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Abstract

A single glance at your crowded desk is enough to locate your favorite cup. But finding an unfamiliar object requires more
effort. This superiority in recognition performance for learned objects has at least two possible sources. For familiar objects
observers might: 1) select more informative image locations upon which to fixate their eyes, or 2) extract more information
from a given eye fixation. To test these possibilities, we had observers localize fragmented objects embedded in dense
displays of random contour fragments. Eight participants searched for objects in 600 images while their eye movements
were recorded in three daily sessions. Performance improved as subjects trained with the objects: The number of fixations
required to find an object decreased by 64% across the 3 sessions. An ideal observer model that included measures of
fragment confusability was used to calculate the information available from a single fixation. Comparing human
performance to the model suggested that across sessions information extraction at each eye fixation increased markedly, by
an amount roughly equal to the extra information that would be extracted following a 100% increase in functional field of
view. Selection of fixation locations, on the other hand, did not improve with practice.

Citation: Holm L, Engel S, Schrater P (2012) Object Learning Improves Feature Extraction but Does Not Improve Feature Selection. PLoS ONE 7(12): e51325.
doi:10.1371/journal.pone.0051325

Editor: Satoru Suzuki, Nothwestern University, United States of America

Received May 11, 2012; Accepted November 1, 2012; Published December 12, 2012

Copyright: � 2012 Holm et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project was partly funded by post doc grant 435-2008-421 from Swedish research council. (http://www.vr.se/) No additional external funding was
received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Linus.Holm@psy.umu.se

Introduction

Object recognition is a hard problem. In natural images, objects

can appear in unknown angles, can be partly occluded, and can be

embedded in complex visual environments. Complicating the

problem further, many objects are visually similar to one another.

Yet despite these difficulties, humans recognize familiar objects

easily and effortlessly, even against relatively complex backgrounds

and their ability to do so improves from infancy well into

adulthood [1]. Moreover, at any stage of life, increasing familiarity

in a visual environment improves object recognition in that

domain [2]. This raises the question: how does object familiarity

make object recognition easier?

One possible strategy to aid recognition for familiar objects is

for the observer to select the most informative parts of objects for

further processing by focusing the eyes upon them. Specifically,

subjects might fixate upon the parts of the image that contain the

most diagnostic information for object recognition. This kind of

selection strategy is common in many visuomotor domains such as

grasping [3,4] in which ideal finger locations are typically fixated

while reaching for the object. Furthermore, visual search studies

suggest that humans can learn to move their eyes to the most

informative location, in this case to regions where a target might

plausibly be found [5,6,7]. For instance, Torralba and colleagues

[7] found that human observers constrained fixations to likely

target locations when looking for familiar objects in everyday

scenes. Even more compelling support for efficient selection was

presented by Najemnik and Geisler [5] who showed that human

observers made close to ideal eye movements in search for a simple

gabor patch embedded in 1/f noise.

It is yet an open question whether object familiarity leads to

optimization of information selection in object recognition.

Findings that humans can recognize objects within 150 ms [8,9],

and in the near absence of attention [10] suggest that there is little

need for selecting informative regions. Instead, familiarity might

operate by combining more features to efficiently discern the

object within a single glance. A correct integration of a large

number of features should produce high object sensitivity, without

the additional need of - or influence over - selection. That is, object

familiarity might not guide attention or eye movements across the

visual scene. To date there have been no explicit tests of whether

familiarity amounts to improved information selection - or to the

amount of information acquired in a single view. To determine the

influence of object familiarity requires an overt indicator of

selection and a method to quantify the information contained in

a selected image region.

Measurements of eye movements open a window onto

information selection during object recognition. Because objects

in the natural world mostly appear against complex backgrounds,

often in the visual periphery, humans need to redirect their eyes in

order to acquire sufficient information to recognize objects.

Peripheral vision is usually insufficient for object recognition

because acuity drops off rapidly towards the periphery (at five

degrees eccentricity, visual acuity is reduced by 50% [11].)

Crowding of objects in the periphery presents an additional

problem. For example, an isolated letter presented in the
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peripheral field might be easy to recognize, but when presented

together with two other flanking letters, it becomes impossible

[12]. Similarly, when objects are embedded in natural scenes, they

become more difficult to recognize [2], than when they are

presented against a plain background. Thus, the location of the

eyes, which changes position about three times a second [13],

should indicate which parts of the image are selected and used in

recognition.

In this study, we examined whether familiarity with objects aids

recognition by guiding information selection, as measured by the

locations of the eyes. If this hypothesis is true, then eye fixations

should move to more informative parts of an image as a subject

gains experience recognizing an object. As an alternative, we

consider the possibility that familiarity does not aid information

selection, but instead improves the amount of information

extracted at a given location. We test between these two accounts

by using a formal model to evaluate the information available at

fixation locations selected by human observers as they practice and

improve in an object recognition task. Subjects searched for

objects in noisy displays, a task which required them to make eye

movements. Importantly, the size and composition of the objects

relative to the background made certain parts of the object

formally more diagnostic of its presence. If familiarity affects

information selection, then more diagnostic object parts should be

fixated more frequently as object search experience increases.

Results

Stimulus Generation and Task
We used an object localization paradigm to test whether

practice with a target object allowed observers to move their eyes

to more informative image regions, or whether it increased their

ability to extract information from a given region. The stimuli and

task were designed to capture properties of natural complex

scenes, while simultaneously being unfamiliar enough to allow for

large amounts of learning. To make the search task difficult, yet

tractable for an ideal observer, we fragmented objects into

contours and embedded them in a background of similar contour

fragments (Figure 1). The full image formation model is described

in the methods section. The objects were randomly positioned on

a grid that contained a randomly drawn fragment in each cell.

Objects covered on average 23% of the image, or about 11611

deg2 of the observers’ field of view (see Methods, and object

templates in Figure 1A). As a control, all images were evaluated

using the saliency toolbox [14] to test if the most salient image area

also indicated object location. The saliency algorithm performed

at chance, suggesting that basic visual attributes were insufficient

to indicate object location in the images. To locate the object then

required integrating multiple object features. The subjects’ task

was to search for a cued object in the grid and respond by fixating

upon it (trial procedure displayed in Figure 1C).

Empirical Results: Object Search
To test how familiarity affects information extraction we

recorded the eye movements of eight participants as they searched

for fragmented objects (one at a time) in 600 images across three

sessions. First, we established that participants generally improved

in their search performance by testing search speed and accuracy

across the three daily sessions (see Figure 2). Mean number of

fixations until response went from 13.1, to 5.5 and 4.7 days 1

through 3. The decrease was statistically reliable, F(2,7) = 27.8,

p,.0001. The corresponding response time trial averages were

4.2 s, 1.8 s and 1.5 s for days 1 through 3. The response time

decrease was also statistically reliable, F(2,7) = 32.8, p,.0001. This

did not reflect a speed accuracy trade-off, as hit rate at the end of

the trial (determined by fixating on the object at button press)

remained almost constant; at approximately M= .92 on each

session. As seen in Figure 2B, hit rate per fixation improved across

sessions. The location of the final fixation (i.e., at recognition) also

remained relatively constant. Distance from the object center was

on average 4.66, 4.54 and 4.61 degrees days 1 through 3 (F ,1).

Saccade amplitude was also relatively unaffected by learning, with

means of 5.1, 5.1 and 5.5 on days 1 through 3 (F(2,14) = 2.33,

p..13).

Much of the observed learning appeared to be object specific.

Trials were arranged in blocks of 20, with each block using a single

object and each object appearing in a single block per day. The

number of fixations within a block decreased steadily from trial to

trial, but returned to close to initial performance as participants

started on a new block (see Figure 2C). It then gradually decreased

for the new object. This pattern is typical of object specific

learning.

The decrease in search time might indicate that participants just

changed their response bias across sessions, and not necessarily

that they became more efficient in locating the object. However,

number of fixations until the object was first fixated in the trial

decreased with practice, from a mean of 1.78 on day one,to 1.53

and 1.56 fixations on days two and three, respectively

(F(2,14) = 29.6, MSE = .005, p,.0001). This pattern of results

does not appear to be consistent with a simple change in decision

bias because looking at the object should always be more

informative in the localization task, regardless of decision bias.

To conclusively determine that the training improved recogni-

tion performance, a simplified control experiment involving eight

new participants was conducted. In the control experiment, the

participants first made two alternative sequential forced choice

(2AFC) detection judgments with similarly generated images. After

the initial detection test, participants made 20 object localization

trials identical to those used in the main experiment. Subsequently,

participants were again tested on the object detection test with new

image draws from the generative model. The results showed

a detection improvement present in every participant with

a detection hit rate going from M= .66 to M= .76 for pre and

post search detection test, respectively, which reflects a change in

sensitivity rather than bias because the task was 2AFC. The

difference between pre and post-test was highly significant at

t(7) = -5. 68, p,.001. Taken together then, the results suggest that

participants genuinely improved in object recognition.

To determine the nature of this performance improvement, we

now turn to an analysis of how fixations were distributed as

a function of practice. Specifically, did participants need less time

and fewer fixations because they selected more informative image

locations with practice or because they learned to integrate more

visual information in each fixation?

Empirical Distribution of Fixation Locations
One way to test formally for improvement of fixation locations

is to examine their temporal independence. If observers select

fixations intelligently, based on the potential for new diagnostic

information, then they should use information from previous

fixations to guide their next fixation location. For example, in the

simplest case, observers should avoid resampling image locations

that they have already visited. Figure 3A illustrates the distribution

of fixation locations with respect to the last or next to last

(Figure 3B) fixation. The distribution is roughly Gaussian, which

suggests that there is little avoidance of returning to previously

sampled image locations; had there been such, Figure 3B would

have an annulus-like distribution. Rather, the distribution is close
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to what would be expected under random selection of image

locations.

A closer examination of the data suggests that there was some

spatial constraint affecting the fixation distribution. For instance,

a saccade to the left increased the probability of the next saccade

being to the right. However, that property would also be expected

under the simple assumption that the observer constrained his or

her fixations to stay within the image. To test whether this can

account for the data, we implemented a random walk model

starting out at the same central image location as humans. The

model’s saccades were independent draws from the overall

empirical distribution of saccade vectors, with the constraint that

those that would have ended outside the display window were

discarded and replaced by another random draw. As seen in

figure 3C–D, the random walk sampling procedure produced

a similar spatial dependency to the empirical distribution.

Figure 1. Stimulus and experimental design. (A) The ten object shapes used in the experiment. Objects were fragmented as shown. (B) Objects
were randomly positioned within a 27620 grid. Each object fragment was removed with p= .25. Finally all empty cells were filled with randomly
selected fragments from the same object. Sixty images were generated in this way for each object. (C) Experimental design. Participants searched
cued objects blocked in 20 trials per object. The cued object was first presented for 3s, followed by a central fixation dot. Participants fixated the dot
and pressed a button to initiate the search image. Participants were told to press a button as soon as they found the object in each image, and then
to continue to look at the object until the image disappeared, which occurred after 3 s. Object presentation order was counterbalanced across
participants.
doi:10.1371/journal.pone.0051325.g001
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Ideal Observer Analysis of Fixation Locations
To test even more strongly if selection improved with practice,

we implemented an ideal observer that quantified the amount of

information at each fixation that could be used for the object

identification task (see Methods). Note that the observer used here

is not a true ideal, but is constrained by a field of view parameter

Figure 2. Learning results. (A) shows numbers of fixations to detection as a function trial number. (B) shows hit rate as a function of number of
fixations on days 1, 2 and three. All error bars are SEM over participants. (C) shows number of fixations as a function of trial for adjacent object blocks
on day 1.
doi:10.1371/journal.pone.0051325.g002

Figure 3. Fixation distributions. (A) Empirical fixation distribution (data based on all recorded eye movements) for current fixation subtracted by
last fixation (P(fi|fi-1) and (B) the empirical distribution for current fixation subtracted by the next to last fixation (P(fi|fi-2). Hot maps reflect number of
fixations. Right graphs show distributions of horizontal saccade vectors, given that the previous saccade was directed to (C) the right or (D) left.
doi:10.1371/journal.pone.0051325.g003
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that determines the radius surrounding fixation within which

information is extracted. For human observers, we do not know

the size of the functional field of view. However, modeling the field

of view size in the ideal observer allows us to test selection

efficiency under any field of view in human observers.

To estimate the informativeness in any part of the image, the

ideal observer computes the likelihood ratio between the

probability that the observed features within its field of view are

produced by each possible object subset and the probability that

the features are produced by the background. An object subset is

any set of spatially preserved object features that fit within the ideal

observer’s field of view. For a given field of view and image

location, the model selects the object subset that receives the

highest likelihood as its best guess for where the object is located in

the image. The selected likelihood will thus vary across image

locations. For instance, in the region of the image where the object

is actually located, likelihoods will typically be higher, because

there is more evidence for the objects presence there.

Figure 4 shows how the field of view parameter affects model

performance. Specifically, larger fields of view receive on average

more object information from the center of the image (see 4B).

Also notice that for an individual image, the object information is

clustered around the object’s outline, and wider fields of view

produce a higher tolerance for fixation locations in the object’s

vicinity (4C). Also, the small window will typically produce fairly

high likelihoods all over the image (see first column in figure 4).

This also means that the model with a small field of view will tend

to produce false positives. Instead, a larger field of view will

produce more accurate discriminations as well as a more accurate

Figure 4. Object likelihood computations based on three different fields of view. (A) is field of view from a single fixation relative to the
image (B) shows stimuli average (600 stimulus images) object likelihood distribution given the field of view (C) is corresponding likelihood
distribution for a single stimulus image (same stimulus image as in figure 1B). Hot maps indicate object likelihood, image axes are coordinates in
degrees.
doi:10.1371/journal.pone.0051325.g004

Figure 5. Object information per fixation as a function of practice calculated for three fields of view. Separate lines for the empirical
fixations (black) and the average information of image locations at the same distance from the image center (white). Error bars are SEM across
subjects.
doi:10.1371/journal.pone.0051325.g005
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likelihood distribution at the individual image level (c.f., row 4C

between the 32 and 72 window images).

We used the model to test whether human fixation locations

contained more information than randomly selected image

locations. Because the objects had to fit completely within the

display, locations at the center of the screen contained more

information, on average, than those towards the edge of the screen

(see figure 4B). To take that property into account, we compared

the information at each human fixation to the average information

of image locations at the same distance from the image center

(Figure 5) thus controlling for the expected higher information

values at central regions of the image.

As seen in figure 5, there were no obvious differences between

information at human fixations and the average information

content at the same distance from the image center. We quantified

this observation by aggregating trials into daily sessions and tested

the difference in a set of 2(empirical vs. random)63(day) repeated

measures ANOVAS, one for each of eight different fields of view

(from 32 to 172 by twos). Doing these analyses across a wide set of

fields of view is motivated by the fact that we do not know the

functional field of the human observer. However, if some field of

view produces significantly higher information than chance it

might indicate that it corresponds to the human observer’s field of

view and that the human selected efficiently. Instead, if none of the

tested fields of view showed significantly more information at

actual than at random fixation locations, then it would support the

notion that participants selected randomly. Furthermore, testing

information at fixation as a function of session allows us to test

whether human improved selection with practice.

The results of this analysis showed that the empirical (i.e.,

participants’) fixation locations contained slightly more object

information than random locations, but that this difference did not

increase with practice, and so cannot account for the observed

learning effects. Participants’ fixations were significantly higher in

information content than the average at the same distance from

image center regardless of field of view used (all p,= 0.02). While

significantly higher, the difference was very small, varying

between.004 and.035 in likelihood difference across the eight field

of view sizes. There was a small increase of information with

practice for fields of view between 72 to 172 degrees (p,= 0.03)

but more importantly, there was no significant interaction between

random and empirical fixations, for all fields of view ,= 92, (all F

,1.4. Had there been any improved selection, the information

content in the empirical fixations should increase with practice,

but the information content in the random should remain virtually

stable. Additionally, for large fields of view (i.e., .= 112) there was

an interaction showing less difference between empirical and

random fixations across days, p,= 0.05. In other words, if

Figure 6. Detection performance as a function of trial for the ideal observer. Solid lines indicate performance given the empirical fixations.
Dashed lines are based on random walk fixation sampling (100 samples per trial, subject and object) using the same number of fixations as the
subjects in the corresponding trial. Smoothed curves are fitted 2nd degree polynomials to sampled and empirical data, respectively. Black horizontal
bar reflects detection rate at. 9.
doi:10.1371/journal.pone.0051325.g006
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Figure 7. Functional field of view. (A) Logistic fit to ideal observer performance calculated for six different field of view sizes. The ideal observer
performance was calculated using each subject’s empirical fixation distribution for a particular day. Inset dashed horizontal bar indicates the subject’s
performance that day. Intersection between logistic fit and subject detection rate is the estimate of the subject’s field of view that day. (B) Estimated
fields of view across the three daily sessions, error bars are SEM across subjects.
doi:10.1371/journal.pone.0051325.g007

Figure 8. Feature visibility. Left panel shows psychophysics procedure to establish fragment visibility. Right panel shows average feature hit rate
as a function of horizontal (top graph) and vertical (lower graph) eccentricity. The 0.5 horizontal bar indicates chance level.
doi:10.1371/journal.pone.0051325.g008
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participants integrated feature information from fairly large

regions of the image, practice made their selection more random.

As a final test of whether improvement in fixation locations

could account for observers learning on the task, we extended the

ideal observer, allowing it to integrate information across fixations

and complete the object identification task. This was accomplished

by taking the fixation with the maximum object likelihood and

testing if its most likely object fragment was on the object (also, see

equation 6 in the methods section). That is, for each empirical

trial, the ideal observer determined which object subset location

received the highest likelihood across all fixations and object

subsets, using a fixed window size (out of eight possible, see

figure 6). If the most likely fragment and location were on the

object in that image, the result was scored as a hit (see equation 6,

methods section), otherwise it was considered a miss. Note that the

model has no learning, that is, this analysis assumes unchanging

information extraction at a given location across trials.

This ideal observer analysis strongly suggests that subjects’

improvement in the task was not due to selection of more

informative locations. Recall that subjects’ ultimate performance

was constant across days, but that this was achieved with fewer and

fewer fixations. If this pattern was accomplished by subjects

selecting more informative locations, then the total amount of

information extracted by the ideal observer should remain

constant, despite the decrease in the number of fixations. As seen

in Figure 6, however, the total amount of information extracted, as

indexed by the ideal observer object recognition performance,

actually decreased across trials. As subjects practiced the task, they

required fewer fixations per trial, while not changing the

informativeness of each fixation location, which resulted in less

total information extraction from the unchanging ideal observer.

Effects of practice on the task must be due to some other

mechanism than improved selection of fixation locations.

This analysis also rules out the possibility that simple strategy

changes can account for the observed learning, for example

‘‘staying in the center of the image.’’ If such strategic changes were

sufficient, then the model should have found increased information

at each fixation location large enough to keep performance

Figure 9. Control Experiment Object detection. Experimental design of control experiment. Image corresponds to one test block. Each
participant was tested in three such blocks.
doi:10.1371/journal.pone.0051325.g009

Object Learning Improves Feature Extraction

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e51325



constant. Instead, ideal performance declined when subjects’

actual fixation patterns were used with unchanging information

extraction.

To test how different from random selection human observers

were, we again simulated a random sequence of fixations, drawn

from the empirical distribution of saccade vectors. Performance of

the ideal was worse using these than using the actual empirical

fixation sequences, suggesting that subjects were in fact somewhat

strategic in their fixation selection. However, the difference in

performance was constant over trials, which indicates that task

learning was not due to improved selection of fixation locations

(see Figure 6).

Field of View as a Function of Learning
The above analyses rule out changes in selection of fixation

location, and so suggest that subjects learning must have resulted

from an increase in the amount of information they could extract

at each fixation. To quantify the size of this increase, we computed

ideal observer performance using the empirical sequences of

fixation locations for a range of fields of view. Because each field of

view size and set of fixations will produce a certain hit rate (see

above and the ideal observer model in the methods section), we get

a range of hit rates as we vary the modeled field of view.

Specifically, the larger the field of view for any given set of

fixations, the higher the hit rate. The relationship between hit rate

and field of view produces a relationship that is well captures by

a logistic function (see Figure 7A).

We computed the functional relationship between each

participant’s fixations for each of several fields of view and thus

established a participant and session specific logistic function. We

then estimated the participant’s field of view by reading out the

field of view value corresponding to the participant’s average hit

rate on that session (see Figure 7A). Average window sizes thus

estimated were 6.42, 8.62 and 9.32 degrees for days 1, 2 and 3,

respectively (see figure 7 B). The increase in window size was

statistically reliable at F(2,7) = 5.52, p,.015. This estimate

corresponds to a more than two-fold increase in the visual field

area across session days. This result should not necessarily be taken

as a process model of subjects’ performance; we do not know if

subjects were actually expanding their functional field of view with

practice. But the analysis does reveal that practice enabled subjects

to extract additional information from a given fixation location of

an amount equivalent to a substantial increase in functional field of

view.

Discussion

This study tested how familiarity with objects affects visual

information acquisition by investigating how information is

selected in an object localization task. Two possibilities were

identified; object knowledge might improve selection of fixations

and hence the quality of information received, or knowledge might

increase the amount of information acquired in a fixation. The

results strongly suggest that human observers receive more

information in each fixation with practice, equivalent to a twofold

increase in field of view, but do not choose fixation locations more

efficiently. Anecdotally, several subjects claimed they relied on

details while searching day 1, but learned to ‘‘match’’ the entire

object when searching days 2 to 3. Similarly, participants in the

control detection experiment mentioned pop-out like experiences

of the objects in the post search detection test, but not in the pre-

test.

The ideal observer model assumes a template-like representa-

tion of the object and we expressed the information increase in

terms of a square field of view. Neither of these descriptions needs

to be valid reflections of human object recognition given the

present findings. For instance, humans might hold a much fuzzier

representation of the object and the functional field of view could

have been constant, but its content processed more efficiently with

practice. Also, the all-or-none field of view model employed here

might be further improved with a model that takes human gradual

acuity fall-off to periphery into consideration. Regardless, the

results support the idea that human observers learn to use more

joint visual statistics as they improve in object recognition. This

should be true for a range of statistics beyond those tested in this

Figure 10. Fragment informativeness. Left panel shows a stimulus image produced with the helmet object. Right panel shows the likelihood
ratio values for five different object subsets from a 363 window as intensity values (upper image) and subsets from a 767 window (lower image).
doi:10.1371/journal.pone.0051325.g010
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study, such as spatial frequency, context regularities, color, motion

etc.

It might seem surprising that fixation selection was not better

informed (see e.g., [5,6,7]). For instance, Najemnik and Geisler [5]

found that human observer’s performance in a search task for

gabor patches in 1/f noise was consistent with ideal selection of

fixations. The task in the present study employed much more

complex stimuli in that integration of higher order visual statistics

was required to distinguish object from background and that the

object was significantly larger, spanning roughly 11611degrees of

the visual field. This additional complexity introduced an object

recognition difficulty not present in [5]. For instance, immediate

object fixation was typically not sufficient to produce localization.

Furthermore, there was no spatial prior the participants could

have utilized across trials, as each object was uniform randomly

translated in the image, hence removing the spatial cues present in

natural scenes [7].

Droll and colleagues [15] found that participants learned the

cue validity of neighboring distracters in a simple search target

with practice. It is possible that we would have received similar

patterns of results, had the targets been sufficiently simple. Instead,

the complexity and continuity constraints imposed by the object

contours in the present study might have afforded a more efficient

learning by supporting wider information integration. This in turn

reduces the value of accurate fixation selection.

We acknowledge that subjects were not entirely random in

selection, as the empirical fixations were consistently associated

with a higher detection rate than a random walk of similar window

size would credit (see figure 6). It is difficult to judge what selection

principles account for the difference at this stage. Regardless, this

slight benefit did not improve with practice, and therefore cannot

account for learning. Given more practice, better selection might

yet have developed: Future studies could investigate if and when

such learning takes place.

Some earlier search studies also reported random or virtually

random fixation selection [16,17], consistent with our results. We

suggest the seeming discrepancy between [5,6,7,15] and [16,17]

might reside in the utility of planning. First, if there is no or weak

information integration across fixations, resampling old locations

by refixating them might provide new insights to the object

location in the present study. Therefore, avoiding old locations is

not necessarily beneficial to the observer. Second, computing

efficient saccades under uncertainty might take time. In the trade-

off between more fixations versus higher quality fixations, the ideal

computational solution for the observer might be to make more

but random saccades because image processing is efficient but

planning is not.

Methods

Ethics Statement
All experiments involving human participants were approved by

the institutional review boards (IRB) at the University of

Minnesota and/or the University of Umeå. All participants gave

written informed consent in compliance with the Helsinki

declaration.

Object Search Procedure and Materials
Eight university of Minnesota students (age M = 19.25, four

male) participated for course credit.

Ten different objects were used as search targets (see Figure 1A)

and were randomly positioned in images that covered 27620

degrees of participant’s visual field, corresponding to 27620 image

cells (see Figure 1B). The target objects varied in size from

requiring a 1568 cells patch to a 16616 cells patch to cover the

object. The objects templates enclosed an area of between 109

image cells (pear) to 155 cells (boot) corresponding to between

20% and 29% of the image. The images used in the experiments

contained 27*20 cells. The average area covered by the objects

was 127 cells (see Figure 1A). The average eccentricity from the

image center to object center was 3.54 degrees, SD= 1.28. Each

161 degree cell contained a line segment from the background or

the object contour. The segment was fitted within the boundary of

the cell so that the segment ended 3 (cardinal orientation

endpoints) or 6 (oblique orientation endpoints) pixels from the

boundary thus forcing fragmentation of the image content. Images

were presented on an LCD monitor (220 dell-2209 wa) at

8106600 pixel resolution. Eye movements were recorded during

all sessions (Eyelink 2, 500 Hz).

Participants searched for the ten cued objects presented in

blocks of 20 images for a single object (see trial procedure in

Figure 1C), giving 200 trials per day in each of three days. Before

each search trial, the intact search target object (i.e., the cue) was

presented in the center of the screen for 3 s. A fixation cross was

then presented on the screen. Participants then self-initiated the

actual search image by fixating upon the cross and pressed a key.

The cross hair image was not replaced by the search display until

the cross hair was fixated and the key was pressed (i.e., gaze

contingent stimulus presentation forcing central fixation at the

start of the search image onset). Participants searched the image

until they found the object, which they indicated by another key

press. Participants were then instructed to continue to look at the

object until the image was removed, which happened 3 s after

object identification key press. A deadline of 30 s search time per

trial was applied.

Search performance scores were based on pressing the button

and fixating within the object boundary in the image. Specifically,

if the fixation at key press was within a polygon 0.5 degrees larger

than the target object boundary, the response was classified as a hit,

otherwise it was a miss.

Psychophysics Visual Acuity
To set an upper boundary on the functional field of view, we

established the visual sensitivity for image features across the visual

field. Specifically, we tested discrimination performance for all

features used to create the stimuli images and calculated

discrimination performance as a function of eccentricity (see

Figure 8). Stimulus presentation was made contingent on center of

image fixation using an eye tracker and a gaze contingent

algorithm. The features were embedded in 27*20 grids similar to

those used in the search task, with random features in all non

target feature grid locations. A single participant (LH) made

sequential two alternative forced choice recognition judgments on

each feature from the library of features used to create the stimuli.

A single trial consisted in the presentation of a fixation cross,

followed by the presentation of the target feature. Then two

stimulus images were presented with an intervening fixations cross.

Finally, a spatial cue indicating the location at which to make the

detection decision was presented. A total of 5520 trials were run

(24 (fragment targets)623(non targets)65(eccentricities)62(order)).

Trials were organized in blocks by eccentricity, thus the location

tested was known to the observer ahead of each trial even though

the spatial cue was entered after the final comparison of each trial.

As can be seen in figure 8, hit rate is virtually at chance at 8

degrees eccentricity hence an image patch of 17 degrees square

corresponds to an upper bound on human identification

performance.
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Object Detection Experimental Procedures
Eight university of Umeå students (age M = 25, five male)

participated for monetary compensation of SEK 75 (about 10

USD). Testing was organized in three blocks, each consisting of

a 40 trial detection test for a single object followed by 20 trials of

object search trials, identical to the procedure used in the main

experiment. Finally, the participants were again tested on a 40 trial

detection test.

The detection test was designed as a sequential two alternative

forced choice task (see figure 9). The test was organized in blocks

of 40 detection trials. In the beginning of each block, the object to

search for (i.e., the object cue) was presented intact in the center of

the screen for 10000 ms. During each trial subjects viewed one

image containing the cued object embedded in background

features and another image containing background features only.

Each image was presented for 300 ms. Participants responded by

pressing keys after the final image in each pair indicating which

image they thought contained the object (first or second). The

images covered 27620 degrees of participant’s visual field

presented on an LCD monitor. Eye movements were recorded

throughout (Eyelink 1000, 500 Hz). Three objects from the main

search experiment were used (revolver, helmet and pear), one

object in each test block. Each participant was tested on each of

the three objects. Object block order was counterbalanced across

participants. Images used in the detection tests appeared equally

often in the first as the second test across participants. Each image

(with and without embedded object) was constructed anew for

each trial.

Image formation model. Each object constituted a cell grid

O, forming a circuit of cells that fit within the image (see Figure 1A).

Each object cell contained a feature y. The object template was

randomly translated in the image grid, producing a set of features y

at locations x, {y, x+T} with T being the offset from x. Each feature

in y was then changed into a nonobject ‘‘background’’ feature with

probability K. In the present study, K was fixed at.25. Background

features were also placed at each cell in the image that was not in

O. Background features were chosen as random samples from the

empirical distribution of the object in the image. Formally, the

probability of a feature in a certain cell in an image is given by:

p(yDx~(xzT))~(1{K)d(y{ya)zKf (y) ð1Þ

Where the probability K determines whether the feature is

sampled from the background or the object template and.

p(yDx=(xzT))~f (y) ð2Þ

for features outside of the object. f(y) is the empirical distribution of

features, d refers to the delta function and ya is the feature value of

the object template at that cell.

Ideal observer. To test if practice made participants select

more informative image regions, the information content of each

image region must be established. This approach allows us to

distinguish between information content in individual fixations as

opposed to information acquired due to strategic selection. Other

ideal observer models typically intermix those two features [4,5].

We used an ideal observer model to assess the information

available in individual eye fixations. The model only evaluates the

information content at fixation, it does not select where to look

next nor integrate information across fixations. In other words, the

model only tells us how much can be learned about the object in

a single fixation. Like humans, the model’s view was restricted to

a window surrounding a simulated fixation point [5,6]. We

established an upper bound on the window size in a psychophysics

pilot experiment (see psychophysics heading above). It showed that

human observers receive no useful object fragment information

beyond about eight degrees eccentricity. In the model, this field of

view roughly corresponds to a 17617 cell image patch. By design,

the images in the task have no local information about the objects

position and saliency is flat (i.e., an image patch of a single cell

cannot tell object from background). Therefore, integration across

several features is required to localize the object and correct

integration requires object knowledge. Because visibility only

allows a limited part of the image to be evaluated at once, an ideal

model can only evaluate the image content by the fraction of the

object template that fits within the model’s field of view.

Therefore, the ideal observer’s object knowledge in this task was

limited to all object portions that fit within the window. The model

attempts to locate a cued fragmented object in the image by

calculating the likelihood for the object portions at all possible

locations and then picks the location and object portion with the

highest likelihood as its response. We term a given portion of

a chosen object, as viewed within the window, an object subset
(Figure 10). The whole set of object subsets consists of all object

portions that fit within the window.

For a square window W within the image, the model determines

all features from object template locations xa that fits in the

window. This is achieved by taking all non-empty intersections

between the window W and the object template O as the template

is translated over the image grid. Each set of features in the

intersection then represents an object subset. We express all

possible object subsets within a window as C~fg1,g2,:::,gnDOg.

The feature probabilities in a window are then determined by

the subset that generated it i.e., for g[Cto have generated W. For

window cells on the subset, the feature probabilities are again

given by eq. 1 and 2. The probability that a certain subset g

generated the features in the window is then given by:

P(W Dg)~Px[Wpx(yxDg) ð3Þ

The probability that only background features produced the

window content is given by:

P(W Dbackground)~Px[Wpx(yxDf (y)) ð4Þ

For each window location in the image, the model computed

the probability that the object subset was present there and

compared that to the probability that only background fragments

were present. Formally, the model is described by the following

equation to yield the likelihood ratio for the subset:

Lg,W~
P(W Dg)

P(W Dg)zP(W Dbackground)
ð5Þ

We let the highest likelihood over all subsets represent the

likelihood of an object falling within that window size and location

in an image, ArgMax(LC,w).

To determine if a window size is sufficient to locate the object,

we test if the most likely subset over all subsets and window

locations actually covered the original object in the image

according to:
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AccuracyW~
0 if ArgMax(L�C ,W ) not on object template

1 if ArgMax(L�C ,W ) on object template

� �
ð6Þ

The results are displayed in Figure 4. The method allows for

accuracy assessments of individual window locations, producing

‘‘1’’ for windows that locates the object and ‘‘0’’ otherwise.

Naturally, many of these will have 0 accuracy, because the object

did not intersect with the window. However, larger windows will at

least have some small subset that intersects with the actual object

location and therefore produces accurate responses (see also

figure 10) to a higher extent than small windows.

The subset likelihood method allows for computing detection

rate given a set of fixation locations and window size. The model’s

best guess at object location is the image location that received the

highest subset likelihood, across the set of fixations and all subsets.

We use this likelihood measure as an indicator of object

information present in the set of fixations. Note that although

the likelihood will depend upon information as defined by

information theory, it is not equivalent to this quantity.
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