Skip to main content
. 2012 Dec 12;6(Suppl 2):S11. doi: 10.1186/1752-0509-6-S2-S11

Table 2.

Performance results for CPD10

CPD10 Prediction method
Feature selection method # of SNP LR SVM RF EN LDA

LR 100 0.7973 0.8128 0.7715 0.8145 0.8078
400 0.8017 0.9289 0.8606 0.9137 0.8966
SVM 100 0.8605 0.8699 0.8295 0.873 0.87
400 0.8474 0.961 0.8961 0.9405 0.9399
RF 100 0.8143 0.8326 0.7999 0.821 0.8206
400 0.7752 0.9164 0.8709 0.8813 0.8669
EN 100a 0.8547 0.8594 0.8273 0.8567 0.8585
250a 0.8621 0.9235 0.8731 0.9046 0.9022
LDA 100 0.7758 0.7801 0.7205 0.7862 0.7814
400 0.7948 0.9283 0.8411 0.911 0.8939

In each column, the best results are shown as underlined. In each row, the best results are boldfaced.