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Abstract
We have applied a GWAS to 40 consanguineous families segregating cases of non-syndromic
cleft lip with or without cleft palate (NS CL/P) (a total of 160 affected and unaffected individuals)
in order to trace potential recessive loci that confer susceptibility to this common facial
malformation. Pedigree-based association test (PBAT) analyses reported nominal evidence of
association and linkage over SNP markers located at 11q25 (rs4937877, P = 2.7 × 10−6), 19p12
(rs4324267, P = 1.6 × 10−5), 5q14.1 (rs4588572, P-value = 3.36 × 10−5), and 15q21.1 (rs4774497,
P = 1.08 × 10−4). Using the Versatile Gene-Based Association Study to complement the PBAT
results, we found clusters of markers located at chromosomes 19p12, 11q25, and 8p23.2 overcome
the threshold for GWAS significance (P < 1 × 10−7). From this study, new recessive loci
implicated in NS CL/P include: B3GAT1, GLB1L2, ZNF431, ZNF714, and CSMD1, even though
the functional association with the genesis of NS CL/P remains to be elucidated. These results
emphasize the importance of using homogeneous populations, phenotypes, and family structures
for GWAS combined with gene-based association analyses, and should encourage. other
researchers to evaluate these genes on independent patient samples affected by NS CL/P.
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1. Introduction
Orofacial clefts (OFC) are a major public health problem, affecting one every 500–1000
births worldwide[1]. The etiology of OFC is complex, and the genetic contributions are
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heterogeneous, likely relating to interacting effects of multiple loci with environmental
covariates[2]. Non-syndromic (sometimes termed ‘isolated’) cleft lip with or without cleft
palate (NS CL/P) is the most prevalent type of OFC[3].

Segregation analyses of CL/P have supported models that include genes of major effect[4].
Analyses of recurrence risk patterns estimate that between 3 and 14 genes (possibly
interacting) are involved in the etiology of CL/P[5]. Mutation analysis of candidate genes
revealed that 2–6% of individuals with NS CL/P are identified as having mutations in
several genes including MSX1, FOXE1, GLI2, JAG2, LHX8, SATB2, RYK1[6,7]. In
addition to analyses of candidate genes/loci, numerous genome-wide linkage screens of NS
CL/P have been reported[1,8,9]. Meta-analysis of several of these published genome scans
revealed genome-wide significant regions that best fit a recessive model of inheritance[1].

Over the past 20 years, one member of our research group (MA–B) conducted population
genetics studies of the isolated Paisa community inhabiting the northwestern region of
Colombia [10–12]. This community exhibits high degrees of endogamy, is genetically
homogeneous, and the number of sibs is traditionally larger compared to families from other
areas of the country [10,11,13]. Furthermore, race composition studies have shown that
more than 90% of the genes are of Caucasian ancestry [10]. The study and recruitment of
thousands of members from multigenerational and extended families in the Paisa community
have been instrumental for the discovery of new gene associations that predispose this
population to complex genetic conditions such as idiopathic epilepsy[14–16], Alzheimer’s
disease and other dementias[17,18], attention deficit/hyperactivity disorder (ADHD) [19–
22], and rheumatologic and autoimmune conditions[23–26], among others. In the particular
case of NS CL/P, data from more than 600 multigenerational and extended Paisa pedigrees
clustering NS CL/P were instrumental in identifying several loci associated with facial
malformation. These loci include IRF6 and FOXE1[1,8,27,28] and the replication of loci
identified in the GWAS as significantly associated with NS CL/P[29].

The purpose of this study is to contrast the hypothesis that NS CL/P loci following a
recessive model of inheritance might be suitable for mapping using the GWAS technology
applied to consanguineous extended and multigenerational Paisa families. To achieve this
goal, families segregating for NS CL/P were ascertained by identifying affected probands
who were recruited at Clínica Noel, in Medellin, Colombia. Clinical aspects, ascertainment
methodology, and phenotype characterization of probands and their biological relatives have
been reported previously[1,8,27–30]. Most of the families involve extended multiplex
kindreds, i.e., multigenerational families with several affected individuals.

2. Methods
2.1. Subjects

To date, we have recruited 661 total pedigrees consisting of 2718 individuals (792 affected
by clefting and 1926 unaffected), of which 1370 are female and 1291 are male. In 57 cases,
mostly from very early generations, an accurate gender determination was not possible.
Individuals with dysmorphic syndromes that included CL/P as a characteristic feature (e.g.
van der Woude syndrome) were excluded from this study to restrict the analysis to NS CL/P.
Because of our ad hoc hypothesis of recessive inheritance, we limited our study to pedigrees
of known consanguinity or those in which, as a potential indicative of endogamy, spouses
shared the same last name. As a result, a total of 40 pedigrees were selected.

2.2. Genotyping and genetic analysis
Blood samples were collected during home visits or during patients’ appointments at the
clinic. Consent for future genetic and clinical analyses was specifically obtained. DNA was
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extracted using the QIAamp DNA Blood Maxi kit (Qiagen, Valencia, California, USA) and
stored at −20 °C until use. Genotyping was performed at the NHGRI Genome Technology
Branch using 370CNV-Quad SNP-chips from Illumina (www.illumina.com) and the
Illumina Infinium assay protocol[31]. In brief, the DNA was whole-genome amplified,
fragmented, hybridized, fluorescently tagged, and scanned. Standard quality control was
applied.

All genotype data sets underwent the same rigorous quality checks both before and after the
affected and unaffected NS CL/P patients were compared. SNPs were excluded from the
analysis if they violated Hardy–Weinberg equilibrium (P < 0.05 for all genotyped SNPs),
had a call rate below 90%, or had a minor allele frequency below 1%. All analyses were
carried out with the use of established procedures implemented in the SVS 7.3.1 PBAT
module (Golden Helix, Inc. Bozeman, MT, USA. Golden Helix PBAT Software, http://
www.goldenhelix.com). PBAT employs a unified approach to calculate the Family Based
Association Test (FBAT) statistic, a generalization of the Transmission Disequilibrium Test
(TDT) method[32]. The FBAT statistic is based on a linear combination of offspring
genotypes and traits, and for this particular set of families is exceptionally well suited as it
maximizes the exquisite information provided by these pedigrees. Furthermore, we used
FBAT because it is robust against the effects of population stratification and admixture[32].
To deal with the intensive computations needed to analyze these complex pedigrees, we
used the PBAT module that identifies clusters of nuclear families in extended pedigrees,
which are directly linked (i.e. that share a family member) and analyzes such clusters as
extended pedigrees, avoiding the problem of overestimating any parameter and reducing
both the complexity and computation time (Golden Helix, Inc. Bozeman, MT, USA. Golden
Helix PBAT Software, http://www.goldenhelix.com). We also used the recessive model to
test the null hypothesis of no linkage and no association as it maximized the power of the
FBAT-statistic, and also because it suits our initial hypothesis of recessive transmission for
this trait. Because NS CL/P occurs more often in men than women, ~2:1 ratio, sex was
included as a modifier variable because covariates for the selected phenotype are known to
substantially increase the power of the FBAT statistic [32,33].

The total set of results from the PBAT analysis (331,352 SNP marker loci that pass quality
control) was subjected to a gene-based association test using Versatile Gene-Based
Associated Study (VEGAS)[34]. Currently, gene-based tests are popular as an important
complementary methodology in GWAS as they combine the markers’ implicit linkage
disequilibrium information and the structural information on the genes. As a consequence of
combining these methods, marginal levels of significance are often confused with random
noise may add up to reveal significant signals of association[34]. Specifically, VEGAS
performs gene-based association tests that produce a gene-based test statistic and then uses a
simulation-based approach to calculate an empirical gene-based P-value. By default,
patterns of linkage disequilibrium for each gene were estimated using the HapMap2 CEU
population because the Paisa community is mostly Caucasian[10]Since 331,352 SNP marker
loci were available for analysis after quality control (threshold P-value for GWAS
significance was set at 0.05/331,352 = 1.5 × 10−7), we performed 107 permutations to set up
empirical threshold values after using VEGAS.

3. Results
From the 40 extended pedigrees primarily selected for the GWAS, 34 passed quality control
and were informative for genetic analyses. A total of 373 individuals, 287 unaffected and 86
affected NS CL/P, 174 females and 199 males, constituted these 34 pedigrees. From the 86
NS CL/P affected individuals, 31 were females and 55 males (χ2 = 5.05, P = 0.025, Odds
Ratio = 1.76 males/females, 95% C.I. 1.04–3.00). The family size ranged from 3 to 34
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individuals. A detailed description in terms of size, sex composition as well as status is
presented in Table 1 of the supplementary information.

PBAT analysis reported nominal evidence of association and linkage over SNPs located at
5q14.1 (rs4588572, P = 3.36 × 10−5), 11q25 (rs4937877, P = 2.7 × 10−6), 15q21.1
(rs4774497, P = 1.08 × 10−4), and 19p12 (rs4324267, P = 1.6 × 10−5) (Table 1).

After using VEGAS, clusters of significant markers located at chromosomes 8p23.2,11q25,
and 19p12 overcame the threshold for GWAS significance (P < 1 ×10−7) (Table 2). In the
8p23.2 region, the CUB and Sushi Multiple Domains 1 (CSMD1) gene is contained; in
11q25 the beta-1,3-glucuronyltransferase 1 (B3GAT1) and beta-galactosidase-1-like protein
2 (GLB1L2) genes, and in 19p12, the Homo Sapiens Zinc Finger Protein 431 (ZNF431) and
Homo Sapiens Zinc Finger Protein 714 (ZNF714) genes.

4. Discussion
Most studies of non-syndromic clefts have focused on CL/P rather than isolated cleft palate.
This has been biased perhaps by the larger number of cases, easier ascertainment and less
confusion from confounding syndromes. To date, there are three published GWAS studies
for CL/P using a case-control design[35–37] and one case-parent trio study from an
international consortium that is part of GENEVA (the gene-environment association studies
consortium) [29,38]. The data from these studies is summarized in Klotz et al.[39]. Although
a number of important genes showing association to NS CL/P have been reported, disease-
causing variants still remain unidentified. In our study, using extended and multigenerational
pedigrees from the Paisa community, a genetic isolate in Colombia, South America, we have
identified new loci harboring very interesting candidate genes for conferring a risk of
susceptibility for NS CL/P.

CSMD1, a complement control-related gene with potential suppressive activity of squamous
cell carcinomas, has been associated with the development of head and neck cancers[40,41].
It has been proposed that CSMD1 may be an important regulator of complement activation
and inflammation in the developing central nervous system, and it may play a role in the
context of growth cone function [42]. A recent report also associates CSMD1 with
schizophrenia in three independent European populations [43], although the direct relevance
of this finding to NS CL/P is unclear. This gene has an intermediate level of expression in
the brain, including cerebellum, substantia nigra, hippocampus and fetal brain[44].

B3GAT1 encodes a member of the glucuronyltransferase gene family that functions as the
key enzyme in a glucuronyl transfer reaction during the biosynthesis of the carbohydrate
epitope HNK-1 (Human Natural Killer-1, also known as CD57 and LEU7) [45]. B3GAT1
has a prominent expression in the brain, and little or no expression in other tissues. Like
CSMD1, B3GAT1 has been previously associated with schizophrenia [46].

ZNF431 is an uncharacterized Krüppel-associated box (KRAB)-containing C2H2 zinc finger
protein. These transcription factors are involved in the regulation of cell differentiation,
proliferation, apoptosis and neoplastic transformation[47–49]. A recent report implicates
ZNF431 in controlling both Ptch1 basal expression and cellular response to Hedgehog
signaling, which suggests a role for this transcription factor during developmental
stages[50].

ZNF714 and GLB1L2 are of unknown function. Because ZNF714 is a zinc finger protein
belonging to the same subfamily as ZNF431, there is a possibility of a developmental role
for this gene. GLB1L2 is highly expressed in neural crest-derived tissues.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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