Bimodal spectroscopy forin vivo
characterization of hypertrophic skin
tissue : pre-clinical experimentation,

data selection and classification

H. Liu, 1 H. Gisquet?2, W. Blondel,! and F. Guillemin,3

LUniversie de Lorraine 2, avenue de la ftrde Haye, Nancy, 54516, France
2Centre Hospitalier Universitaire de Nancy, 29 Avenue du &thal de Lattre de Tassigny,
Nancy, 54000, France
3Centre Alexis Vautrin, 6 avenue de bourgogne, Vandoeuvre-les-Nancy, 54511, France

*liuhonghui@msn.com

Abstract: This study aims at investigating the efficiency of bimodal
spectroscopy in detection of hypertrophic scar tissue on a preclinical model.
Fluorescence and Diffuse Reflectance spectra were collected from 55 scars
deliberately created on ears of 20 rabbits, amongst which some received
tacrolimus injection to provide non-hypertrophic scar tissue. The spectro-
scopic data measured on hypertrophic and non-hypertrophic scar tissues
were used for developing our classification algorithm. Spectral features
were extracted from corrected data and analyzed to classify the scar tissues
into hypertrophic or non-hypertrophic. The Algorithm was developed using
k-NN classifier and validated by comparing to histological classification
result with Leave-One-Out cross validation. Bimodal spectroscopy showed
promising results in detecting hypertrophic tissue (sensibility 90.5%,
specificity 94.4%). The features used for classification were extracted
from the autofluorescence spectra collected at 4 CEFS with excitations at
360,410andt20nm. This indicates the hypertrophic process may involve
change in concentration of several fluorophores (collagen, elastin and
NADH) excited in this range, or modification in volume of explored tissue
layers (epidermis and dermis) due to tissue thickening .
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1. Introduction

Hypertroply is defined as an increase in tissular volume of an organ, resulting from normal
physiological process [1] or caused by abnormal accumulation of tissular components, such as
hypertrophic scars or keloids occurred on human skin. In the latter case, the excessive growth
of the scar can be of great cosmetic concern when occurring on the face, or result in functional
loss of nearby organs [2]. Hypertrophic scars occurring in all age groups has higher incidence
rate for individuals aged 10-20. They are common in African subjects following a traumatic
event on skin. In some people, keloid may recur spontaneously after treatment.

Cutaneous hypertrophic scars are due to an accumulation of collagen cross-links (accoun-
ting for tissue hardening) and to an overproduction of collagen, raising above the surrounding
skin or growing indefinitely beyond the boundaries of the original wound into a large, tumo-
rous (although benign) neoplasm. Kischer and Brody [3] identified collagen nodules to be the
structural unit of hypertrophic scars and keloids. These nodules, which are absent from ma-
ture scars, contain higher density of fibroblasts and unidirectional collagen fibrils in a highly
organized and distinct orientation. In addition, hypertrophic scars differ from normal skin by
the presence of richer vasculature (depending on scar age), higher mesenchymal cell density,
and thickened epidermal cell layer. Keloidal scars, depending on their maturity, are mainly
composed of either type Il (early) or type | (late) collagen.

At present, clinical examination is the major method for hypertrophic scar tissue diagnosis.
But, involving biopsy and subsequent histological analysis, it is of poor sensitivity and time-
consuming [2]. Removal of the suspected scar tissue, leading to higher skin tension, would
prolong the wound'’s healing and raise the risk of hypertrophy incidence. Thus, a non-invasive
method for characterizing this kind of tissimevivo is of prior interest for both clinicians and
patients.

In the frame of developing non invasive diagnostic methodsnfaivo tissue characteriza-
tion, fibred optical spectroscopy has been widely studied over the last several decades [4—6]. In
contrast to surgical biopsy, the spectroscopic methods don't require any tissue removal. The
principle consists in exploiting tissue-light interactions between near-UV and near-infrared
(NIR) to probe the optical properties of the biological tissiresivo. The main interactions
exploited are absorption, scattering and fluorescence [7]. The resulting intensity spectra are
measured and serve for developing classification algorithms to automatically characterize the
tissue states [8-10].

Light Induced Fluorescence Spectroscopy (LIFS) is one of the most studied spectroscopic
methods for characterizing pathological tissues in cervix [11-13], esophagus [8], breast [14]
and skin [19]. Biochemical and structural modifications associated to disease development
can involve significant changes in intra-cellular and extra-cellular constituents among which
some fluoresce under proper light excitation. These endogenous fluorophores include amino
acids (tryptophan and tyrosine), structural proteins (collagen and elastin), pyridine nucleotides
(NADH and NADPH), flavins and porphyrins. The AutoFluorescence (AF) emitted by these
molecules is modulated by various factors, such as tissular concentration, quantum vyield or
biochemical environment. When pathological phenomena occur, these modulating factors are
modified and change the bulk fluorescence intensity emitted by the tissue. Spatially resolved
Diffuse Reflectance (DR) spectroscopy is another fibred optic technique efficiently applied in
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tissue photodiagnosis vivo [11, 15, 16]. It consists in measuring the light backscattered by
the tissue after multiple scattering and absorption of photons from an incident light over a wide
wavelength band (350-750nm). The spectral features of the DR spectra depend on the scatte-
ring and absorbing properties of the tissue, involving main chromophores such as hemoglobin,
melanin and water. A number of studies have demonstrated that the latter could change signi-
ficantly for different tissue conditions [15, 17]. So, a diagnosis algorithm could be created by
exploiting the optical-property-based spectroscopic features. The tissue depths to which the op-
tical properties can be analyzed are determined by the multiple fiber probe geometry, as well
as the excitation wavelength(s) [14]. Several fibers with different Collecting-to-Exciting Fiber
separation (CEFS) are used for providing various probing depths, but with a limitation to the
superficial layers of the tissue especially for UV-Visible wavelengths (a few hundreds of mi-
crometers). Furthermore, numerous studies [8, 18—20] showed that each of these techniques
separately provides complementary information on the tissue status, but that combining both
(bimodal configuration) can bring superior diagnostic results.

As skin hypertrophy in scar tissues introduces a series of morphological and structural
changes involving several fluorophores and chromophores (namely collagen, elastin, hemo-
globin), we applied bimodal (multiple AF and DR) spectroscopy to diagnose hypertrophic scar
tissues on a preclinical model. An anti-inflammatory drug, whose inhibition effect of hyper-
trophy formation had been tested along with this study, was partially applied to the model.
We obtained not only hypertrophic but also non-hypertrophic scar tissues for spectra measure-
ment. An experimental protocol was strictly followed for ensuring high quality data acquisition.
Specific algorithms were developed for classifying each tissue site automatically based on dis-
criminant spectroscopic features. The efficiency of the method was asserted upon sensibility
and specificity obtained by comparing the classification results with those from histological
analysis.

2. Materials and Methods
2.1. Pre-clinical model

Up to the present, rabbit’s ear is the only animal model that provides reproducible hypertro-
phic scar folin vivo study [36]. Hence, the protocol described in [36] was applied on 20 rabbits’
ears to induce hypertrophic scar for our study. All procedures followed the Helsinki rules and
were approved by the animal regional ethic committee of Northeastern France (january 2009).
In brief (please refer to [23] for details), 20 New Zealand female white rabbits, between 2.5 and
4 kg and aged about 100 days (CEGAV, Les Hautes Noes, France), were kept under standard
condition and fedad libitumfor 2 weeks before the experiment. Then, they were anesthetized
by intramuscular injection of ketamine (45mg/kg) and xylazine (7mg/kg). The ventral sur-
face of rabbits’ ear was shaved and treated with chlorhexidine to avoid wound’s infection. Two
10mm-diameter wounds were created on each ear with help of a circular dye cutter by remo-
ving the underneath perichondrium down to bare cartilage. The wounds were spaced from each
other by 4 cm in order to avoid inter-wound reaction. They had been covered by Tegaderm
dressing (Tegaderm, 3M Health Care, St.Paul, MN) until entirely re-epithelialized. Hypertro-
phic scars appeared basically in 28 days after the initial wounding. An immunomodulator drug
with anti-inflammatory and antifibrinogenic proliferation properties (Tacrolimus), whose effi-
ciency on inhibiting hypertrophic scar formation was investigated in [23], was applied to certain
wounding in order to create non-hypertrophic scar tissues for comparison.

2.2. Spectroscopy instrumentation and measurement protocol

The spatially resolved bimodal spectroscopic system used in the present work was adapted
from the one developed by [19, 20]. In brief (see Fig. 1), it consists of an infrared-filter&d 300
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Xenon arc lamp (PE30-BF PerkinElmer, Eurosep, France) producing excitation light in the
rangeof 350-750nm. The lamp’s output light is focused by a plano-convex lens on the entrance
of a bunch of seven optical fibers (individual core diameter,280numerical aperture 22)
grouped together in a unigue SMA connector. Between the light source and the SMA entrance,
band-pass excitation filters (mounted on a filter wheel) and a couple of linearly variable short-
and long-pass filters (LVF-series Linear Variable Filters, Ocean Optics) are used to configure
the spectral shape of the excitation light for our experimental requirement. The positioning of
all these filters is automated by linear or rotative motorized stages (LTA Long-Travel actuators
and M-UMRS8.51 linear stages, Newport) which are controlled by a dedicated motion controller
(XPS motion controller, Newport). The use of this motion controller allow us programmable
multi-excitation measurements. For DR measurements, a wide band excitation 7360m)

is required. In our experimental set-up, an extra linear motorized stage (Newport) was used
during DR measurements to extend the travel distance of the LVFs so as to free the light path
between the lens and the excitation fiber entrance.

FIG. 1. Schematics of the spatially resolved bimodal fibred spectroscopy set up. 1) Short
arc Xenon Source 2) Heat control filter 3) Plano condenser lens 4) Wide band-pass filter
wheel 5) Combined set of short- and long-pass linearly variable filters 6) Excitation fiber
positioning stage 7) Micrometric translation stages 8) Fiber optics probe (distal tip) 9)
Micrometric stage motor controller 10) Imaging Spectrograph 11) PC computer

In order to explore various tissue depths, 6 fibers were chosen to collect the light re-emitted
by tissue at the 6 following CEFS : 429, 438, 453, 672, 696 and 10800rhese collecting
fibers are connected inline to the entrance slit of a multi-channel spectrometric system (iHR320
Imaging spectrometer, Symphony STE CCD, Jobin Yvon, HORIBA®is system acquires
the intensity spectra coming simultaneously from the 6 collecting fibers, allowing for spatially
resolved measurements. The spectrometer features a diffraction grating groove ofnb%0gr
density, which span the largest measure range (496nm) in keeping a relatively high spectral
resolution (12nm). The spectrograph also features an internal filter wheel with 4 different
long-pass filters alternatively used to eliminate the back-reflected excitation light from detec-
tion during AF measurements (see Table 1). For the present study, 9 narrow intensity peaks
(FWHM= 15+ 2nm) ranging from 360 to 450nby step of 10nmvere chosen for AF measu-
rement, and a wide wavelength range 35000nmwas used for DR measurement (cf. 1). The
latter were automatically configured by loading a preset configuration file. A multi-excitation
measurement on one tissue site, with 3 acquisitions in a row, takes about one minute and leads
to a set of 180 spectra (9 AF and 1 DR spectra acquired 3 times at 6 CEFS).

From a metrological point of view, rigorous calibration procedures are needed to ensure all
measured results are meaningful when compared to each others between individuals or among
time [22]. Table 2 summarizes the main calibration procedures performed on our programmable
light source (including lamp, focusing lens, band-pass filters and excitation fibers of the probe)
and on the detection channels (including sensing fibers of the probe, spectrograph’s filter, dif-
fraction grating and detector). The references of the corresponding calibration devices used for
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TaB. 1. Acquisition parameters of the multichannel spectrometer with Gain = 1.7, ADC
frequency = 20kHz and Slit width = 0.5mm, Output power was measured at the distal tip

of the fiber probe
Integration Excitation Central peak Probe output  Emission Filters
Measurements __
Time (m§ Bands (nm) Wavelength (hm)  Poweiy) Acut—off (NM)
352-368 360 220
400
362-378 370 123
372-388 380 115 435
382-398 390 109
AF 500 392-408 400 120 455
402-418 410 120
412-428 420 101
422-438 430 103 475
432-448 440 103
DR 200 350-700 - 1540 no filter

each metrological configuration are given together with the frequency of application of these
proceduregbefore each measure, daily, monthly). These calibration results served to correct
raw spectra through a series of preprocessing steps detailed in the next section.

TAB. 2. Type of calibration measures performed for the experimental protocol with corres-
ponding calibration devices and application frequencies

Calibration Type Calibrationdevice (references) Frequency
Wavelength calibration of the spectrograph HgAr Lamp (LSP035 HgAr Line Source, LOT) monthly
Intensty response calibration Calibrated Tungsten Lamp (DH-2000, Mikropack) monthly
Background substraction Shuttered light source every 2 hours
Diffuse reflectance standard measurement  Integrating Sphere (ISP-30-6-IRRAD, Mikropack) daily
lllumination energy normalization Power meter (841-PE + 818-UV, Newport) daily

2.3. Histo-Clinical Analysis

After spectra measurement, each tissue site was removed for histological analysis under
conventional optical microscopy. The thicknesses of tissues’ epidermis, dermis, perichondrium
and cartilage were measured for every scar tissue. The dermal lymphocytes and fibroblasts
densities were also examined for evaluating the cellular proliferation of underline tissue. Based
on these measurements, two quantitative parameters were calculated to characterize the tissue
samples : Dermal Fibroblasts Density (DFD) and Scar Elevation Index (SEI) [23]. SEl is a
parameter related to the volume increase of tissue after scarring defined as the ratio between
the scar elevation thicknessséh- hys) over the original thickness g of the skin. DFD was
measured by counting the number of fibroblastsypef in a tissue section. According to these
criteria, all tissue samples were tagged as hypertrophic or non-hypertrophic by two experts.
In short (please refer to [23] for details), mean dermal thickness, SEI and DFD are signifi-
cantly higher in Hypertrophic scars (HT) than in Non-Hypertrophic scars (NHT) with p;j0.05
(Student’s t-Test, n=25). The resulting classification (30 hypertrophic and 25 non-hypertrophic)
was used as gold standard for developing our spectroscopic data-based classification algorithm.
Examples of tissue slices and of rabbit’ear scars are given in Fig. 2.
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(d) 2 scars 4 cm spaced (e) Probe positioning (f) irregular scar

FIG. 2. (a), (b), (c) Images of histological slices for normal and scar tissues (Hematoxylin
and Eosin stains). (d) scars on the ventral side of an anesthetized rabbit’s ear. (e) fiber probe
positioning piece. (f) irregular scar tissue (28 days after surgical wound)

3. Preprocessing of the raw spectra

Firstly, all acquired spectra were subtracted by a background spectrum measured at the same
day with shuttered light source. Then, 3 subsequent spectra obtained under each configuration
(every couple of excitation and CEFS) were averaged to obtain a higher SNR (Signal-to-Noise
Ratio). A median filter with window frame size of 3 points§2nm) eliminated high amplitude
narrow artifacts, while a Savitzky-Golay filter with window size of 25 points Z8@m) elimi-
nated high frequency noises by smoothing the spectra. Each intensity value of a AF spectrum
was multiplied by a corresponding correction factor obtained by the spectral response calibra-
tion procedure (tungsten lamp). The spectrally corrected AF spectra were then normalized to
the illumination power and exposure time for eliminating the influence of excitation intensity
variations [22]. At last, all preprocessed spectra were normalized to their individual maximum
for a line-shape analysis mentioned hereafter.

4. Spectroscopic Data Analysis
4.1. |Initial selection of proper measurement sites

The strong light absorption due to erythema on some tissue sites deformed some acquired
spectra to such an extent that they were not exploitable. Therefore, a revision algorithm elimi-
nating all the data measured on these tissue sites was necessary before performing the spectral
data classification. In general, these over-distorted spectra exhibiting quite different line-shape
have intensity values non-correlated to those measured on most of tissue sites in the same class.
Therefore, the median value of the inter-correlation vector of each spectrum was compared to
a threshold (in our case 70%) so that a spectrum was considered as outlier if the value was
less than the threshold i.e. eliminated from the data pool. By this method, we retained 44 (22
hypertrophic and 22 non-hypertrophic) out of 55 tissue sites for further analysis. The analysis
of the tissue surface photographs and of the histological slice images confirmed the initial as-
sumption that a very high blood level due to inflammatory reaction was found for most of these
11 eliminated sites.
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4.2. Feature extraction

In order to extract discriminant features for classification, we first calculated the mean spec-
trum of each spectra class. The line-shapes of the class mean spectra represent the general
spectral features in each class (intra-class spectra). The comparison of their line-shapes can
help us to reveal discriminant features between spectra of different classes (inter-class spectra).
A discriminant feature should be, for the most part, found in the spectral ranges where the intra-
class spectra has more uniform intensity values and the inter-class ones differ the most. Here,
intensity standard deviation (SD) was used to examine the intensity uniformity of the intra-class
spectra. Fig. 3 shows the mean spectra and SD calculated for the normalized AF intensity spec-
tra excited at 360nrmnd measured at the 5th CEFS (48@). For both HT and NHT classes, the
intensity spectra show a higher uniformity in the range between 400 and &I [0.016,
0.0519]). Hence, a threshold value of 0.05 was fixed for locating these “uniformity” ranges in
all spectra acquired under different system configurations.

0.8 ‘{:&% 0.8

0.6 0.6
04 0.4
0.2 0.2
ol . . . = ol . . . ik
400 450 500 550 600 65 400 450 500 550 600 650
(a) Normal (b) Hypertrophic

(c) Non-Hypertrophic (d) 4 bands segmentation

FIG. 3. Mean+SD peak-normalized spectra excited at 368nm and measured at the CEFS of
438umfor (a) normal (n=22), (b) hypertrophic scar (Hf,= 22) and (c) non-hypertrophic

scar (NHT,n = 22) tissues. (d) Mean AF spectra for hypertrophic (bold line) and non-
hypertrophic (dotted line) tissues excited at 368mmd measured at the 5th CEFS. The
spectra are divided into 4 wavelength bands of 73nm width each (A :385-456nm, B :457-
530nm, C :531-605nm, D :606-679nm) with respective correlation values : 0.943, 0.999,
0.999 and 0.866.

For locating the wavelength ranges where inter-class spectra (AF and RD) differ the most,
another algorithm was developed based on the comparison of mean spectra correlations. Indeed,
when two data sets are different, they must be independent and have relatively low correlation.
Thus, we divided the class mean spectral curve into several pieces of equal size and analyzed
locally their differences by calculating piece to piece their intensity correlation. As can be
seen in Fig. 3, the ranges where the class mean spectra differ more from each other have low
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correlation values (in the frames of A and D). On the other hand, the piece lengths defined
for the correlation comparison can vary for revealing spectral differences at various scales.
So, the mean spectra were segmented using various sizes (4 to 73 nm) and the piece to piece
correlations were calculated at these different scales. A correlation threshold val98 ofes

used to consider a wavelength range as “discriminant”, and therefore of interest for carrying
out the final feature extraction.

Interesting spectral features to be exploited can be either intensity absolute values or any
other parameters representing the spectral line-shape like : mean intensities, under-curve areas,
intensity or area ratios, slopes [18-20]. In a number of studies, statistical methods like Principle
Component Analysis (ACP) have also been applied to the entire spectra in order to decompose
the spectra into a linear combination of orthogonal basis (uncorrelated) spectra called Principal
Components (PCs) [8, 24]. The first PC accounts for the spectral features that represents the
most variation of the original data, and the subsequent ones represent features with progres-
sively smaller variance. To describe a specific spectrum, a linear combination of PCs is used,
with each PC weighted by the appropriate PC score. Typically, the value of these PC scores
are used in classification but their complexity (linear combinations of numerous raw spectral
intensities) is finally not easy to deal with, especially when it comes to the discussion on the
signification of a limited exploitable number of intensity points.

The feature extraction implemented here addressed spectral features characterizing the line-
shape of the normalized spectra of different tissues groups. Thus, the spectral slope was thought
to be more interesting to exploit than other features and used alone as classification features.
For calculating the slopes in each wavelength range, a linear least-square method was used to
determine a line that has the best fit to the spectral curve spanning range. Finally, 486 slope
characteristics in total were extracted from spectra (9AF + DF) measured for each scar site.

4.3. Feature selection

As presented in [25], though many candidate features are introduced to better represent
the class domain due to unknown underlying class probabilities, the irrelevant and redundant
features potentially present in the data set may affect the learning algorithm and reduce the
classification performance. In addition, the large size of the 486-variables data set makes
the classification problem more complicated, time-consuming, and yield a poor generalizing
capability. A non-parametric significance statistical test (Mann-Whitney-Wilcoxon) was first
applied to each feature, so as to examine whether its distribution was significantly independent
for the two underlined classes. After this step, we obtain a subset of 112 features whose
distribution was significantly independent for the different classes. Then, a heuristic method of
stepwise regression was implemented for further feature selection. We started with a forward
iterative selection procedure, during which variables were added one by one into the underline
subset. The added feature remained in the subset if it enhanced the classification accuracy
in terms of increasing the under-curve area in a Receiver Operating Characteristic (ROC).
Otherwise, the feature was discarded. The iteration ended up when all features had been tested
once. Afterward, the features in the resulting subset were discarded one by one, in order to
examine if their abandoning would reduce the classification accuracy. If so, the discarded
feature was included again in the subset, and otherwise definitely eliminated from the pool. At
the end of these consecutive selection procedures, only 4 features were retained for the final
classification (see Table 3).

#171682 - $15.00 USD Received 29 Jun 2012; revised 27 Sep 2012; accepted 28 Sep 2012; pub. 16 Nov 2012
(C) 2012 OSA 1 December 2012 / Vol. 3, No. 12/ BIOMEDICAL OPTICS EXPRESS 3286



TAB. 3. Set of the 4 selected slope features used for classification

Excitation AF emission feature F
CEFS um)
wavelength (nm)  wavelength bands (nm)
429 368 484—-531 F1
438 410 528 — 599 F2
453 420 532.5-591.5 F3
672 410 626 — 648 F4

4.4. Supervised classification

Theefficiency of a regularized linear classifier (Fisher’s Linear Discriminant Analysis, LDA)
and a non-regularized non-linear classifier (k-Nearest Neighbors, k-NN) were comparatively
tested in the present study. Considering a linear combination of the characteristics, the first
method aims at splitting the high-dimensional input space with a separation hyperplane. This
separator is found by maximizing the ratio of between-class variance to the within-class va-
riance. LDA can handle classification problems where the within-class frequencies are unequal
and is well-regularized even when the data dimension is large such as in [19]. As for the k-NN, it
provides non linear decision boundaries. It projects data of a test sample onto a multidimensio-
nal feature space consisting of the data from a labeled training set. The test sample is assigned
with the most found class in its neighborhood including the k nearest training samples. This
technique is simple and can deal with problems where data are totally confused. In addition, it
can offer a good classification accuracy for low dimension problems which may be the case in
our study, because the number of features was efficiently reduced in previous steps [18].

Leave-One-Out (LOO) cross-validation method [16, 19, 26] was performed to obtain unbia-
sed classification results. In practice, one tissue site is excluded from the data set and k-NN
(with k = 1) or LDA classifier is applied to the rest of this data set to generate a classifying
scheme. The resulting scheme is then used to classify the previously excluded site. The classifi-
cation result is compared to that obtained by the gold standard, such as histological analysis. We
note 1 if the tissue site was correctly classified, and 0 otherwise. This process was repeated until
all sites were excluded and tested once. The classification efficiency was asserted upon Sensibi-
lity (Se) and Specificity (Sp) calculated by the ratio of well classified to total tissue sites.Finally,
we obtained the following results for each classifi€e= 85.7% andSp= 94.4% for LDA,
Se=905% andSp= 944% for k-NN. The k-NN method gave the highest positive predictive
and negative predictive values of 94.2% and 90.8% respectively.

5. Discussion

Looking at the final 4 most discriminant spectral features F1-F4 in Table 3, it can be noti-
ced that none of them is relative to DR spectra. This observation implies the light absorption
and diffusion due to chromophores (such as melanin and hemoglobin) do not contribute to the
changes in DR spectra in a significantly enough way for differentiating between HT and NHT
tissues. On the contrary, the absorption and scattering effects may partially contribute to dis-
criminant changes in AF spectra. The curve-shape distortions dfi tfieo AF spectra can be
associated to changes in namely structural organization of the Extra-Cellular Matrix (ECM),
blood volume, oxygen saturation of hemoglobin and mean depth of blood vessels and related
to hypertrophic and non-hypertrophic cicatricial skin tissues. The 4 selected slopes are those
of AF intensity spectra collected at excitation wavelengths 360, 410 and 420 nm, which puts
forward their specific discrimination efficiency and also the relationship between hypertrophic
tissues and the constitutive fluorophores excited at these wavelengths.
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TAB. 4. AF emission wavelength peaks and bands reported in the literature for main skin
endogenous fluorophores in epidermis and dermis (corresponding embedded layers in last
row) excited at wavelengths 370, 410 and 420 nm.

Excitation AF emission wavelength peaks and bands)(nm
wavelength (nmh NADH [4,27,28]  Flavins[4]  Porphyrins [4]  Collagen [27,29]  Elastin [29,30]  Keratin [28,31, 32]
370 450-470 530-550 460 470 475
410 450-470 530-550 635, 670 490 480
420 450-470 530-550 635, 670 490 480 500
Embedded place cells cels cells dermis dermis epidermis

Table 4 summarizes AF emission wavelength peaks and bands of the main skin fluorophores
reportedby previous studies using excitations around 370, 410 and 420nm. The epidermis is an
avascular stratified squamous epithelium in which keratinocytes form the major proliferating
cellular constituent. The dermis is a highly vascularized conjunctive layer in which assemble
the collagen and elastin fibers into dense arrays [19, 20]. In hypertrophic skin, the tissue over-
growth is related to increased metabolic activity. Flavins and NADH, two major intra-cellular
co-enzyme involved in metabolism mechanisms with emission peak respectively at a888nm
460nm, are interesting for targeting this mechanism change [4, 27, 28]. Porphyrins are inter-
mediate products in the cellular cycle characterized by two emission peaks at 635 and 670
nm [4]. Using spectral imaging to investigate the morphological structure changes in hypertro-
phic tissues, Chen et al. [21] found that collagen fiber network was disorganized and disrupted,
resulting in a lower level of second harmonic generation signal on the fluorescent image. The
distribution of elastin fibers was also disrupted but accumulated in a higher quantity in hyper-
trophic tissues thus generating more intense fluorescence. Collagen and elastin are structural
proteins constituting the extracellular matrix in dermis. Their cross-links have a relatively high
guantum efficiency compared with their monomers [37]. Cross-linking of fibrils is the origin
of collagen fluorescence which emission peak (460 to 500nm) shifts with excitation (370 to
420nm). Same observation has been reported for elastin with emission peak shifts from 470 to
500nm.

When looking at the excitation-emission wavelength combinations relative to our discrimi-
nant features shown in Table 3, we could make some potential links between the information
carried by :

— F1 and the biochemical changes in the epidermis (relative to keratin), in the dermis (elas-

tin), and in both layers (flavins),

— F2 and F3 together, and changes relative to keratin in the epidermis, collagen in the dermis,

and mainly flavins and lipopigments in both layers,

— F4 and the modifications associated to porphyrins in the epidermal and dermal cells.

It is worth noting that the 3 shortest feature-relative CEFS are close from each others (429,
438 and 4531m). Indeed, for spatially resolved spectroscopy, using multiple collecting fibres
at different CEFS can explore various tissue depths. For instance, it has been reported that
using a CEFS of 25@m allow excitations in the wavelength range 33400nmarrive at
depths of 225- 250um in skin tissues [33, 34]. [35] mentioned the maximum probing depth
in an homogeneous medium (localizedC&F S/2) can be defined a&ax= CEFS2v/2. The
Fig. 4 synthesizes the mean thickness (+SD)of epidermis and dermis measured for healthy,
hypertrophic and non-hypertrophic samples, and the corresponding maximal exploring depths
of our collecting probes defined by the aforementioned equation at feature-relative excitation
wavelengths (below 420nm). It can be noticed that the 4 most discriminant features are obtained
for the 4 firsts CEFS (429, 438, 453, 6n) among those tested here, offering a probing
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FIG. 4. Schematic representation of the correspondences between mean thicknesses mea-
sured for healthy, hypertrophic (HT) and non-hypertrophic (NHT) tissue samples and the
maximum penetration depth of excitation lights below 420mnelation with the two main
discriminant CEFS 440 and 6ptn

depth between 203 and 308 (see Fig. 4). In this probing depth, dermis accounts for the
major part in healthy tissue. However, during the scarring process, both epidermis and dermis
thickness increases for hypertrophic and non-hypertrophic tissue. With this structural change,
the exploring tissue portion changes and exhibits in the form of measured spectral line-shape,
because fluorophores embedded in dermis give less and less contribution to the measured AF
spectra.

The difference in fluorescence intensity between HT and NHT can also be reflected on the
extracted features, though it is not as evident as on the images. This may be due to compen-
sation of intensity contribution of two fluorophores excited (collagen and elastin) and emitting
fluorescence in the same wavelength range [21]. Therefore, it could be interesting to test other
spectral features, such as intensities ratio, for which the difference might be more pronounced.
This could further enhance the classification performance. The obtained results corroborate
the fact that morphological modifications in the matrix fiber network observed through a point
spectroscopy modality may be a good tool to help the clinician for identifying scared skin tissue
boundaries or for tracking skin scar formation.

6. Conclusion

In this study, the efficiency of bimodal (multi-AF and DR) spectroscopy was investigated
in the detection of hypertrophic scar tissue on a preclinical model. A specific feature extrac-
tion and selection algorithm was developed and validated on our spectral data for classifying
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hypertrophic and non-hypertrophic tissues, giving a sensibility of 90.5% and a specificity of
94.4%.Interpretation has been given relative to the discriminant features found by our extrac-
tion/selection methods. To our knowledge, this is the first use of spectroscopic methods on
hypertrophic scar tissue. Considering this relative high diagnostic accuracy, our methods and
findings can complete the future usage of spectroscopy in clinical dermatology.
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