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Purpose: To evaluate cortical and retinal activity by pattern visual evoked potentials 
(PVEP) in patients with type II diabetes mellitus.
Methods: PVEP was recorded in 40 diabetic patients including 20 subjects with non-
proliferative diabetic retinopathy (NPDR) and 20 others without any retinopathy on 
fundus photography, and compared to 40 age- and sex-matched normal non-diabetic 
controls.
Results: P100 wave latency was significantly longer in diabetic patients as compared 
to normal controls (P<0.001); both diabetic subjects without retinopathy and those with 
NPDR had significantly longer P100 latency than controls (P<0.001 for both comparisons). 
There was significant reduction in N75 (P=0.037) and P100 (P=0.001) amplitudes in 
diabetic subjects. No correlation was observed between VEP amplitude or wave latency, 
and the level of glycemia or duration of diabetes mellitus.
Conclusion: Increased PVEP latency may be a sign of retinal ganglion cell damage which 
takes place before the appearance of the first ophthalmoscopically detectable signs of 
diabetic retinopathy. PVEP may be considered as a method for detecting prediabetic 
retinopathy and has the potential to reduce diabetic complications.
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INTRODUCTION

The prevalence of diabetes mellitus (DM) in 
adult populations is 6.6% worldwide and an 
estimated 438 million people will be affected by 
DM in the year 2030.1 Considering vasculopathy 
and neuropathy associated with DM, it is 
reasonable to expect dysfunction to occur along 
the visual pathway upstream from the retina.2 
Visual deficits in DM appear to result from both 

vascular disease and metabolic abnormalities 
which can affect the retina, optic nerve and 
visual pathways.3 Metabolic abnormalities in 
DM can involve ganglionic and preganglionic 
elements in the entire retina and the macular 
region. In addition, neural conduction may 
be delayed along post-retinal central visual 
pathways.4 Optic neuropathy manifesting as 
optic atrophy due to DM alone is estimated to 
occur in about 0.6% of cases.5 
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Diabetic retinopathy is a common 
complication of DM that affects retinal blood 
vessels. It is the leading cause of new cases 
of legal blindness in Americans aged 20 to 74 
years despite the fact that visual loss due to 
DM may be preventable by glycemic control 
or photocoagulation.6-10 Unfortunately, in many 
cases the patient is asymptomatic until it is too 
late for effective treatment. Growth of new blood 
vessels, known as proliferative retinopathy, 
may lead to blindness through hemorrhage and 
scarring. Deterioration of retinal vasculopathy 
causes loss of blood vessel integrity with fluid 
leakage into the retina leading to maculopathy 
which causes visual impairment and may 
progress to blindness.11

Visual dysfunction in DM is multifactorial 
and depends on predominant pathophysiologic 
factors in various stages of the disease.4 
One of the primary goals of management 
in diabetic patients is to avoid the risk of 
diabetic retinopathy by maintaining blood 
glucose levels close to the normal range.12 
Before the onset of microvascular lesions, the 
neural retina of diabetic eyes undergoes subtle 
functional changes that are not detectable by 
fundus photography.13 Analysis of pattern 
VEP responses may provide early diagnosis of 
such diabetic changes and determine prognosis 
during treatment.11 Pattern VEP (PVEP) can 
detect any defect from the optic nerve to the 
occipital cortex.14 There have been reports from 
Western countries showing alterations in PVEP 
latencies in diabetic patients.15 

The current study aims to investigate 
the ability of PVEP in detecting preclinical 
neurodegenerative changes in patients with 
diabetic retinopathy.

METHODS

The study was conducted on three groups of 
individuals: two groups of diabetic patients 
with and without non-proliferative retinopathy 
(NPDR) consisting of 20 subjects in each 
subgroup, and one group of healthy age- and 
sex-matched controls including 40 subjects. All 
subjects underwent a complete ophthalmological 
examination including measurement of best 

corrected visual acuity, slit lamp biomicroscopy, 
direct and indirect ophthalmoscopy and fundus 
photography after obtaining a complete history 
including duration of diabetes and latest 
fasting blood glucose level in diabetic patients. 
Exclusion criteria consisted of significant ocular 
disorders including proliferative retinopathy 
(PDR), cataract, glaucoma, optic nerve disease, 
macular disease, best corrected visual acuity less 
than 20/20 and amblyopia. 

Diabetic retinopathy was classified by slit 
lamp biomicroscopy with a 90D lens and dilated 
fundus photography which was converted 
to slides for inspection (based on ETDRS 
classification).16 Examinations and testing of 
diabetic and control subjects was performed 
during the same time period. The study protocol 
was approved by the district ethics committee 
of Mashhad University of Medical Sciences and 
written informed consent was obtained from all 
subjects. Subjective visual acuity was measured 
monocularly. All participants underwent 
refraction to ensure an exact optical correction.

The PVEP recording equipment consisted 
of a Roland Reti (Roland Company, ISXEV 60, 
Berlin, Germany) signal averager connected to a 2 
to 8 channel amplifier for storing and summating 
the waves. The stimulus for this study was a 
checkerboard with equal black and white checks, 
15 minutes of arc in size at a viewing distance of 
one meter. Mean screen luminance was 100cd/
m2 with 99% contrast and a full field display. 
The temporal frequency was 1.5 Hz (3 reversals 
per second). Mean luminance of the test room 
was 80cd/m2 and recording conditions were 
kept in accordance with International Society 
of Clinical Electrophysiology of Vision (ISCEV) 
standards. The amplifier band-pass filters 
were set at 1-50Hz. In recording the PVEP, the 
active electrode was positioned one inch above 
the inion (oz), referencing to the center of the 
forehead with a ground electrode on the vertex 
of the head (cz). Inter-electrode impedance was 
maintained below 5 K Ohm in all recordings. 
PVEP was recorded monocularly for each subject. 
In each recording 200 sweeps were averaged. 
All electrophysiological tests were performed 
at the Electrophysiology Laboratory of the 
Optometry Clinic at Mashhad University of 
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Medical Sciences. All tests were performed with 
the subjects wearing best refractive correction.

Data analysis was performed using SPSS 
software version 11.5 (SPSS Inc., Chicago, USA) 
utilizing Spearman’s correlation coefficient, 
t-test, Mann-Whitney test, one-way analysis of 
variances (ANOVA), Kruskal-Wallis test and 
Tukey test. Significance level was set at P<0.05.

RESULTS

Overall 80 patients including 20 diabetic subjects 
with NPDR, 20 individuals without diabetic 
retinopathy, and 40 matched normal controls 
were evaluated. Mean age was 54.8±8.2 years 
in diabetic subjects with NPDR, 51.6±10.7 years 
in diabetics without retinopathy and 51.3±8.5 
years in controls (P=0.113). Fifty percent of 
diabetics with NPDR, 65% of diabetics without 
retinopathy and 60% of controls were female 
(P=0.375).

As detailed in Table 1, there was a 
significant difference between diabetic subjects 
and controls in terms of P100 latency (P<0.001), 

N75 amplitude (P=0.037) and P100 amplitude 
(P=0.001). However, there was no significant 
difference between the two groups regarding 
N75 latency (P=0.77).

One-way ANOVA was used to test significant 
differences between the three groups. Significant 
differences between each paired groups were 
then evaluated by Post Hoc Tukey test (in case of 
data with normal distribution). Kruskal-Wallis 
test was performed to test differences among 
all the three groups. Significant differences 
between each paired group were then evaluated 
by Mann-Whitney test (for data without normal 
distribution). The results are shown in Table 2. 
Differences between diabetics with and without 
retinopathy was statistically significant in 
terms of P100 latency and amplitude and N75 
amplitude (P<0.001). Differences between 
diabetics without retinopathy and controls 
was also significant regarding P100 latency 
(P<0.001). The differences between diabetics 
with retinopathy and controls were significant 
in terms of P100 latency and amplitude and N75 
amplitude (P<0.001).

Without NPDR With NPDR Controls P-value Statistical Test
N75 latency (ms) 83.80±6.88 77.67±11.67 81.55±7.85 0.080 Kruskal-Wallis
N75 amplitude (µv) 10.77±5.34 6.39±2.60 10.24±5.20 <0.001 ANOVA
P100 latency (ms) 117.92±7.69 123.12±6.90 111.65±6.22 <0.001 ANOVA
P100 amplitude (µv) 9.60±6.63 4.56±3.75 9.60±6.02 <0.001 Kruskal-Wallis

Table 2. Mean and standard deviation for N75 and P100 latency and amplitude in the study groups

NPDR, non-proliferative diabetic retinopathy; ms, millisecond; µv, microvolt

Duration of diabetes Fasting blood sugar level
Correlation Coefficient P-value Correlation Coefficient P-value

N75 latency (ms) -0.009 0.933 -0.045 0.692
N75 amplitude (µv) -0.181 0.108 -0.014 0.900
P100latency (ms) 0.085 0.455 -0.050 0.662
P100 amplitude (µv) -0.163 0.150 0.076 0.503

Table 3. Spearman’s test for determining correlation between PVEP parameters and duration of diabetes and fasting 
blood sugar level in diabetic patients

PVEP, pattern visual evoked potentials; ms, millisecond; µv, microvolt

Diabetics Controls P-value Statistical Test
N75 latency (ms) 80.73±10.00 81.55±7.85 0.77 Mann-Whitney

t-Test
N75 amplitude (µv) 8.58±4.72 10.24±5.20 0.037 t-Test
P100 latency (ms) 120.52±7.71 111.65±6.22 <0.001 t-Test
P100 amplitude (µv) 7.08±5.92 9.60±6.02 0.001 Mann-Whitney 

Table 1. Mean and standard deviation for N75 and P100 latency and amplitude in the study groups

ms, millisecond; µv, microvolt
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Spearman’s test revealed no correlation 
between VEP wave amplitude or latency, and 
level of glycemia or duration of diabetes mellitus 
(Table 3). P100 latency above the normal range 
was present in 60% of all diabetic patients, 40% 
of diabetics without retinopathy, 80% of those 
with NPDR, and 13.75% of controls (Fig. 1).

DISCUSSION 

PVEP is a simple, sensitive and objective technique 
for evaluating impulse conduction along the 
visual pathways. PVEP abnormalities have been 
described in DM, but the proportion of patients 
with increased P100 latency is quite variable, 
ranging from 9% to 77%.17-22 This high variability 
could be explained by several factors, such as 
criteria for inclusion or diagnosis, the presence 
of retinopathy or peripheral polyneuropathy and 
differences in stimulus recording conditions. 
Algan et al17 reported prolonged P100 latency 
in 50 DM patients, six of whom had diabetic 
retinopathy. In 19 subjects with type II DM, 
they showed an increase in P100 latency. 
Mariani et al19 reported prolongation of P100 
latency in 35 diabetic patients who did not have 
retinopathy. Ponte et al20 reported prolongation 
of PVEP latencies in 50 asymptomatic insulin 
dependent diabetic patients without retinopathy. 
Puvanendran et al18, Cirillo et al21 and Anastazi 
et al22 also reported PVEP abnormalities in 
diabetic patients. Although Collier et al23 found 

PVEP abnormalities in diabetic patients with 
retinopathy, they found no abnormalities in 
patients without retinopathy. However their 
sample size was small. Yaltkaya et al24 found 
prolongation of N140 latency and N90-N140 
interpeak latencies as well as increased P100 
latency. They explained these findings by the 
presence of retrochiasmal involvement. Millinger 
et al25 reported similar findings. They stated that 
abnormal PVEPs could reflect papillomacular 
bundle or optic nerve involvement. Bortec et 
al26 found PVEP abnormalities in 77% of diabetic 
patients and reported that abnormalities did not 
correlate with level of retinopathy. Lanting et al27 
investigated pupillary light reflex latency and 
P100 latency in 42 diabetic patients and found 
that pupillary light reflex latency was prolonged 
in 55%, and P100 latency was increased in 19% 
of subjects. There was no correlation between 
diabetic retinopathy and pupillary light reflex 
latency or P100 latency. Moreo et al28 reported 
that P100 wave latency increases in non-insulin 
dependent diabetic patients.

In this study, we found significantly 
longer P100 wave latencies in diabetic patients 
as compared to controls. Abnormal latencies 
were found in 60% of diabetic patients which 
is consistent with other studies reporting this 
finding in 15%29, 20%30 and 62.5%18 of diabetic 
subjects.

Our results indicate that optic nerve 
involvement may develop in patients with type II 
DM prior to the onset of symptoms. Prolongation 
of P100 latencies observed in diabetics is an 
expression of structural damage at the level of 
myelinated optic nerve fibers. This may be due 
to different pathogenic mechanisms underlying 
peripheral nerve versus optic pathway 
involvement. Our results also imply that there 
is a definite neurological deficit in type 2 DM 
which can involve the central nervous system 
at a much earlier stage. The pathophysiology 
of central nervous system dysfunction is not 
clear but is multifactorial, involving metabolic 
and vascular factors, similar to the pathogenesis 
of diabetic peripheral neuropathy in which 
ischemia and reduced protein synthesis may 
result in nerve fiber loss in peripheral nerves. It 
is also possible that optic nerve fibers suffer from 

Figure 1. Percentage of P100 latency abnormalities in 
the study groups (DM, diabetes mellitus; NPDR, non-
proliferative diabetic retinopathy; Ret, retinopathy).
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similar diabetes induced changes. Accumulation 
of these mediators probably delays conduction 
in the visual pathway, which may cause the 
observed delay in latencies found in diabetic 
subjects as compared to healthy controls.

It has been reported that PVEP abnormalities 
correlate with hyperglycemia31 but we found no 
significant correlation between blood glucose 
levels and P100 wave latencies in diabetic 
patients. There are some conflicting reports 
regarding the correlation between duration of 
diabetes and P100 wave latencies32 but we found 
no significant correlation between the duration 
of diabetes and P100 wave latencies.

In conclusion, PVEP latency in diabetic 
patients with or without NPDR is significantly 
delayed as compared to non-diabetic controls. 
Importantly, even in patients without retinopathy, 
PVEP can detect preclinical microvascular 
and/or neurodegenerative changes within or 
upstream the retina.
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