Table 2.
CPD10 | Prediction method | |||||
---|---|---|---|---|---|---|
Feature selection method | # of SNP | LR | SVM | RF | EN | LDA |
LR | 100 | 0.7973 | 0.8128 | 0.7715 | 0.8145 | 0.8078 |
400 | 0.8017 | 0.9289 | 0.8606 | 0.9137 | 0.8966 | |
SVM | 100 | 0.8605 | 0.8699 | 0.8295 | 0.873 | 0.87 |
400 | 0.8474 | 0.961 | 0.8961 | 0.9405 | 0.9399 | |
RF | 100 | 0.8143 | 0.8326 | 0.7999 | 0.821 | 0.8206 |
400 | 0.7752 | 0.9164 | 0.8709 | 0.8813 | 0.8669 | |
EN | 100a | 0.8547 | 0.8594 | 0.8273 | 0.8567 | 0.8585 |
250a | 0.8621 | 0.9235 | 0.8731 | 0.9046 | 0.9022 | |
LDA | 100 | 0.7758 | 0.7801 | 0.7205 | 0.7862 | 0.7814 |
400 | 0.7948 | 0.9283 | 0.8411 | 0.911 | 0.8939 |
In each column, the best results are shown as underlined. In each row, the best results are boldfaced.