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Abstract: An ultrafast frequency domain optical coherence tomography 
system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan 
rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In 
the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 
MHz. Two optical demultiplexers at a center wavelength of 1310 nm were 
used for linear-k spectral dispersion and simultaneous differential signal 
detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-
off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, 
respectively. Using FPGAs for FFT and a GPU for volume rendering, a 
real-time 4D display was demonstrated at a rate up to 41 volumes/second 
for an image size of 256 (axial) × 128 × 128 (lateral) voxels. 
© 2012 Optical Society of America 
OCIS codes: (100.6890) Three-dimensional image processing; (110.4500) Optical coherence 
tomography; (170.4500) Optical coherence tomography. 
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1. Introduction 

Optical coherence tomography (OCT) is a prominent biomedical cross-sectional tissue 
imaging technique that enables noninvasive, micrometer-resolution measurements [1]. High 
speed is required for many OCT applications, such as the scanning of larger tissue surfaces, 
e.g., the esophagus [2], colon [3], or coronary vessel [4], within a limited inspection time. If 
one can observe the real-time 3D display as a video of OCT images (i.e. video-rate real-time 
4D OCT) at the same time with conventional endoscopic imaging in some of these 
applications, real-time biopsy with accurate locational registration may become possible. 
Another application, where real-time 4D OCT is required, is observing the time-variation of a 
3D tissue structure, such as studying the developing embryonic hearts of small animals [5–8]. 
For applications, such as image-guided biopsy [9], surgery [10,11], or localization of a probe 
in tissue [12], it is essential to obtain feedback in real time with high-speed 4D OCT imaging, 
preferably at a video rate. These examples show that video-rate real-time 4D OCT is required 
in many currently developing applications. It may also be applied to other new OCT 
applications, such as high-speed industrial inspection, once it becomes available. 

For real-time video-rate 4D OCT to display 3D volumetric images faster than 24 
frames/second (fps), and each image to be rendered from a 3D volume composed of 
preferably more than 100 × 100 lateral A-scans, an OCT system faster than about a 240 kHz 
A-scan rate and 2.4 kHz B-scan frame rate is required. OCT systems with such high speeds 
have already been developed. With the ultrafast swept source (SS) OCT method, Huber et al. 
developed a buffered Fourier domain mode locking (FDML) swept source at a 370 kHz A-
scan rate [13]. Oh et al. developed a swept laser using a high-finesse polygon-based 
wavelength-scanning filter and a short-length unidirectional ring resonator. They 
demonstrated a >400 kHz A-scan rate [14]. Postsaid et al. demonstrated imaging at 100–400 
kHz A-san rates by buffering a commercially available swept laser operated at a 100 kHz scan 
rate [15]. Wieser et al. demonstrated a 5.2 MHz A-scan rate FDML-type swept sources [16]. 
Klein et al. demonstrated an FDML-type swept laser at a 1.37 MHz A-scan rate [17]. Bonin et 
al. used a swept laser as the source of a full-field OCT system using an area CMOS camera 
for frame detection. 3D volume data of 512(axial) × 640 × 24(lateral) voxels were acquired at 
a rate of 100 volumes/second, corresponding to an effective A-scan rate of 1.5 MHz [18]. 

Ultrafast spectral domain OCT (SD-OCT) systems have also been developed. Potsaid et 
al. developed an SD-OCT at an A-scan rate of 313 kHz using an ultrahigh speed CMOS line 
camera [19]. An et al. used two high speed line scan CMOS cameras, each running at 250 
kHz, and demonstrated a 500 kHz A-line rate in their SD-OCT system [20]. Wang et al. 
developed a megahertz streak-mode Fourier domain OCT (FD-OCT) system. They imaged 
the whole spectrum on an area-scan CMOS camera as a line, which corresponded to an A-
scan, and scanned the linear A-scan image with a 1 kHz resonant scanner synchronously to 
the probe beam scanner, which conducted B-scan [21]. As a result, an effective 1 MHz A-scan 
rate was demonstrated. Choi et al. developed an SD-OCT system at a 60 MHz A-scan rate 
using optical demultiplexers for spectral dispersion for simultaneous parallel detection of an 
A-scan spectrum [22]. 

The above-mentioned OCT systems are fast enough to achieve video-rate real-time 4D 
OCT. However, no installation of a real-time 4D OCT display was reported in these ultrafast 
OCT systems. Additional ultrafast data processing is required to meet such an ultrafast A-scan 
rate. There have been efforts to increase the processing speed of FD-OCT by installing 
additional processors to the conventional configuration based only on a personal computer 
(PC), such as a multi-core PC, a digital signal processor (DSP), field programmable gate array 
(FPGA), and/or graphics processing unit (GPU). 
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The A-scan processing rate was accelerated with a multi-core PC, DSP, and FPGA. Liu et 
al. analyzed the real-time processing power with a quad-core PC and showed that it could 
provide real-time OCT data processing ability at an A-scan rate of more than 80 kHz. The 
actual SS-limited A-scan rate was 20 kHz [23]. Su et al. used a pair of digitizers and a DSP. 
Estimated performance supported an A-scan rate of 90 kHz, although the SS-limited A-scan 
rate was 20 kHz [24]. By using an FPGA, Ustun et al. achieved a real-time B-scan frame rate 
of 27 fps, which was CCD-camera-limited [25]. Their real-time process included background 
subtraction (BGS), spectrum interpolation for re-scaling in k-space (RSK), high pass filtering, 
dispersion compensation (DSC), and fast Fourier transform (FFT). Desjardins et al. used two 
FPGAs at an A-scan rate of 54 kHz and achieved a real-time B-scan frame rate of 5 fps [26]. 
Processing included BGS, demodulation with low–pass filtering, DSC with a spline 
algorithm, and FFT. 

2D B-scan frame rate at a video rate was demonstrated using a GPU. Watanabe and 
Itagaki installed a GPU with a linear-k spectrometer, which eliminated RSK processing. They 
demonstrated a camera-limited B-scan frame rate of 27.9 fps [27]. The GPU processed 
numeric data type conversion (a 16-bit integer to a 32-bit float) and logarithmic scaling 
(LOG), as well as BGS and FFT. Later, Watanabe et al. extended the depth range by 
introducing a complex conjugate removal process and achieved a real-time B-scan frame rate 
of 27.23 fps [28]. Jeught et al. used a GPU and achieved a real-time B-scan frame rate of 25 
fps, which was limited by a camera rate of 25.6 kHz [29]. Their calculation included 
processing of BGS, RSK, and FFT. The frame rate was achieved with all four different RSK 
methods; nearest neighbor, linear, linear spline, and cubic spline interpolations. Zhang and 
Kang implemented fast Gaussian gridding-based non-uniform fast Fourier transform 
(NUFFT) on the GPU architecture and demonstrated a real-time B-scan frame rate of 29.8 fps 
[30]. They showed that NUFFT improves sensitivity roll-off, higher local signal-to-noise 
ratio, and immunity to side-lobe artifacts caused by RSK. Li et al. compared fractional 
processing times of BGS, RSK, DSC, FFT, LOG, and the memory (data) transfer (host (PC)-
to-device (GPU) and device-to-host) to find that the memory transfer required approximately 
60% of their processing time [31]. DSC and FFT required 24 and 8%, respectively. Their 
system’s effective A-scan rate was ~110 kHz. 

Nearly real-time visualization of 3D volume at a rate of 7.2 rendered volumes/second 
(512(axial) × 80 × 380(lateral) voxels) was demonstrated by Probst et al. with a linear-k 
spectrometer coupled to a surgical microscope [32]. In their system, a PC performed 
processing (BGS, apodization (APD), FFT, etc.) to generate the OCT data, which were then 
transferred from host to device within 11 ms. The 3D rendering calculation by GPU took only 
5 ms. Sylwestrzak et al. conducted both data processing (BGS, RSK, DSC, APD, FFT, and 
LOG) and 3D rendering by using a GPU [33]. They displayed 3D volume images (1024(axial) 
× 100 × 100(lateral) voxels) at a rate of 9 volumes/second in real time. Zhang and Kang 
attained a real-time 3D display at a volume rate of 10 volumes/second (1024(axial) × 125 × 
100(lateral) voxels) in their GPU-based system, which eliminated DSC processing [34]. Later, 
they extended their work to a dual GPU architecture [35]. One GPU was dedicated to data 
processing while the second one was used for volume rendering and display. They displayed 5 
volumes/second real-time full-range 3D OCT images (1024(axial) × 256 × 100(lateral) 
voxels) and micro-manipulation of a phantom model. 

These accumulated studies with both SS-OCT and SD-OCT systems suggest the capability 
of a real-time video-rate 4D OCT imaging by installing GPU-processing in an ultrafast FD-
OCT system. 

For this research, we developed an ultrafast SD-OCT system at multi-MHz A-scan rates 
and installed an ultrafast data processing system using FPGAs and a GPU to demonstrate a 
video-rate real-time 4D-OCT system. Arrayed-waveguide grating (AWG)-type optical 
demultiplexers (ODs) for linear-k spectral dispersion in the 1310 nm wavelength region 
enabled simultaneous detection of all interference signals at 320 wavelengths with a 14-bit 
resolution multi-channel data acquisition (DAQ) system at a speed of 50 MHz, which 
determined the fastest possible A-scan rate. However, the real-time processing is not possible 
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at this sampling rate due to the limitation of the processing system. At least five 50 MHz A-
scans were added to match the actual maximum A-scan rate to the 10 MHz response time of 
photoreceivers. The specifications of AWGs are described in detail in section 2.2 in this 
paper. The system configuration of the ultrafast data processing system, which is comprised of 
a multi-channel DAQ system with multi-FPGAs and a PC with a GPU board, is explained in 
detail in section 2.3. To attain ultrafast processing, FPGAs performed preprocessing (BGS, 
APD, and FFT) to generate volumetric OCT data and the GPU performed 3D rendering. The 
software design for real-time image manipulations, such as zooming, rotating, and cutting at a 
surface, is explained in section 2.3. Results of real-time 4D display performance are discussed 
as well as the capability of 4D-video recording for a long duration in section 2.4. To 
overcome the weak reference signal at individual photoreceivers and intensity loss by AWGs, 
a semiconductor optical amplifier (SOA) was introduced to enhance effective sensitivity. The 
performance evaluation of our SD-OCT system by the point spread function (PSF) to 
determine image dynamic range, sensitivity, and sensitivity roll-off is discussed in section 3.2 
and 3.3. A few examples of both real-time and recorded 4D images are given in section 3.4. 

2. Experimental setup 

2.1. System configuration 

The experimental configuration of our system is shown in Fig. 1. We designed our SD-OCT 
system to be capable of an ultrafast A-scan rate up to 10 MHz and display real-time 4D OCT 
video at a video rate. We also intended to record 4D OCT images for a long duration at a 
volume rate even faster than the standard video rate. The strategy to achieve ultrahigh speed 
was to acquire an A-scan signal at all the k-values simultaneously with parallel photoreceivers 
and an analog-to-digital (A/D) converter array. Then, the A-scan rate is fundamentally 
determined by the speed of the A/D converter array. The use of two ODs (OD+ and OD−) 
enables such a parallel detection. The concept of an ultrafast SD-OCT configuration was 
already reported in our previous work in the wavelength region of 1550 nm [22]. In this work, 
we designed a system in the 1300 nm wavelength region, which is more suitable for most 
biological tissue imaging, and added the capability of real-time 4D display. We designed our 
ultrafast data processing system using FPGAs and a GPU board to attain real-time 4D display 
and long-time 4D image recording. 

The light source of the system is a combination of a superluminescent diode (SLD) 
(Covega, Jessup, USA), a semiconductor optical amplifier (SOA1) (Thorlabs Quantum 
Electronics, Jessup, USA), and an optical filter (FIL) (a custom product of Alnair Labs, 
Tokyo, Japan), as shown in Fig. 1. A polarization controller PC (Thorlabs Japan, Tokyo,  

 
Fig. 1. Experimental configuration of our system. In inset (a), spectral shape of light at output 
of FIL is shown. 
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Japan) and a polarizer (POL) (Optoquest, Ageo, Japan) were used to adjust the wavelength of 
the maximum output power to be near the center wavelength of the ODs. The purpose of the 
FIL was to eliminate light with wavelengths outside the principal free spectrum range (FSR) 
of the ODs, as explained below. The output spectral shape from the source assembly, 
measured at the output of the FIL, is shown in inset (a) in Fig. 1. The total output power was 
27.5 mW. The vertical broken lines indicate the boundary of the principal FSR of the ODs. A 
few channels near both sides of the FSR were affected by the roll-off characteristic of the FIL. 

The OCT interferometer has a Mach-Zehnder configuration. The light out of the FIL was 
divided using a coupler (C1) (Opneti Communications, Shenzhen, China) into a sample arm 
(SA) and reference arm (RA). The splitting ratio of C1 was chosen between 50:50 and 90:10 
depending on the experiment. The light in the SA was directed to either one of two sample 
probes, which differed in the B-scan rate, using a circulator (CRS) (Opneti Communications, 
Shenzhen, China). One probe was for a 4 kHz B-scan rate and comprised of a collimator 
(CLS) (FH10-IR-APC, Newport Corporation, Irvine, USA), a 4 kHz resonant scanner (RS) 
(General Scanning, Billerica, USA), a Galvano mirror (GM) (6220H, Cambridge Technology, 
Lexington, USA), and an achromatic-doublet objective lens (OLS) with a focal length of 70 
mm. The other probe was for an 8 kHz B-scan rate and comprised of a CLS (F280APC-C, 
Thorlabs), an 8 kHz RS (General Scanning), GM (6215H, Cambridge Technology), and an 
OLS with a focal length of 30 mm. For the 4 kHz probe, the beam diameter at the output of 
the CLS was about 8 mm, the transverse resolution at the focal point was 15 μm, the confocal 
parameter was 260 μm, and the beam diameter at the position apart from the focal point by 2 
mm, (half the depth range), was 230 μm. For the 8 kHz probe, the respective values were 3.3 
mm, 15 μm, 270 μm, and 220 μm. 

The back-scattered or back-reflected light from the sample was collected by the 
illuminating optics and directed from the CRS to an SOA (SOA2) (Thorlabs Quantum 
Electronics, Jessup, USA). SOA2 had a center wavelength of an amplified spontaneous 
emission (ASE) at 1305.8 nm, optical 3 dB bandwidth of 86 nm, small signal gain of 34.6 dB, 
and saturation output power of 17.8 dBm. Usually, strong ASE light is emitted out of an SOA. 
In fact the SOA2 emitted an intensity of 70 mW out of the input port. However, the CRS 
effectively works as an isolator and it was attenuated to 820 nW and 6.6 nW at the 
output/input port and input port of the CRS, respectively. They made negligible effect to 
system performance. The output of SOA2 was directed to a coupler (C2) (Opneti 
Communications, Shenzhen, China) of a 50:50 splitting ratio. We did not use an additional 
optical filter to eliminate ASE light outside the principal FSR of ODs. The noise due to ASE 
light made negligible contribution compared with the beat noise which determined the noise 
floor of the present experiment as explained in section 3.2. A polarization controller (PCS) 
(Thorlabs Japan, Tokyo, Japan) was used to adjust the signal polarization. In the RA, a 
circulator (CRR) (Opneti Communications, Shenzhen, China), collimator (CLR) (FH10-IR-
APC, Newport Corporation, Irvine, USA), achromatic-doublet objective lens (OLR) and a 
reference mirror (RM) were used to balance the optical path length difference between the SA 
and RA. The output of the CRR was directed to C2. An adjustable aperture was placed 
between the CLR and OLR to regulate the power directed to C2. A polarization controller 
(PCR) (Thorlabs Japan, Tokyo, Japan) was used to adjust the polarization of the reference 
light. 

The two outputs of C2 were directed to OD+ and OD−, respectively. Detailed 
specifications of the ODs are explained below. They output data at 320 channels of different 
optical frequencies with an equal adjacent interval. An array of 320 balanced photoreceivers 
(PDs) (2117, New Focus, San Jose, USA) detected the outputs from the ODs. Optical signals 
output from the same channel number of ODs were differentially detected by each 
photoreceiver. The PD array output 320 electric signals, which were detected and processed 
using our ultrafast data processing system, the function of which is explained below. 
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2.2. Optical demultiplexer 

Three main advantages of using ODs in an SD-OCT system are an ultrafast A-scan rate, 
reduced sensitivity roll-off, and linear-k spectral detection. The disadvantages are a limited 
spectral coverage, high-cost, and stronger attenuation of light compared with a diffraction 
grating. Because usage of ODs in SD-OCT is not yet common, we describe the characteristics 
of our ODs a little more in detail. AWGs were used for this experiment as ODs. A schematic 
of an AWG is given in Fig. 2. Each output from C2 in Fig. 1 is directed to the input port of an 
AWG. The input slab guide directs input light to a set of arrayed waveguides. The arrayed 
waveguides consist of optical paths that mutually differ in path length. In the output slab, light 
output from the set of the arrayed waveguides is collected. Due to interference of light passing 
through optical paths of different lengths, light is dispersed into different wavelengths at the 
output surface of the output slab. A wavelength range of light is directed to an optical fiber. 
By suitably designing the wave guides, frequency (wave number) intervals between adjacent 
fiber outputs can be made equal, i.e., a linear-k interferometer is fabricated. The multi-output 
by optical fibers enables simultaneous detection of the set of outputs leading to an ultrafast A-
scan rate. The spectral width of a nearly Gaussian band-pass characteristic at each output is 
narrower than the frequency interval between the adjacent channels and allows an effectively 
long coherence length of the SD-OCT system. We can find explanation of the fundamental 
technology of AWG in the book by Okamoto [36]. 

 
Fig. 2. Schematic of arrayed waveguide grating (AWG)-type optical demultiplexer. 

In our former work, we used AWGs in the 1560 nm wavelength region [22], which is a 
standard in telecommunication technology. In OCT, the 1300 nm region is more suitable for 
most of tissues. We asked NTT Electronics (NEL, Yokohama, Japan) to design and 
manufacture custom planar lightwave circuit (PLC)-type AWGs to operate at this wavelength 
region and to achieve a depth range of 4 mm in OCT application. NEL gave us results of test 
measurements, some of which are shown below. Application of an AWG for OCT in the 1300 
nm wavelength region was reported by Nguyen et al., where they imaged the output at the 
surface of the output slab of an AWG onto a line-scan camera using a lens [37]. In their setup, 
the A-scan rate was limited by the 46 kHz speed of the line-scan camera, and a 6 dB roll-off 
of the point spread function was observed at about 0.7 mm, while the depth range was only 1 
mm. Although they used the advantage of linear-k detection in their system, ultrafast detection 
and reduced roll-off capability were not attained. Recently, Akca et al. improved the depth-
range to 4.6 mm and 6 dB roll-off to about 3.2 mm using a polarization-independent AWG in 
their reflectometry [38]. 

An AWG has an FSR, and the best performance is expected in the principal FSR. The 
principal FSR of our AWG was from 1293.42 nm (231.782 THz) to 1327.58 nm (225.818 
THz) and was divided into 320 channels. The spectral coverage of 34 nm (6.0 THz) 
determined the axial resolution limit of 22 μm for a rectangular apodization [39]. 
Dependencies of the optical frequency iν on the channel number i, provided by NEL, are 
shown in Fig. 3. We used two AWGs. The outputs of these OD+ and OD− were respectively 
connected to + and − inputs of the photoreceivers, as shown in Fig. 1. The agreement in the 
characteristics of the two ODs affects the quality of the SD-OCT system. Linear least  
squares fit gave νi = 231.8005 – 0.01869i (THz) with a coefficient of determination of  
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Fig. 3. Dependence of optical frequency on channel number. (a) Optical demultiplexer (AWG) 
OD+, (b) Optical demultiplexer (AWG) OD−. 

R2 = 0.99999998 for both OD+ and OD−. Therefore, the two AWGs are practically identical 
in the frequency characteristic, and the frequency (and therefore the wave number k) depends 
linearly on the channel number, which eliminated RSK in our data processing. NEL’s AWGs 
are thermally tunable. To tune to a practically identical characteristic, the temperatures of 
OD+ and OD− must be controlled to 27.9°C and 44.4°C, respectively. The average frequency 
interval of 18.7 GHz between the adjacent channels determined the depth range of 4.0 mm. 

We now explain the role of the FIL in Fig. 1. We observed the spectra of selected output 
channels from OD+ using an optical spectrum analyzer (AQ6370, Yokogawa, Yokosuka, 
Japan). Without using the FIL, we attenuated the output light from SOA1 with a coupler of a 
90:10 splitting ratio and directed it to the optical spectrum analyzer. Superposed spectra at 9 
channels (1, 40, 80, 120, 160, 200, 240, 280, and 320) are depicted in Fig. 4. The principal 
FSR region is indicated in the figure with an arrow. In the longer wavelength region, signals 
out of channels 1, 40, and 80 were observed. In the shorter wavelength region, the spectrum 
out of channel 320 was observed close to the spectral peak observed at channel 1. Without the 
FIL in the experimental configuration of our system shown in Fig. 1, these signals with 
different wavelengths outside the principal FSR were detected at each channel 
simultaneously. As seen in the difference in separation of the peaks in channels 1 and 320 at 
both sides of the principal FSR, the periodic structure of the spectrum shifted in wavelength 
outside the principal FSR from that inside the principal FSR. Therefore, without the FIL in 
Fig. 1, we observed unwanted side lobes in the PSF signals. 

To measure the agreement in wavelength at corresponding channels of the two ODs, 
spectra at channel 160 were measured for both ODs. The FIL was used in the light source. 
The results are shown in Fig. 5(a); the red and blue lines denote OD+ and OD−, respectively. 
The peak was observed at practically the same position for both ODs. Similar agreement was 
observed for all the selected channels shown in Fig. 4. To estimate the spectral width, the 
OD+ signal is plotted with a linear vertical scale (solid line in Fig. 5(b)). The observed 
spectrum is a convolution of the real spectrum with the resolution function of the optical  

 
Fig. 4. Superposed spectra observed at selected channels (1, 40, 80, 120, 160, 200, 240, 280, 
320) of optical demultiplexer (AWG) OD+. 

(C) 2012 OSA 1 December 2012 / Vol. 3,  No. 12 / BIOMEDICAL OPTICS EXPRESS  3074
#173683 - $15.00 USD Received 2 Aug 2012; revised 18 Oct 2012; accepted 21 Oct 2012; published 1 Nov 2012



 

Fig. 5. (a) Spectra observed at 160-channel of two optical demultiplexers; OD+ : red, OD−: 
blue. (b) Plot of spectrum observed at channel 160 of optical demultiplexer OD+ with linear 
vertical scale. 

spectrum analyzer. We observed a spectrum at four different resolutions of the analyzer and 
obtained the value of ~0.05 nm for the spectral width from extrapolation to zero resolution. 
The spectral shape shown with as the broken line in Fig. 5(b) is a rough approximation of the 
real spectrum, obtained by shrinking the observed spectral shape in the horizontal direction to 
~0.05 nm width. The spectral shapes shown as the thin black lines in Fig. 5(a) are drawn 
similarly. In the logarithmic vertical scale, it is almost overlapped with other curves. The 
narrow width compared with the wavelength interval between the adjacent channels 
effectively makes our system a frequency comb detection system. We demonstrated 
improvement in sensitivity roll-off [22]. Bajzraszewski et al. also demonstrated a noticeable 
improvement in sensitivity roll-off in their SD-OCT system using an optical frequency comb 
source [40]. 

The attenuation of light by the AWGs was also provided by NEL for all the channels. 
Dependencies on the channel number are shown in Fig. 6. Figures 6(a) and 6(b) show OD+ 
and OD−, respectively. A light source of narrow spectral width (81600B Tunable Laser 
Source, Agilent, USA) was used for the measurements. The minimum values were 3.21 and 
2.98 dB for OD+ and OD−, respectively. The maximum values were 6.56 and 6.50 dB for 
OD+ and OD−, respectively. The attenuation increased as the channel approached both sides 
of the principal FSR. The variation is not monotonous and modulates the amplitude of the 
interference fringe of OCT. The modulation must be corrected in data processing. Strong 
attenuation by an AWG compared with that of a diffraction grating is a disadvantage in using 
an AWG for OCT. For example, attenuation by using a grating from Wasatch Photonics 
(Logan, USA) can be less than 0.5 dB. Attenuation by using an AWG also occurs due to the 
pass-band characteristic shown in Fig. 5(b) for a continuous light source. The portion of light  

 
Fig. 6. Dependence of attenuation on channel number are shown for (a) optical demultiplexer 
OD+ and (b) optical demultiplexer OD−. Dependence of non-adjacent background crosstalk on 
channel number are shown for (c) optical demultiplexer (AWG) OD+ and (d) optical 
demultiplexer (AWG) OD−. 
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indicated by the pink area in Fig. 5(b) is lost. This leads to about 3 dB attenuation at all the 
channels. 

The non-adjacent background crosstalk provided by NEL is shown in Fig. 6. Figures 6(c) 
and 6(d) show OD+ and OD−, respectively. The average values are −32.51 and −34.99 dB for 
OD+ and OD−, respectively. The dependence on channel is weak. The crosstalk weakly 
contributes to the noise floor in an OCT image. Our measurement in Fig. 5(a) is consistent 
with NEL’s data. From the figure, the crosstalk between adjacent channels was estimated. The 
vertical dashed green lines labeled 159 and 161 indicate the center wavelength of the adjacent 
channels. From the cross points of the green lines and the spectra shown by the thin solid 
lines, the crosstalk between the adjacent channels was estimated to be less than about −25 dB. 
It deteriorates spectral purity at a channel by a small amount. 

2.3. Data processing 

In the experimental configuration shown in Fig. 1, an A-scan interference fringe signal was 
acquired simultaneously with different 320-channel photoreceivers and DAQs. To perform 
FFT in real time for real-time display, the A-scan data distributed over 320-channel DAQs 
must be gathered as a set of signals immediately after data acquisition. At the time we planned 
this experiment four years ago, National Instruments (NI, Austin, USA) was to start selling 
DAQ-connected FPGA boards, which are inserted in a chassis with a PXI Express ×4 bus (NI 
calls a PCI Express equivalent bus PXI Express). We estimated the capability of a system 
comprised of NI’s off-the-shelf boards and chasses to gather data, as mentioned above, and to 
conduct real-time FFT processing. We found such feasibility and ordered a custom made 
ultrafast data processing system with the 320-channel A/D converter array shown in the right-
hand side of Fig. 1. 

The block diagram of the A/D converter array and ultrafast data processing system is 
shown in Fig. 7. Outputs from photoreceivers were connected to digitizers (5751, NI). A 
digitizer is a 16-channel, 50 MHz, 14-bit adapter module for FPGA-module-D (PXIe-7962R, 
NI). With FPGA-module-Ds, we conducted BGS and APD processing. The number of 
digitizers and FPGA-module-D pairs was twenty. The data processed using FPGA-module-D 
were transferred to two FPGA-module-Fs (PXIe-7965R, NI) via PXI Express switches. First 
in, first-out (FIFO) buffers were built into the FPGA boards to buffer and transfer data 
between boards without loss. An A-scan data of 320 channels was zero padded to 512 data  

 
Fig. 7. Block diagram of A/D converter array and ultrafast data processing system. 
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points for FFT processing. Four FFT units were built into each of the two FPGA-module-Fs, 
and the eight units performed FFT successively. The processing speed of a FFT unit was 
146,000 A-scans/second and the total processing speed with the eight FFT units was 1.17 × 
106 A-scans/second. NI’s PXIe-boards were inserted into two chasses (PXIe-1075, NI). 
Precise synchronization of clocks of the two chasses was done with two timing boards (PXIe-
6674, NI). Fast data transfer between chasses and the PC was done with two PXIe-interface 
boards (PXIe-8375, NI) and a PCIe-interface board in the PC (PCIe-8371, NI). The 
sustainable throughput of the interface was 838 MBytes/s. The multifunction DAQ, (MF-
DAQ) (PXIe-6363, NI), was used to receive sampling trigger signals from the resonant 
scanner at a rate of 4 or 8 kHz and also to output control signals for the Galvano scanner. 

The PC (T7500, DELL, Austin, USA) included a GPU-board (Tesla C2050, Nvidia, Santa 
Clara, USA), PCIe-interface board, and HD-interface board (8262 × 4, NI). We used RAID 0-
type HDD memory (HDD-8264, NI) of 3 TBytes for long recording. The sustainable writing 
and reading speed of the HDD was 600 MBytes/s. The image was displayed on a display 
(U2410, DELL). The refresh rate of the display was 59 Hz. 

The firmware of the FIFO buffers and FFT units written in the FPGA boards were 
prepared by NI. The software to run in the PC was developed under Microsoft Windows 7 
Professional operating system. The system control software and the graphical user interface 
were created in NI’s Labview 2009, which was operated in ×32 mode because the compiler of 
the FPGA boards was not supported in ×64 mode. After transferring volume data from the 
data processing system to the PC, we copied them into the GPU, the software of which was 
written using compute unified device architecture (CUDA) by NVIDIA, compiled using 
Microsoft Visual Studio 2008 and Intel C++ Compiler Professional Edition. The CUDA 
program performed volume rendering. We modified the sample program “volumeRender” in 
the file of “NVIDIA GPU Computing SDK” downloaded from NVIDIA’s web site [41]. The 
OpenGL 3.0 Library was used for visualization of the processed images. The CUDA- and 
OpenGL-based algorithms were implemented in Labview through dynamic link libraries 
(DLLs) so that rendered images could be displayed and manipulated in Labview’s screen 
display. Although we designed the average traffic rate of data to be lower than the limit of 
PCI (PXI) Express × 4, when we tried to transfer numerical 2-byte data (14-bit data acquired 
with DAQs and results of FFT processing) in a form of signed 16-bit integer (I16), partial loss 
of data occurred in the data transfer. We believed this was due to fluctuations in the data 
traffic rate and overflow occurring at some instance when the traffic rate exceeded the 
sustainable throughput of PCI (PXI) Express ×4. To reduce this fluctuation, we bunched four 
of the I16 data into unsigned 64-bit data (U64), and empirically found no loss of data. The 
FFT data were bunched using FPGAs and transferred to the PC, and un-bunching from U64 to 
I16 was done using the GPU in the PC. 

An example of the displayed screen images and functions of the software are shown in 
Fig. 8. Figure 8(a) shows an example of the screen displays. To show details clearly, partial 
images are enlarged and illustrated as Figs. 8(b)–8(f). The 3D-rendered image (3D), a B-scan 
image (V), and the surface image (en face) are displayed on the left-hand side. The display of 
images in this area can be selected with the buttons shown in Fig. 8(d). By clicking button (d)-
(1), the display image shown in Fig. 8 is selected. By clicking (d)-(2), (d)-(3), or (d)-(4), only 
the rendered 3D, B-scan, or en face image is displayed in the display space, respectively. 
Button (d)-(5) is the on-off of the directional dice display at the lower-right corner of the 3D 
image. The en face image is calculated by integrating the power spectrum in the axial 
direction for each A-scan. The direction of the view of the rendered volume is selected with 
the buttons shown in Fig. 8(b). The reset button orients the direction to the default. We 
prepared seven color codes, as shown in Fig. 8(c). Of the seven, the black-and-white (c)-(1) or 
tissue-like color gradation (c)-(5) was used for most tissue imaging. The rainbow color codes 
were sometimes useful for local enhancement in an image. Rotation, zooming, or translation 
can be done in real time with the mouse. 
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Fig. 8. Example of screen image of ultrafast real-time 4D OCT system. 

We could also cut and reveal an arbitrary surface perpendicular to one of the three axes in 
real time by selecting the “Clipping” button in Fig. 8(f). This corresponds to a virtual surgery 
in real time. Such cutting was performed with the slides shown in Fig. 8(f). Because the 
cutting can be done simply by eliminating the portion of volume data cut, more complicated 
real-time virtual surgery is possible if we write a program for that purpose. By selecting the 
button “WW/WL” in Fig. 8(f), we can open slides to control the threshold and window of 
image intensity expressed in dB scale for both the 3D image and en face image. By selecting 
the “Opacity” button, we can modify the color code. The GPU status can be displayed by 
clicking the “GPU” button, which is only used for debugging purposes. 

We installed long-time data-recording capability. For recording, we did not perform FFT. 
With the 3-TByte HDD, volume data could be recorded for about 100 minutes. 

2.4. Imaging speed and real-time display 

The B-scan rate was fixed either at 4 or 8 kHz by using the RS shown in Fig. 1. The number 
of A-scans within a B-scan was limited by the FFT speed of 1.17 × 106 A-scans/second. We 
chose the number of A-scans per B-scan as 256 and 128 for 4 and 8 kHz B-scan, respectively. 
For both cases, the FFT processing rate was 1.02 × 106 A-scans/second. The maximum A-
scan rate could be the DAQ speed of 50 MHz. However, the real-time processing is not 
possible at this sampling rate due to the limitation of the processing system. Moreover, if an 
A-scan rate is too fast compared with the response time of the photoreceiver, inter-A-scan 
blurring occurs in our system configuration [22]. The response frequency of our photoreceiver 
was 12 MHz at the gain of 10, which we usually used. Therefore, we added five 50-MHz data 
samples and set the fastest A-scan rate to 10 MHz. It should be noticed that the summation of 
fringes may distort the original signal, if the phase of the OCT signal keeps changing during 
the five 50 MHz samplings. The A-scan rate decreased by including additional 50 MHz 
samplings per A-scan. The lower limit of the A-scan rate was set by the condition in which a 
set of A-scans per B-scan must be finished within half the period of the RS. As the A-scan 
rate increased, the duty ratio decreased. For the A-scan rates of 2.5, 5, and 10 MHz, duty 
ratios were 39.8, 20.5, and 10.2%, respectively. If we consider the duty ratio, the averaged A-
scan rates are all 1 MHz. The off-duty time was required to complete a series of FFT 
processing within a single B-scan time. Therefore, a faster A-scan rate reduced the motion 
artifacts in a B-scan (in the direction of the fast axis), but it did not reduce the artifacts in the 
direction of the slow axis. We call the lateral scan along the slow axis “B-scans per volume” . 
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Table 1. Volume rates (volumes/second) and voxel rates (MVoxels/second) of real-time 
processing. Voxel rates are in parentheses. 

B-scans per volume 
8 kHz B-scan rate  4 kHz B-scan rate 

3D only 3 images  3D only 3 images 
32 93.5 (98) 82.7 (87)  65.8 (138) 58.9 (124) 
64 64.9 (136) 58.3 (122)  41.7 (175) 40.2 (169) 
128 40.7 (171) 38.5 (161)  22.4 (188) 20.8 (174) 
256 21.8 (182) 20.8 (174)  11.6 (195) 11.6 (195) 

The number of B-scans per single-volume data determined the volume rate. After a 
forward full swing of the GM, fly-back time and re-start processing time were required for a 
single volume scan. We measured the actual volume rate of real-time processing by using the 
indicator shown in Fig. 8(e). It indicated the time duration between successive volume scans, 
which fluctuated. For example, motion of the mouse or touch of the keyboard apparently 
reduced the volume rate. It also depended on the display format. The measured actual volume 
processing rates, averaged over 300 volumes, are listed in Table 1 for various choices of B-
scan number per volume, B-scan rate, and display format. An example of a 3D-only display 
image and a 3-image display are shown in section 3.4. 

The refresh rate of the LCD display shown in Fig. 7 was 59 Hz. In videos of volume rates 
faster than this rate, partial frames were lost at the display. For a volume image, more than 
100 lateral scans are preferred for both axes. Therefore, we claim about 41 volumes/second as 
the practical fastest real-time 4D display rate with 8-kHz RS, 3D only display, and 128 B-
scans per volume. 

Continuous recording of volumetric 3D data is also useful. By rendering after recording, 
we can manipulate each 3D image to reveal an interesting aspect. The image changes faster 
than the display speed can be investigated from frame to frame. In recording, 320 data 
samples of 2 bytes per channel were collected as a set of A-scans. They were transferred to 
the PC without performing FFT. The recording speed was limited by the rate of 600 
Mbytes/second sustained by the HDD shown in Fig. 7. Data traffic rates, under all the 
conditions listed in Table 1, were slower than the limit. Actual recording volume rates were 
measured and averaged over 300 volumes, as listed in Table 2. In two cases, 32 and 64 B-
scans per volume at an 8-kHz B-scan rate, the recording rate was faster than the 
corresponding 3D-only display rates listed in Table 1. In other cases, the recording rate was 
practically the same with the 3D-only real-time display. 

Table 2. Volume rates (volumes/second) and the voxel rates (MVoxels/second) of 
recording. Voxel rates are in parentheses. 

B-scans per volume 8-kHz B-scan rate 4-kHz B-scan rate 
32 100.0 (105) 67.0 (141) 
64 70.9 (149) 39.1 (164) 

128 40.7 (171) 21.9 (184) 
256 21.1 (177) 11.4 (191) 

The voxel rate listed in Tables 1 and 2 are significantly lower than the fastest voxel rate of 
4.5 GVoxels /second demonstrated by Wieser et al. [16] with their ultra-fast SS-OCT system. 

3. Experimental results and discussion 

3.1. Signal normalization 

An example of the interference fringe signal of a reflector placed at a depth of 377 μm 
obtained after BGS processing is shown in Fig. 9(a). The signal was modified and exhibited 
unwanted variations due to the channel-dependence of the intensity of the light source (Fig. 1 
(a)), attenuation using AWGs (Figs. 6(a) and 6(b)), and sensitivity of photoreceivers. The 
variations raised the noise floor of OCT images. Measurement of the signal was repeated, the 
power spectrum was calculated from each signal with Hanning window, and an average of 
256 spectra was obtained. The result is shown in Fig. 9(c). In spite of the averaging, the noise  
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Fig. 9. Effect of normalization of interference signal. (a) Interference signal before 
normalization. (b) Interference signal after normalization. (c) Power spectrum before 
normalization. (d) Power spectrum after normalization. 

floor exhibited a fixed pattern composed of multiple small noise peaks, which originated from 
the above-mentioned variations. The dynamic range of this PSF was about 40 dB. 

The noise should be reduced by correcting the above-mentioned channel-dependent 
variations in detection efficiency. For the correction in the differential detection shown in Fig. 
1, detection efficiencies of both the + and − sides must be determined separately. Therefore, 
we obtained four intensities for each channel: IS+,i, IS-,i, IR+,i, and IR-,i, where i is the channel 
number. Here, IS+,i, IS-,i, IR+,i, and IR-,i are the response of the SA detected through OD+, 
response of the SA detected through OD−, response of the RA detected through OD+, and 
response of the RA detected through OD−, respectively. Signal normalization was performed 
by dividing the interference fringe signal at the ith channel by the square root of the factor 
(IS+,i − IS-,i)(IR+,i − IR-,i). 

The procedure for determining IS+,i was as follows. A reflector was placed on the sample 
position. The reflected intensity was adjusted by a small tilt of the reflector so that the signal 
did not exceed the maximum range. The RA and OD− were disconnected by disconnecting 
the optical connector at r and the input to OD−, respectively. We first measured the 
background at all the channels by blocking the reflector. This background was mainly due to 
the ASE of SOA2. Then, without blocking the reflector, reflected light was measured at all 
channels. Subtracting the background at each channel, IS+,i was obtained at all channels. To 
obtain IS–,i, the input of OD– was connected and the input of OD+ was disconnected. 
Measurement similar to that of IS+,i was also done. To obtain IR+,i, the SA was disconnected at 
the connector s and the input to OD− was disconnected. The background was obtained by 
blocking the reflection of the RM. The intensity was measured without blocking the 
reflection. By subtracting the background, IR+,i was obtained, and IR-,i was obtained following 
a similar procedure by connecting OD− and disconnecting OD+. 

By performing normalization to the signal, the interference signal shown in Fig. 9(b) was 
obtained. When a signal was normalized in this procedure, rectangular apodization was 
effectively made for the signal. Other types of apodizations could be made by simply 
multiplying the appropriate coefficient to data at each channel. In practice, the normalization 
and apodization was done simultaneously. The average power spectrum obtained by Hanning 
apodization is shown in Fig. 9(d). The noise floor was significantly improved compared with 
that shown in Fig. 9(c) without normalization. With normalization, the dynamic range of the 
power spectrum (PSF) was a little larger than 50 dB and improved by about 10 dB compared 
to that without normalization. 
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3.2. Optical amplification and sensitivity 

In our system, SOA2 was used to enhance the signal. It is a well-known fact that, in coherent 
heterodyne detection as in this case, the theoretical limit of sensitivity is reduced at least by 3 
dB by using optical amplification compared to that of the shot-noise-limited sensitivity 
without optical amplification (see for example [42], ). Although the signal is amplified by an 
optical amplifier, the beat noise between the reference light and ASE of the optical amplifier 
increases, which determines the noise floor of the OCT signals. For an SOA, the beat noise is 
proportional to 2Nsp, where Nsp is the spontaneous emission factor. For an ideal optical 
amplifier, Nsp = 1 and the reduction in the limiting sensitivity is 3 dB. In practice, however, 
Nsp ranges from 1.4 to more than 4 for an SOA [42]. Then the reduction in the practical 
limiting sensitivity from the shot-noise-limited value will range from 4.4 to more than 9.0 dB. 
We could not obtain information on Nsp for our particular SOA2 from the manufacturer. If 
reduction in the sensitivity of an OCT system is less than 9 dB from the shot-noise limit, little 
advantage of using an SOA is expected. 

In our case, without SOA2, the measured sensitivity was 81 dB, which was smaller than 
the calculated shot-noise-limited sensitivity of 107 dB by 26 dB, for a 2.5-MHz A-scan rate 
and a sample illumination power of 20 mW. One reason for this large reduction is due to 
insufficient intensity of the reference power at the inputs of the photoreceivers. The particular 
photoreceiver used in this experiment requires input power of about 1 mW for the shot noise 
to sufficiently exceed the thermal noise, while the measured reference power at the inputs of 
the photoreceivers was less than 10 μW. Another reason is the strong attenuation of the signal 
by AWGs, as shown in Fig. 6. The situation is that practical sensitivity could be improved 
with an SOA. Even weak reference power is sufficient for the beat noise to exceed the thermal 
noise of the photoreceivers, and the floor of the signal-to-noise ratio is determined by the beat 
noise. The reduction in the signal due to AWGs shown in Fig. 6 does not deteriorate the 
signal-to-noise ratio because both the signal and the beat noise are attenuated by AWGs at an 
equal ratio. 

 
Fig. 10. (a) Experimental system for sensitivity measurement using semiconductor optical 
amplifier (SOA2). (b) Measurements of noise and signal (54 nW) as function of reference 
power to determine sensitivity. 

To measure system sensitivity, we used the simplified experimental set up shown in Fig. 
10 (a). ATS and ATR are variable optical attenuators (DiCon Fiberoptics, Richmond, USA), 
and ODS and ODR are variable optical delays (General Photonics, Chino, USA). The optical 
delays were adjusted so that the optical path-length difference between the RA and SA was 
0.5 mm. The power in the SA at the input of SOA2 was set to 54 nW with the ATS. The 
power in the RA varied with ATR. We ran the system at an A-scan rate of 2.5 MHz. The peak 
of the power spectrum of the signal is plotted in Fig. 10(b) as a function of the reference 
power, together with the noise floor levels by the DAQs and the thermal noise of the 
photoreceivers. Without a signal in the SA, the beat noise was measured as a function of the 
reference power measured at the input of C2. The beat noise exceeded the thermal noise for 
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reference power values larger than about 0.1 mW. The sensitivity was calculated when the 
sample was illuminated with light of 20 mW in intensity. The results are plotted in Fig. 10(b). 
The maximum sensitivity was 97 dB. This value is smaller than the calculated shot-noise-
limited sensitivity of 107 dB by 10 dB. However, it improved by about 16 dB compared to the 
experimental value of 81 dB without SOA. Within the 10-dB sensitivity reduction, the effect 
of the band-pass characteristic of the AWG shown in Fig. 5(b) is included. Figure 5(b) shows 
that about 3 dB of light intensity, shown in the pink area, was lost because the light source of 
the continuous spectrum was used. This also reduces the shot-noise-limited sensitivity of our 
system to 104 dB because about 3 dB of reduced illuminated power is used effectively. 
Taking into account this fact, the reduction in sensitivity was about 7 dB using SOA2 
compared with the shot-noise limit, which is within the expected range mentioned above 
considering Nsp. The reduction in sensitivity by about 3 dB due to the band-pass characteristic 
of the AWG shown in Fig. 5(b) may improve by using an optical comb source, in which each 
intensity peak position and the frequency interval matches the AWGs, and the spectral width 
of each output is significantly less than the frequency interval. Then, light passes each channel 
at the maximum band-pass characteristic shown in Fig. 5(b). 

Depending on the experimental condition, sensitivity varied. For the illumination power of 
20 mW, sensitivities were 97 and 91 dB for the A-scan rates of 2.5 and 10 MHz, respectively. 
For the illumination power of 15 mW, the maximum permissible value to the eye by ANSI 
[43], sensitivities were 96 and 90 dB for the A-scan rates of 2.5 and 10 MHz, respectively. 

The system shown in Fig. 10(a) is simplified compared with the actual system shown in 
Fig. 1. We made sensitivity measurement by placing a mirror at the sample position and 
neutral density filters between the mirror and objective OLS to make the input power to SOA2 
to be 50 nW in the system shown in Fig. 1. By varying the reference power, another 
measurement similar to that shown in Fig. 10(b) was performed. Practically the same result of 
the sensitivity was obtained. 

Most of SD-OCT systems adopt unbalanced detection configuration with a single camera. 
In our system, balanced detection configuration is adopted. We compared the sensitivity 
between the two detection configurations and confirmed 3 dB gain with balanced detection 
compared with unbalanced detection. 

 
Fig. 11. (a) Point spread function as function of axial depth. (b) Axial resolution measurement; 
A (black): apodization with Hanning window, B (red): apodization with rectangular window. 

3.3. Point spread function and axial resolution 

PSFs measured as a function of the axial depth (half the optical path-length difference 
between the RA and SA) are shown in Fig. 11(a) covering twice the principal depth range of 4 
mm. In FFT, apodization with the Hanning window was conducted. The dynamic range was a 
little better than 50 dB at small depth ranges. The sensitivity roll-off by 6 dB was observed at 
a depth of about 6 mm. This sensitivity roll-off is considerably smaller than those observed 
for standard SD-OCT systems using an optical source of continuous spectrum and a 
diffraction grating for spectral dispersion. Similar small roll-off was demonstrated by 
Bajraszewski et al. using an optical comb source in their SD-OCT system [40]. In our system, 
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the FWHM of the band-pass characteristic shown in Fig. 5(b) is about 0.05 nm. From this 
value, 6-dB roll-off is expected at about 7.5 mm. The observed 6 mm is close to this value. 

From the linear plot of the peak observed at the depth of 780 μm shown in Fig. 11(b), the 
axial resolution was estimated to be 23 μm (B) and 37 μm (A) for apodization with the 
rectangular window and Hanning window, respectively. The rectangular apodization was 
obtained by the normalization of an A-scan signal following the procedure described in 
Section 3.1. The observed resolution for the rectangular window is about 1 μm worse 
compared with the theoretically expected value of 22 μm from the spectrum coverage of 
AWGs as mentioned above. One cause of this resolution degradation may be dispersion 
mismatch introduced by the SOA2. The Hanning, or other apodizations, was done to the 
normalized signal when required. The axial resolution of 23 −37 μm (in air) of this system is 
not good enough for high-resolution OCT imaging. This system is suitable for OCT imaging 
in which speed is critical but not axial resolution. 

3.4. Tissue imaging 

Representable frames of a few examples of real-time 4D OCT videos are shown in Fig. 12. 
For all OCT imaging, the illuminated power to the sample was 12 mW, B-scan rate was 8 
kHz, and the voxel size was 256 (axial) × 128 × 128 (lateral). All the attached videos were 
captured on a video recorder (Handycam type of SONY, Tokyo, Japan) and displayed on the 
PC at a frame rate of 30 frames/second. Therefore, the frame rate of videos was reduced from 
that of the real-time PC display shown in Table 1. Kitasato University Hospital’s Ethics 
Committee, in accordance with the tenets of the Declaration of Helsinki, approved the study 
of human imaging. Volunteers were educated on the purpose of the study and informed 
consent was obtained from each volunteer before beginning the study. 

Figure 12(a) is the representable frame of a video of dynamic miosis of a human eye in 
response to the on-off of a pen light, which illuminated the OCT probe in front of the 
volunteer’s view. We could observe continuous constriction and dilation of the pupil for an 
arbitrary time. The image size was 4 mm (depth) × 9.8 mm (lateral fast axis) × 6.6 mm (lateral 
slow axis). Figure 12(b) is the representable frame of simultaneous real-time three-image 
display of the same volunteer. The image labeled V is a B-scan along the horizontal red line 
shown in the en face display, the position of which could be moved in real time. We could 
observe the miosis dynamics with the three different displays; rendered 3D volume, B-scan 
cross section (image labeled as V), and en face image. 

To illustrate an ultra-fast 4D OCT imaging of a material under three dimensional quick 
dynamical deformation, we imaged a rectangular cross section of a stretched rubber band; the 
dimensions at about the mean stretch length are shown in Fig. 12(c). The stretch length was 
repeatedly changed manually. The representable frame of real-time 4D OCT video is shown 
in Fig. 12(d). Three dimensional deform was clearly imaged. It is interesting to note that faint 
stripes appeared in the V image, probably due to increased birefringence when the band was 
stretched. The image dimensions were 4 mm (depth) × 7 mm (lateral fast axis) × 5 mm (lateral 
slow axis). 

Real-time manipulations of the 3D-rendered image are illustrated for the imaging of 
human thumb skin. The image size was 4 mm (depth) × 5 mm (lateral fast axis) × 3.5 mm 
(lateral slow axis). Figure 12(e) is a representative frame of the video showing the virtual 
cutting of tissue at the surface perpendicular to the lateral fast or slow axis. Figure 12(f) is a 
representative frame of the video showing the virtual cutting at the surface perpendicular to 
the depth axis. The arrayed dots revealed in the epidermis are sweat glands. We could also 
rotate the image horizontally (Fig. 12(g)) and vertically (Fig. 12(h)) in real time to see the 3D 
image from an arbitrary desired angle. 

Representative frames of videos made from recorded data are shown in Fig. 13. An 
excised porcine trachea was imaged at an A-scan rate of 2.5 MHz, B-scan rate of 4 kHz, and 
volume rate of 11 volumes/second. The voxel size was 256 (axial) × 256 × 256 (lateral) and 
the imaging volume size was 4 mm (depth) × 5 mm (lateral fast axis) × 5mm (lateral slow 
axis), respectively. The 1.5-cm-long trachea was cut at about the middle position between the  
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Fig. 12. Representative frames of videos of 4D real-time OCT display. Videos of miosis of 
human eye responding to on-off of pen light: (a) only 3D-rendered image (Media 1), (b) 
simultaneous display of three images (Media 2). (d) Video of deformation of rubber band 
(photo (c)) following repeated change in stretching length (Media 3). Videos of human thumb 
skin: (e) Virtual cutting at surface perpendicular to lateral axis (Media 4, perpendicular to fast 
axis; Media 5, perpendicular to slow axis), (f) virtual cutting at surface perpendicular to depth 
axis (Media 6), (g) horizontal rotation (Media 7), (h) vertical rotation (Media 8). 

throat and bronchia. The trachea tube was cut lengthwise and opened for imaging the inner 
wall. 

One volume data was selected as an example from 24 recorded volumes (about 2.2 
seconds duration) and rendered to observe images at various surfaces. The one volume data 
was acquired in 64 ms. Figures 13(a) and 13(b) are representative frames of the rendered 3D 
image and 2D transverse cross section of the trachea, respectively. Compared with previous 
imaging of a pig trachea with OCT [44], the mucosa region (M), submucosa region (SM), 
perichondrium (PC), and cartilage (C) are distinct. In Media 9, we can clearly observe the 
three dimensional cartilage structure. In Media 10, a subtle change in the transverse cross-
sectional image can be seen as we move along the axis direction of the trachea. 

In Fig. 14, one volume data of the human middle finger skin was selected and shown as an 
example from 41 volumes recording during 1 second duration. The volume rate was 41 
volumes per second. The voxel size was 256 (axial) × 128 × 128(lateral) and the imaging 
volume size was 4 mm (depth) × 5 mm (lateral fast axis) × 5mm (lateral slow axis), 
respectively. The one volume data was acquired within 16 ms. Figure 14(a) is a representative 
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rendered 3D image and Fig. 14(b) is a B-scan cross sectional image selected from the 3D 
image. 

 
Fig. 13. (a) Representative image of video showing a series of 3D images of porcine trachea as 
we move the cutting surface in transverse direction (Media 9). (b) Representative image of 
video showing a series of cross-sectional images in transverse direction (Media 10). M 
represents mucosa region; SM: submucosa region; C: cartilage; and PC: perichondrium. 

 
Fig. 14. (a) A rendered 3D image of the human middle finger recorded at a volume rate of 41 
volumes/second. (b) A B-scan image selected from the 3D image. 

4. Conclusion and possible improvements 

An ultra-fast spectral domain optical coherence tomography system capable of capturing 
volume images faster than the standard video rate has been demonstrated. The fastest A-scan 
rate of 10 MHz was demonstrated. The upper limit of the A-scan is limited by the frequency 
response of the photoreceivers and can be improved by using higher speed photo-detectors up 
to the speed of DAQs, which is 50 MHz in our case. However, the real-time processing is not 
possible at this sampling rate due to the limitation of the processing system. The A-scan rate 
of 10 MHz with the faster B-scan rate of 8 kHz was limited by the FFT processing speed of 
the FPGAs. Faster FFT processing speeds are expected by using GPU(s) instead of FPGAs. 
By an increase in the B-scan rate, the volume rate is expected to increase proportionally. The 
traffic speed of the PCI Express bus limits the total data transfer rate between the DAQ 
system and PC in our system, which will improved future advancement in computer 
technology. Another limit of the fast OCT system is the data transfer rate between a PC and 
GPU, as discussed by Li et al. [31]. The rapidly progressing GPU technology and/or fusion of 
GPU and CPU might remove this limit. 

The ultra-fast SD-OCT made possible simultaneous parallel detection of the interference 
signal at all frequencies using optical demultiplexers, which were AWGs in our case. 
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However, AWGs decreased sensitivity. This low sensitivity is due to the strong attenuation of 
the signal by the AWGs and the narrow pass-band characteristic at each channel of the AWG. 
In this research, sensitivity improved by about 16 dB by using an SOA compared with that 
without SOA. Although the achieved sensitivity was sufficient for OCT imaging with deep 
image penetration, as shown in Fig. 13, the reduction of 10 dB from that expected for the 
shot-noise limit should be improved. Using a frequency comb source, the loss due to the 
narrow pass band will be improved by 3 dB. The achieved axial resolution of 23 and 37 μm 
for rectangular and Hanning apodization, respectively, is insufficient for detailed tissue 
imaging. In the presented configuration using AWGs, we need to increase the channel 
number, which requires an additional cost. The depth range of 4 mm is sufficient for general 
tissue imaging but insufficient for imaging the anterior segment of the eye, which may be 
improved by removing the degeneracy of complex conjugate images. 

Real-time 4D OCT display has been demonstrated up to 41 volumes/second with a voxel 
size of 256 (axial) × 128 × 128 (lateral). A volume was captured within 16 ms in this case. 
With the imaging speed, video recording of dynamical deformation of tissues were 
demonstrated for miosis of a human eye and a rubber band. Real-time manipulation of the 3D 
image at the imaging speed was demonstrated. Much faster volume image processing was 
confirmed for smaller voxel-sized images. However, the refresh rate of the LCD display was 
limited to 59 frames/second and the human eye cannot detect such a fast image change. In the 
real-time display scheme, further research should be done to increase the voxel size to obtain 
finer images. 

Recording of 4D OCT videos has been confirmed up to 100 volumes/second with a voxel 
size of 256 (axial) × 128 (lateral fast axis) × 32 (lateral slow axis), which will be useful for 
research and detailed diagnostic purposes when a tissue exhibits fast change. Choosing a 
volume image out of the OCT video of porcine trachea recorded at a rate of 11 
volumes/second with a voxel size 256 (axial) × 256 × 256 (lateral), deep image-penetration 
was demonstrated. In this work, the recording speed was limited by the speed of the HDD, 
which will be improved due to advancements in memory technology. 
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