratio test. Finally, a postestimation analysis was car-
ried out to check for the presence of multicollinearity among 
variables using the variance infl ation factor (VIF) statistic. Multi-
collinearity is a statistical problem that arises when two predictor 
variables are highly correlated and might bias the coeffi cient 
estimates of the variables involved. This statistic indicates the 
existence of multicollinearity for VIF  �  5. All reported  P  values 
are two-tailed, with a  P  value of 0.05 indicating statistical 
signifi cance. 

 RESULTS 

 The baseline characteristics of the study population are 
given in  Table 1 . An inverse correlation between PWV and 
ABCA1-dependent CEC was found ( r  =  � 0.183;  P  = 0.018) 
(  Fig. 1  ).  No correlation was found between PWV and aque-
ous diffusion-dependent CEC ( r  = 0.129;  P  = 0.095). Total 
HDL-C serum levels were not correlated to PWV ( r  = 
 � 0.002;  P  = 0.985) ( Fig. 1 ) or to ABCA1-dependent CEC 
( r  =  � 0.075;  P  = 0.333). 

 In the nested linear regression (  Table 2  ),  all the models 
show a signifi cant improvement in model fi t except mod-
els 3 and 5 (likelihood ratio test returns  P  values of 0.475 
and 0.441, respectively). This means that HDL-C and the 
interaction term do not increase the explanatory power of 
the model. On the other hand, model 4 has the best fi t 
(adjusted  R  2  = 0.440). In this model, as expected, age is the 
only signifi cant individual characteristics, with PWV in-
creasing by 0.042 m/s (95% confi dence interval [CI], 
0.026–0.058) per year of age. Regarding risk factors, BMI 
( �  = 0.052; 95% CI, 0.019–0.085) and mean arterial pres-
sure ( �  = 0.056; 95% CI 0.039–0.074) show a signifi cant 
impact on PWV. All these effects are robust across models. 
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variables that could interfere with PWV, such as smoking 
habit and diabetes, or controlled through a specifi c statis-
tical analysis. The main limitation of this study is the rela-
tively low number of subjects enrolled. This was mainly 
due to the strict defi nition of “healthy subject” that we ap-
plied and to the search for a representative sample of a 
general population cohort. 

 In conclusion, we have shown for the fi rst time that 
ABCA1-dependent serum CEC is inversely related to PWV 
in pharmacologically untreated healthy subjects, indepen-
dently of total HDL-C serum levels, and is a powerful 
predictor of arterial stiffness. This fi nding points to the 
relevance of HDL function in vascular physiology and arte-
rial stiffness prevention.  
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