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Abstract
The time-to-event continual reassessment method (TITE-CRM) was proposed to handle the
problem of long trial duration in Phase 1 trials as a result of late-onset toxicities. Here, we
implement the TITE-CRM in dose–finding trials of combinations of agents. When studying
multiple agents, monotonicity of the dose-toxicity curve is not clearly defined. Therefore, the
toxicity probabilities follow a partial order, meaning that there are pairs of treatments for which
the ordering of the toxicity probabilities is not known at the start of the trial. A CRM design for
partially ordered trials (PO-CRM) was recently proposed. Simulation studies show that extending
the TITE-CRM to the partial order setting produces results similar to those of the PO-CRM in
terms of maximum tolerated dose recommendation yet reduces the duration of the trial.
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1. Introduction
The continual reassessment method (CRM), introduced by O'Quigley, Pepe, and Fisher [1],
is a design with which to carry out and analyze dose-finding studies in oncology. One
purpose of these trials is to estimate the maximum tolerated dose (MTD), which is defined
as the highest dose that can be administered with a `tolerable' level of toxicity. This
`tolerable' level is based upon the probability that a patient in the trial experiences a dose-
limiting toxicity (DLT), which is typically defined by side effects that are considered severe
and, in certain cases, potentially life threatening. The CRM is based on the use of a simple
working model and sequential updating of the dose-toxicity relationship to estimate the dose
level at which to treat the next available patient. Suppose we have a discrete set of available
doses, d1, …, dk. The usual CRM begins by assuming a simplified working dose-toxicity
curve,ψ(di, a), that is monotonic in both dose level, di, and the parameter, a, for instance, the
power model or logistic curve. After having included j subjects, an estimate, , for the
parameter a can be generated through a Bayesian framework or maximum likelihood
estimation. Once  is calculated, the dose given to the (j + 1)th patient is the level, di, that
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minimizes some measure of distance, such as Euclidean distance, between ψ(di, ) and the
target probability of DLT, θ The procedure continues until some predetermined sample size
of n patients is exhausted or a stopping rule takes effect.

The CRM does not incorporate censored subjects; that is, subjects without toxicity who have
not reached the end of their observation period do not contribute to estimation of the MTD
until they are fully observed. In the presence of partially observed subjects, it has been
suggested that the newest subject be enrolled on the current estimate of the MTD rather than
delaying enrollment. This allocation scheme is flawed in that it disregards the partial
information accumulated on censored subjects. Thus, completed trials can be considerably
long in duration. For instance, suppose a DLT is being defined by a patient experiencing a
grade 3 or higher toxicity in the first month of the patient being enrolled in a study. It is
possible that patients could experience a grade 3 or grade 4 toxic response beyond the first
month and thus not be considered dose-limiting because toxicity occurred outside of the
observation period. If the duration of observation had been longer than 1 month, these
observed toxicities would have impacted dose escalation throughout the trial.

Cheung and Chappell [2] introduced the time-to-event CRM (TITE-CRM) in an attempt to
utilize information from partially observed subjects throughout the trial. In the absence of
toxic response, this extension of the CRM weights each entered patient by the proportion of
the full observation period that he or she has been observed. Therefore, a patient that has
experienced a DLT provides complete information and is fully weighted. Suppose that the
binary indicator Yj takes value 1 in the case of a DLT for the j th entered subject and 0
otherwise. The dose for the j th entered subject Xj, j = 1, …, n can be thought of as random,
taking values xj = {d1, …, dk}. The TITE-CRM considers a weighted dose-response model
ϕ(di, w, a) that is monotone, increasing in w with marginal constraints ϕ(di, 0, a) = 0 and
ϕ(di; 1; a) = ψ(di, 1, a) for all di and for all di and a. The weight, w, is a function of the time-
to-event of each patient and has a linear association with the dose-toxicity model ψ so that
ϕ(d,w,a) = wψ(d,a),for 0 ≤ w ≤ 1. Using this model, after the inclusion of j patients into the
study, we have data in the form Ωj = {x1, y1, w1, …, xj, yj, wj}. A weighted likelihood

is used to generate an estimate,  on the basis of the posterior mean of a, whereby the dose
given to the next enrolled patient is based on the minimization of

(1)

When a new patient is to be enrolled, the TITE-CRM allows for the toxicity information of
patients to contribute to dose recommendation before they have been fully followed.

The weight function represents the amount of information available from a patient when a
new patient is to be enrolled in the study. Suppose that each patient is followed up to a fixed
time T and that Uj is the time-to-toxicity of patient j . Then, for u ≤ T,

(2)

(3)
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The weight w can be thought of as the conditional distribution at time u, and the dose-
response curve ψ can be identified with the distribution function of Uj at time T . Cheung
and Chappell [2] utilize the simple linear weight function

(4)

and show that the TITE-CRM is consistent under conditions that do not depend on the time-
to-toxicity distribution. Further, it assumed that the number of incomplete observations is
small when compared with the number, j, of enrolled patients. Simulation results point
towards the adequacy of a linear weight function in many cases.

Cheung and Chappell [2] also mention adaptive weights that are a functional form of the
weight function determined by the accrued observations such as

where z is the total number of toxicities observed, 0 ≡ t(0) < t(1) ≤ … ≤ t(z) < t(z+1) ≡ T are
the ordered failure times and, k = max0≤j≤z{j : u ≥ t(j)}. If a toxic response is observed at a
time that is less than half of the full observation period, then this weight function will give a
smaller weight for each fixed u than will weight function (4). However, if toxicities tend to
occur in the latter part of the observation period, a smaller weight will be given to those who
have been enrolled in the trial for only a brief amount of time. Cheung and Chappell [2]
appeal to the simple, but adequate, choice of a linear weight function (4).

An assumption that is accepted in much of the statistical methodology underlying Phase 1
trial design, including the TITE-CRM, is that of a monotonic dose-toxicity curve; that is, the
ordering of the probability of toxicity between any two doses is known, and the higher dose
corresponds to a greater probability of toxicity. For single-agent trials, the assumption of this
`simple order' is valid. When studying multiple agents, some of the orderings between doses
are known, whereas others are not, resulting in a partial ordering. In this article, we extend
the TITE-CRM to Phase 1 trials in which the ordering is not fully known. Section 2 gives an
example of a partially ordered trial, reviews the continual reassessment method for partial
ordering (PO-CRM) [3, 4], and presents the models and inference associated with an
extension of TITE-CRM to partially ordered trials. Section 3 provides simulation results that
investigate the operating characteristics of the method. We conclude this article with some
discussion on the implications of this TITE-CRM extension to Phase 1 trials of
combinations of agents.

2. Problem of partial ordering
In trials combining more than one agent, the ordering of the toxicity probabilities between
some combinations is not known prior to the study. This is clearly seen in the simplest case
where we have two drugs at two levels. Suppose that the second level corresponds to an
increase in one of the drugs but a decrease in the other. Then, the ordering of the toxic
probabilities is not known. Returning to multiple combinations and drug levels, some of the
orderings between doses are known, whereas others are not. As a result, the most
`appropriate' dose to which the trial should escalate could consist of more than one treatment
combination. When combinations chosen for investigation follow a partial order, each
combination has associated with it a set of `possible escalation combinations'. For example,
suppose it is known that combinations d2 and d3 are both more toxic than dose d1, but it is
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unknown whether d2 is more or less toxic than d3. If combination d1 is deemed `safe', then
the trial could proceed by assigning the next cohort of patients to either d2 or d3.

Consider the dose-escalation clinical study, discussed in Ranson et al. [5], evaluating the
safety and tolerability of lomeguatrib in combination with temozolomide among patients
with advanced solid tumors. DLT was defined as any of the following: (i) a grade 4
neutropenia lasting longer than 5 days; (ii) a grade 4 thrombocytopenia lasting more than 5
days; (iii) a grade 3 or 4 nonhematologic toxicity grade; or (iv) any drug-related death.
Lomeguatrib was initially fixed at 10 mg/m2/day, and temozolomide was administered in
escalating doses from 50, 75, 100, 125, and 150 mg/m2/day to a maximal dose of 175 mg/
kg. The dosage of lomeguatrib was then escalated from 10 to 20 to 40 mg/m2/day, and
temozolomide was de-escalated to 125 mg/m2/day. Therefore, the trial investigates the eight
drug combinations given in Table I.

The ordering between some of the combinations is unknown. Combination d2 has a greater
dose of temozolomide and the same dose of lomeguatrib as d1, so that the toxicity ordering
between doses d2 and d1 is known. Denoting the probability of a DLT at combination di by
R(di), it is known that R(d1) ≤ R(d2). The ordering for combinations d6 and d7 is not known,
however, asd6 has a greater dose of temozolomide but a lower dose of lomeguatrib than d7.
If we continue to assess the known and unknown toxicity order relationships in this way, it
is straightforward to determine that the following order relationships are known: (i) R(d1) ≤
R(d2) ≤ R(d3) ≤ R(d4) ≤ R(d5) ≤ R(d6); (ii) R(d5) ≤ R(d6); and (iii) R(d7) ≤ R(d8). Taking
into account the subset of drug combinations for which we know the toxicity order, we aim
to formulate the possible orderings of the toxicity profile. In the presence of partial orders,
we want to consider all possible simple orders of the toxicity probabilities that are consistent
with the partial order. For instance, the simple order

is one possible ordering of the probabilities based on the known and unknown toxicity
relationships among the combinations. In the Ranson et al. [5] example, the trial requires the
investigation of the six simple orders given in Table II. In the table, we suppress the `R(·)'
notation and just display the number associated with each combination.

2.1. Models and inference for partial ordering
Wages, Conaway and O'Quigley [3] proposed a method for Phase 1 trials involving partial
orders. Suppose there are M possible simple orders for the toxicity probabilities associated
with the treatment combinations. For a particular ordering, m,m = 1, …, M, we model the
toxicity probability R(di) using a class of models via

(5)

for some working dose–toxicity model ψm(di, a) and a ∈ A. There is a wide variety of
choices for potential working models but the power parameter model given by

(6)

has shown itself to work well in practice. Here, A = (−∞,∞) and 0 < αm1 < … < αmk < 1 is
the skeleton representing the prior estimates of the toxicity probabilities. Further, we can
allow M to be described by a set of prior probabilities p(m) = {p(1), …, p(M)}, where p(m)
≥ 0 and where Σm p(m) = 1. In the simplest case where each possible order is weighted
equally, we would use p(m) = 1/M. The dose for the j th entered subject, Xj, is a random
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variable taking values xj ∈ {d1, …, dk}; j = 1, …, n. After inclusion of the first j patients into
the trial, we have data in the form of Ωj = {x1, y1, …, xj, yj}. If the data are to be analyzed
under ordering m, then the likelihood can be written as

(7)

Under ordering m, we obtain a summary value of the parameter a, in particular the posterior
mean, and we refer to this as . Given the value of  under ordering m, we have an

estimate of the probability of toxicity at each dose level di via: , (i = 1, …,
k). On the basis of this formula and having taken some value for m, we determine the dose
to be given to the (j + 1)th patient, xj+1. Thus, we need some value for m, and we make use
of the posterior probabilities of the ordering given the data Ωj. Denoting these posterior
probabilities by π(m|Ωj) then,

where g(a) is the prior distribution on the parameter a. The estimated values of π(m|Ωj) can
aid us in deciding between models. Wages et al. [3] propose an escalation method that
begins by selecting the ordering with the largest posterior probability π(m|Ωj). In the event
that two or more orderings have the same posterior probability, we will randomly select one
of those orderings. If we use h to denote the chosen ordering, then we use the estimate  to

estimate the toxicity probabilities for each combination under ordering h, ,
i = 1, …, k. We then allocate the next patient to the dose combination with the estimated
toxicity probability closest to the target.

2.2. Time-to-event continual reassessment method in partially ordered trials
Here, we extend the PO-CRM by considering a class of weighted dose–response models,
ϕm(di, w, a) = wψm(di, a) m = 1, …, M, i = 1 …, k, where w is a monotone increasing
function of the patient's follow-up. In the Bayesian framework, we assign a prior probability
distribution g(a) for the parameter a and a prior probability p(m) to each ordering. In order to
get the trial underway, we will choose the ordering with the largest prior probability, p(m),
among the M orderings. If several, or all, of the orderings have the same prior probability,
then we will choose at random from these orderings. Given the starting ordering, the
investigators then choose the starting dose, di. In order to establish running estimates of the
probability of toxicity at the available treatment combinations, we need an expression for the
weighted likelihood for the parameter a. Under ordering m, we give the weighted likelihood
by

(8)

which, for each ordering, we can use in order to generate a summary value, , for a. Given
the set Ωj and the likelihood, we give the posterior density for a by
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Once again, we can use this information to establish the posterior probabilities of the
orderings given the data as

When a new patient is to be enrolled, we choose a single ordering, h, with the largest
posterior probability. Given the ordering h and the working model, ψh(di, a), we can
generate toxicity probability estimates at each level. After having included the j th subject,
we can compute the posterior probability of a DLT for di so that

(9)

The treatment combination xj+1 ∈ {d1, …, dk} assigned to the (j + 1)th included patient is
the dose, di, such that (1) is a minimum.

3. Simulations
3.1. A single trial

To illustrate the proposed method, consider the example given in Section 2 involving k = 8
treatment combinations, d1, …, d8. The partial order associated with this trial has associated
with it six possible simple orders. Suppose the true toxicity probabilities are R(d1) = 0.02,
R(d2) = 0.05, R(d3) = 0.10, R(d4 = 0.20, R(d5) = 0.30, R(d6) = 0.50, R(d7) = 0.70, and R(d8)
= 0.80, which corresponds to ordering m = 1 being the true dose–toxicity order. The targeted
toxicity probability is θ = 0.20, indicating that d4 gives the `correct' treatment combination
for the MTD. As in Cheung and Chappell [2], we defined the MTD with respect to a 6-
month follow-up period with one patient being enrolled every 0.5 month. We implemented
the systematic approach of Lee and Cheung [6] in order to establish the skeleton for the
monotonic order m = 1. Implementing the model calibration algorithm of [6], with a half-
width value of δ = 0.06, yielded the values given in the first line of Table III. We adjusted
the position of these values to correspond to each of the six possible orders consistent with
the partial ordering, and we give these in the remainder of Table III.

For each ordering, we implemented a normal prior, g(a), with mean 0 and variance 1.34, on
the parameter a, as in O'Quigley and Shen [7]. Before entering the first patient, we chose an
ordering by randomly selecting a value from 1 to 6, with each value weighted according to
the prior probabilities, p(m), on the ordering. We assumed that, a priori, we believe that each
of the six simple orders was equally likely and took p(m) = 1/6. Getting the trial underway,
we randomly selected ordering 1, which corresponds to d1 → d2 → d3 → d4 → d5 → d6 →
d7 → d8. Within this ordering, we treated the first entered patient at a level α1i as close as
possible to the target toxicity rate, θ = 0.20, which, for m = 1, is dose d4. Figure 1
summarizes the responses from a simulated trial of 35 patients. We indicate the point at
which a patient enters the trial by an uncircled patient number. We represent the point in the
trial at which a patient suffers DLT by a circled patient number. For instance, patient 8
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enters the trial at month (i.e., study time) 4 and experiences DLT at month 7.5. We can see
that, after we obtain DLT information for patients 1, 6, and 10 at approximately month 6, the
method de-escalates to a lower level. Conversely, in the absence of DLT information
(patients 19 through 24), the method escalates and ultimately settles on d4, which we choose
as the MTD combination at the conclusion of the trial.

3.2. Setup
In this section, we examine the TITE-CRM for partial orders across 10 different toxicity
scenarios. We provide the true toxicity probabilities for each of these scenarios in the lines
labeled R(di) in Tables IV and V as well as graphically illustrated in Figures 2 and 3. In each
scenario, the starting dose was that believed to be the `best' dose, according to which
skeleton value was closest to the target toxicity probability of 0.20 within the ordering that
we initially selected. For scenarios 1–5, in each trial, we followed patients for 6 months, and
a new patient was accrued either on a fixed scheme of every 0.5 month or according to a
Poisson process with a rate of one patient per 0.5 month. For scenarios 6–10, in each trial,
we followed patients for 8 months, and a new patient was accrued either on a fixed scheme
of every 1 month or according to a Poisson process with a rate of one patient per month.
Before entering the first patient, we chose an ordering by randomly selecting a value from 1
to 6 with each value weighted according to the prior probabilities, p(m), on the ordering. In
each set of 1000 simulated trials, we believe that each of the six simple orders is equally
likely and took p(m) = 1/6. The sample size in each simulated trial was n = 35 and n = 30
patients for scenarios 1–5 and 6–10, respectively. For the first five toxicity scenarios, we
modeled the probability of dose-limiting toxic response via the power parameter model, with
the skeletons given in Table III. For scenarios 6–10, we used a different working model. We
again utilized the approach of Lee and Cheung [6] using a half-width value of δ = 0.05 and a
prior MTD at level 3. Again, this algorithm yielded the skeleton values for the ordering m =
1, and these values were adjusted to correspond to each of the six possible orderings. For
each ordering, we implemented a normal prior N(0, 1.34) on the parameter a. In each of the
10 toxicity scenarios, we generated the failure times of the patients under either a
conditionally uniform model or a Weibull model. For the conditionally uniform model, if a
patient experienced toxic side effects, we uniformly generated a failure time on the interval
(0, 6) for the first five scenarios. Similarly, we performed this on the interval (0, 8) for
scenarios 6–10. For the Weibull model, we fixed the shape parameter at a value of 4, as in
Cheung and Chappell [2], and we chose the scale parameters so that the cumulative
distribution function at time T = 6 (or T = 8) would be the probability of toxicity. Cheung
and Chappell [2] used both of these failure time models. Therefore, for each scenario, we
investigated four different applications of the TITE-CRM for partial orders (PO-TITE)
design:

1. PO-TITE (A): we enrolled patients after a fixed time interval, and we generated the
patients' failure times under a conditionally uniform model.

2. PO-TITE (B): we enrolled patients according to a Poisson process, and we
generated the patients' failure times under a conditionally uniform model.

3. PO-TITE (C): we enrolled patients after a fixed time interval, and we generated the
patients' failure times under a Weibull model.

4. PO-TITE (D): we enrolled patients according to a Poisson process, and we
generated the patients' failure times under a Weibull model.

We compared each of these applications with the CRM for partial orders (PO-CRM) of
Wages et al. [3] in terms of the distribution of MTD recommendation and overall trial
duration. Like the CRM, the PO-CRM does not allow for the toxicity information of patients
to contribute to dose recommendation until they have been fully followed. We also compare
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our simulation results against the TITE-CRM for a fully known ordering (denoted in the
simulation tables as TITE) in order to provide a benchmark of how well the proposed design
is performing. For the TITE simulations under a known ordering, we used a fixed accrual
scheme, and we generated the patient failure times under the conditionally uniform model.
We simulated these results using the titesim function in R package dfcrm [8, 9]. It is
unreasonable to expect an approach for a partially known toxicity order to perform as well
as one that assumes a fully known order in all scenarios. However, the proposed method
reduces to the TITE-CRM when the toxicity ordering is fully known, so a direct comparison
is useful in measuring how much information is lost as a result of not having a fully known
order.

3.3. Results
The percentage of simulated trials that each dose was recommended as the MTD for each
application of the method in each of the 10 toxicity scenarios is shown in Tables IV and V.
These tables also show the duration of trials across each of the scenarios. Through
examination of Tables IV and V, it is evident that the PO-TITE design is having a
significant impact on the reduction of trial duration in each of the four applications when
compared with PO-CRM. This reduction was consistent across each of the 10 toxicity
scenarios. For scenarios 1–5, the trial duration under each of the PO-TITE applications was
consistently around 23.5 months, as compared with 210 months when only completely
observed subjects contributed to dose recommendation. For scenarios 6–10, these values
were approximately 38 and 240 months for the PO-TITE applications and PO-CRM,
respectively.

The PO-CRM and the PO-TITE designs are comparable in terms of the percentage of trials
each method correctly recommends the true MTD combination, henceforth referred to as
percentage of correct selection (PCS). In scenario 1, each of the four PO-TITE applications,
as well as the PO-CRM, has a PCS between 53% and 56%. Each of the five approaches has
nearly identical performances in scenarios 2 and 3 as well. Scenario 4 contains the largest
discrepancy between the smallest PCS and the largest PCS among the five approaches
presented. PO-CRM performs better in this scenario, with a PCS of 69% compared with
58% for the poorest performing PO-TITE (D). Even though the PO-CRM outperforms the
PO-TITE design in this scenario in terms of PCS, each of the PO-TITE applications
recommend the MTD or a neighboring combination in a high percentage of trials while
significantly reducing trial duration. Even in cases where the methods perform less well,
they are recommending the MTD combination and a neighboring dose in a large percentage
of trials. For instance, in scenario 5, in 95% of the simulated trials, PO-TITE (A) identifies
treatments as the MTD that have toxicity probabilities between 0.11 and 0.35. Similarly,
93% of the time, PO-TITE (C) the method recommends the MTD to be a treatment with
toxicity probability in the same range. For scenarios 6–10, we changed the observation
window to T = 8 months and the accrual rate to one patient per month. The conclusions of
scenarios 1–5 regarding PCS hold for these five scenarios as well. For each scheme, the four
PO-TITE applications yield a PCS quite close to that of PO-CRM, indicating that we do not
sacrifice performance when attempting to deal with the problem of long trial duration in
partially ordered Phase 1 trials. Tables IV and V also present PCS results for the TITE-CRM
for a fully known ordering (TITE). In some of the scenarios (i.e., 1, 2, 6, 8, and 10), the
partially ordered methods result in a PCS that is very close to that of the TITE. This is an
indication that not much information is being lost as a result of not having a fully known
ordering. In other cases (i.e., 3, 5, and 9), the gap between the PCS of partial order
approaches and the TITE is wider, although the partial order designs are still performing
quite well. These gaps are not unexpected in that we would not expect a design for partial
order to perform as well or nearly as well as a design for a fully known order in every
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instance. However, in general, MTD prediction based on the fully known ordering yields
only a small gain relative to MTD prediction based on partially ordered methods. Overall,
the simulation results of Tables IV and V indicate that the PO-TITE is performing well in
terms of correctly recommending the combinations at and around the MTD, while also
significantly reducing the duration of the trial, for the set of 10 scenarios considered. The
partially ordered designs presented were also similar in regards to the percentages of in-trial
patient allocation, although we do not present the results here for the sake of brevity.

4. Concluding remarks
The goal of the design presented in this article was to decrease the overall duration of Phase
1 clinical trials combining more than one agent. These trials usually involve a partially
ordered dose–toxicity profile. Therefore, we showed how the TITE-CRM can be utilized in
the presence of partial orders by extending the PO-CRM design of Wages, Conaway, and
O'Quigley [3]. We examined the performance of a TITE-CRM design for partial orders, in
terms of reducing the overall trial duration, correctly recommending the true MTD
combination, and treating patients at and around the MTD combination. We then compared
this performance with the PO-CRM. Overall, each of the four TITE applications were
competitive with the PO-CRM in terms of PCS in the 10 toxicity scenarios presented.
However, the PO-TITE design significantly reduced the overall trial duration. We recognize
that this is only a snapshot comparison due to the amount of scenarios considered.
Obviously, it is not possible to look at all situations, but the probabilities chosen reflect a
somewhat wide range of toxicity scenarios. It is clear that the TITE-CRM, even in the
presence of partial orders, does not sacrifice estimation accuracy as a result of shortening the
trial duration.
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Figure 1.
A simulated trial using the TITE-CRM for partial orders.
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Figure 2.
The true dose–toxicity relationships for scenarios 1–5.
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Figure 3.
The true dose–toxicity relationships for scenarios 6–10.
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Table II

Six possible simple orders of toxicity probabilities.

Ordering Simple order

m = 1 1 – 2 – 3 – 4 – 5 – 7 – 6 – 8

m = 2 1 – 2 – 3 – 4 – 5 – 7 – 6 – 8

m = 3 1 – 2 – 3 – 4 – 5 – 7 – 8 – 6

m = 4 1 – 2 – 3 – 4 – 7 – 5 – 6 – 8

m = 5 1 – 2 – 3 – 4 – 7 – 5 – 8 – 6

m = 6 1 – 2 – 3 – 4 – 7 – 8 – 5 – 6
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