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Abstract

As an advanced approach to identify suitable targeting molecules required for various diagnostic and therapeutic
interventions, we developed a procedure to devise peptides with customizable features by an iterative computer-assisted
optimization strategy. An evolutionary algorithm was utilized to breed peptides in silico and the ‘‘fitness’’ of peptides was
determined in an appropriate laboratory in vitro assay. The influence of different evolutional parameters and mechanisms
such as mutation rate, crossover probability, gaussian variation and fitness value scaling on the course of this artificial
evolutional process was investigated. As a proof of concept peptidic ligands for a model target molecule, the cell surface
glycolipid ganglioside GM1, were identified. Consensus sequences describing local fitness optima were reached from diverse
sets of L- and proteolytically stable D lead peptides. Ten rounds of evolutional optimization encompassing a total of just
4400 peptides lead to an increase in affinity of the peptides towards fluorescently labeled ganglioside GM1 by a factor of 100
for L- and 400 for D-peptides.
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Introduction

In the field of bioactive substances, peptides are drawing

increasing attention as they close the gap between small molecules

and proteins, combining the compact size and synthetic accessi-

bility of the former with the high specificity in molecular

recognition processes of the latter. Of particular interest in this

context are tasks where targeting of an active compound to a

defined cellular or molecular structure is desired, e.g. the site-

specific delivery of drugs, vaccines, or contrast agents for

molecular imaging applications [1,2].

To date, mainly antibodies are used in such situations [2,3], yet

the large size of an antibody ligand severely hampers tissue

penetration and optical resolution, and its antigenicity and

degradability limit its use in vivo. Hence, various approaches to

artificially reduce ligand size while maintaining specificity are

being pursued to establish the next generation of targeting

molecules [4]. Small peptides built up of 10 to 20 amino acid

residues which permit highly specific interactions with biological

targets carry this concept to its final consequence [5,6]. Although

the use of peptides in therapy and diagnostics may be hampered

by their proteolytic lability or limited cell penetration, too, these

obstacles can be overcome by building up proteolytically stable

peptide isomers from D-amino acid residues or by coupling the

peptides to membrane shuttles [7,8]. Far more challenging is the

identification of peptide sequences that exhibit the necessary

sensitivity and specificity of a targeting ligand. To date, high

throughput screening of large peptide libraries is a common

approach for the identification of peptide ligands, but with

increasing ligand length the procedure rapidly reaches its limits.

Beyond a length of 9–10 amino acids such libraries are no longer

representative due to the exponentially growing peptide sequence

space (e.g. 1021 sequences for 16mer L-peptides).

In order to overcome this limitation, computational structure

based design methods suitable for reduction of the sequence space

allocatable have been established. If the 3D molecular structure of

the target is available it can be used in docking approaches for the

design of peptide ligands for these targets using mere in silico

procedures [9,10]. Another way to optimize peptide sequences for

desired applications is the use of structural scaffolds [10] in

molecular dynamics simulations. Both approaches work best with

rigid proteinacious target molecules.

Structure-independent design of peptides can be accomplished

by e. g. sequence motif scanning [10] utilizing learning algorithms

such as artificial neural networks. This technique, however, is

limited to sequence data already present in training sets and often

fails to create novelty.

In protein design, directed evolution strategies which aim to

improve candidates by iterative rounds of mutations and

functional screenings constitute another way to optimize biomol-

ecules [11]. These methods, which include gene-shuffling, site-

directed mutagenesis and chimeragenesis, work on the DNA-level

and hence are restricted to gene encoded optimization candidates.

Therefore the incorporation of non-natural building blocks or the

optimization of all D-peptides cannot be achieved with these

techniques. Yet, the inclusion of a function-screening step in such

directed evolution strategies represents a definite strength. In light
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of the above, it appears most reasonable to employ not a structure,

but a function-driven strategy for the identification of peptides

suitable for the desired applications [12,13,14].

We have devised such a strategy based on a molecular

optimization process that mimics Darwinian evolution. The

evolutionary process is initiated with a peptide library of random

sequences or with lead peptides either of known rudimentary

suitability or designed by structural considerations. The functional

prowess of each peptide is assessed in an appropriate biological

assay, in result of which all individuals are assigned ‘‘fitness

values’’. The resulting peptide population is operator-inspected

and top candidates are selected to act as parent peptides for the

follow up generation. In a computational step, an evolutionary

algorithm (EA) is used by which the selected peptides are

propagated in silico via crossing and mutating them, with the

‘‘fittest’’ candidates having the highest probability of passing on

their ‘‘genetic information’’, i.e. their peptide sequence, to produce

a filial generation. We have applied this cooperative in silico and in

vitro optimization methodology to identify peptidic ligands for the

cell membrane glycolipid ganglioside GM1, a potential target e. g.

for diagnostic imaging applications at the mucosal wall or for

mucosal vaccine delivery systems [15].

Results/Discussion

Evolutionary optimization of peptidic ligands is a complex

process where numerous parameters and different evolutionary

mechanisms may depend on and influence each other. In order to

keep those variables at a manageable level a general framework

was defined in the beginning: i) the length of the ligand to be

evolved was set to 16 amino acids, which was deemed a good

compromise between synthetic accessibility and sequence space; ii)

a single most relevant criterion – optimal binding to the desired

target – was selected as evolutionary goal and iii) appropriate

parameter settings and combinations of evolutionary mechanisms

were selected on the basis of empirical in silico simulation studies.

The latter was done by shaping 16mer peptides towards a defined

characteristic (molecular mass) as ‘‘pseudo-fitness’’. The fitness

values were optimized in distance metric simulations, and the

evolutionary optimization data were evaluated in order to identify

settings which lead the algorithm to converge in a minimal

generation count.

As evolutionary goal we decided to optimize a peptide ligand for

binding to ganglioside GM1. This particular target molecule was

chosen for several reasons. Firstly, carbohydrate molecules, e. g.

on cell surface receptors, are a highly relevant class of biological

targets, but they are demanding candidates in computational

design due to their dynamic solution structure and microhetero-

geneity [16]. We reasoned that our structure-independent,

function-driven approach should be particularly suited to identify

ligands for such targets. Secondly, GM1 is a small target, its

molecular mass of 1.6 kDa lies within the same range as that of a

putative peptide ligand. Therefore its binding sites for different

leads should largely overlap which heightens the probability for

cross-bred offspring to also bind in this region. Proteins and other

large target molecules, on the other hand, may offer multiple,

independent binding sites for which leads can be identified. Such

leads will not produce meaningful progeny upon crossing and thus

would unreasonably discredit our approach. And lastly, GM1 is an

attractive candidate from the biomedical point of view because it

has already been singled out as potential target molecule [15].

Moreover, we already had identified a battery of structurally

diverse alleged GM1 binders which could serve as lead sequences

for the optimization process [17] and set up an in vitro assay which

allowed the simultaneous investigation of a large number of

ligand-target interactions.

For this assay, all peptides are synthesized in arrays on cellulose

membranes. These peptide libraries are probed in a dot-blot type

biochemical binding procedure by incubating them with a

fluorophore-labeled ganglioside GM1 derivative (lysoGM1/

DY650) [17], and the fluorescence intensities of the individual

peptide spots after excitation are quantitated.

As initial population for the evolution process the previously

identified 64 lead peptide sequences were used [17]. To enable the

parallel identification of proteolytically stable D-peptide ligands

corresponding retro-inverso D-peptides were submitted to the

same process in parallel. The L- and D-peptides were analyzed for

their capacity to bind to the GM1 probe, and ranked according to

the fluorescence intensity of their respective spots (Table S1).

Peptides yielding fluorescence signals above a statistically defined

background [18] were manually selected as lead sequences for the

subsequent evolutionary optimization processes (Table 1). In these

lead peptides, the potential influence of individual amino acids on

GM1-probe binding was estimated by an ‘‘alanine walk’’ experi-

ment; arginine, phenylalanine, tryptophan and histidine were

revealed to be critical for binding.

To test the probe binding capacity of the peptide candidates in

each generation of the evolutionary process, the peptide sequences

proposed by the evolutionary algorithm were synthesized in

duplicate onto cellulose membranes and probed with lysoGM1/

DY650. In each array, the ‘‘fittest’’ peptides of the corresponding

parent generation were included as a reference to monitor the

progress of the optimization process (Figure 1).

The evolutionary algorithm (EA) that was used for the mating of

the peptide sequences was a generic population-based heuristic

optimization algorithm designed for the java runtime environment

(Figure 2 and Supplementary Figure S1).

Our evolutionary process differs from the standard genetic

algorithm (GA) and evolutionary strategy (ES) onset [19] as well as

from state of the art directed evolution of custom tailored

characteristics [20,21,22] in several points. The work flow in the

software is divided into two modules, one module is in charge of

Author Summary

A clever identification procedure is crucial when peptidic
ligands for diagnostic and therapeutic techniques such as
in vivo imaging or drug targeting are to be developed.
Here, we present a propitious and versatile approach for
the discovery of peptide sequences with custom features
that is based on an iterative computer-assisted optimiza-
tion process. The methodology smartly combines in silico
evolution with in vitro testing to quickly obtain promising
peptide ligand candidates with desired properties. To
validate our method in a proof of concept we tried to
identify peptide sequences that can bind to a glycosidic
cell membrane component. We applied the evolution
process by starting out with a small population of peptide
lead sequences and achieved a constant increase in affinity
between the peptide candidates and their target molecule
with each generation. After 10 rounds and a total number
of only 4400 peptides synthesized and tested, a more than
100fold improvement in target recognition could be
achieved. Since all kinds of building blocks useable in
chemical solid phase peptide synthesis can in principle be
employed in this evolutionary optimization process, our
method should prove a most versatile approach for the
optimization of peptides, peptoids and peptomers to-
wards a preset functionality.

Molecular Evolution of Peptides
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the general, ES-like cycle 2 and a second one for the internal, GA-

like cycle 1. A third, external cycle handles the determination of

fitness values for all individuals of a population by the biochemical

assay. At the beginning of cycle 1, the fitness values assigned to the

peptides are scaled by a fitness scaling function, and fitness

proportional selection by stochastic universal sampling (SUS) of

parent peptides is performed to create a mating pool of peptide

sequences. Sequences from that pool enter cycle 2 and are first -

times recombined, and the resulting peptides are then mutated to

establish a finished filial generation of peptides. The peptide

sequences created this way are synthesized in parallel for cycle 3,

where their fitness is determined in the biochemical assay. The

results are manually inspected to select m* candidates to act as

parent peptides for the next generation. This process is repeated

Table 1. Lead peptides for the molecular evolution process identified from a panel of alleged GM1-binding peptides.

No. Lead sequences L Fitness Lead sequences D Fitness

1 LPRHRDTGILDSIGRF 34,68 apqrlqwfagplrrfd 157,50

2 DFRRLPGAFWQLRQPA 31,36 tnhyekifsyteslag 102,36

3 PQIAMFCGRLNMNMNV 27,93 drhrplfghrahdmts 90,77

4 GALSETYSFIKEYHNT 26,06 plfghrahdmtsatal 87,02

5 YEVNWKTHEIKVKGQN 25,81 gtdrhrplfghrahdm 82,55

6 AEPQIAMFCGRLNMHM 25,12 ligtdrhrplfghrah 77,87

7 HHCSILKEVWHVKKLG 24,71 fikdnlthiqtnhyea 75,51

8 GWWYKGRARPVSAVAA 24,04 hrplfghrahdmtsat 64,35

9 AKVEKLCVWNNKTPHA 22,65 frgisdligtdrhrpl 59,27

10 ASDWYDEMLTWNIHGA 22,32 mhmnlrgcfmaiqpea 53,31

11 VWRLLAPPFSNRLLPA 21,46 apllrnsfppallrwv 52,06

12 vnmhmnlrgcfmaiqp 51,71

13 lrgcfmaiqpeallga 50,05

Fitness values correspond to fluorescence intensities obtained in a solid-phase binding assay with lysoGM1/DY650-conjugate (arbitrary units) and reflect the probe-
binding strength of each peptide. Highlighted amino acids were identified in ‘‘alanine walk’’ experiments as beneficial (boldface) or detrimental (underlined) for binding.
doi:10.1371/journal.pcbi.1002800.t001

Figure 1. Biochemical assay to determine candidate peptide fitness. SPOT Libraries of peptides were synthesized on cellulose membrane
supports and screened for ganglioside binding with fluorophore-labeled lysoGM1. Rows A–H and J–Q contain two arrays of the same filial generation
of 200 candidate peptides, row I contains the parent peptides used for the creation of this generation, providing an internal reference for the
improvement of fitness. The four best lead peptides are again included in each array of the filial generation (spots A1–A4 and J1–J4).
doi:10.1371/journal.pcbi.1002800.g001
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until optimized peptides that meet predefined criteria or display a

consensus motif (see below) are obtained (see Supplementary

Figure S1 for a more detailed description of the algorithm).

The fitness values that quantify the suitability of a peptide

sequence were deduced from the fluorescence intensities of the

respective peptide spot in the in vitro GM1-binding assay. The

probability of each candidate sequence to participate in

recombination events was determined by subjecting the fitness

values to a fitness scaling function. Populations of filial peptides

were created by applying the ‘‘evolutional parameters’’ -

crossover rate, number of fracture sites and mutation rate - to

the lead peptides. In contrast to the situation in biological

systems, in our artificial setup these essential EA-parameter

settings which strongly influence the performance of the

optimization progress can be configured freely [23]. As no

theoretical model for the global optimization of parameter

settings in such algorithms is available to date [24], we had to

work out appropriate settings for our problem. As a starting

point, the crossover rate was adjusted to 100%, i.e. all sequences

underwent recombination, the number of fracture sites was set to

1 and the mutation rate to 7% [23], i.e. an average of one

sequence position in each 16mer peptide was mutated. The

probability distribution onset for recombination and mutation

were equal for all positions in the peptide sequences [23]. These

initial parameter settings had been determined in empirical

simulation experiments using distance metric calculations.

Concerning the population size which also is an important

parameter in the optimization procedure we had to consider that

the number of peptides synthesized in each generation ought to be

large enough to provide sufficient sequence variability for a

successful evolution progress. We chose a population size of 200

peptides in each generation as this could be easily managed in

form of a SPOT-synthesized peptide array with replicas. The

influence of changes in the parameter settings on the results of the

optimization process was investigated in the first generations of L-

peptide evolution. To begin with, the scaling function which is

applied to the fitness values of the peptides in order to increase the

differences between these values before starting the mating process

was varied. From the lead peptides, two populations of filial

peptides were generated, one resulting from a square, the other

from an exponential scaling function. By using the square fitness

scaling function, candidate sequences with a high fitness value are

more often selected for reproduction than it would be the case

without or with e. g. a linear scaling function. The exponential

fitness scaling function magnifies this effect and puts even more

emphasis on only the very fittest candidates, strongly reducing the

sequence space available in the filial generation. In our set up,

exponential fitness scaling led to a premature decrease in sequence

Figure 2. Diagram of the evolutionary optimization process. The process is divided into three cycles, an internal, genetic algorithm (GA)-like
cycle 1, a general, evolutionary strategy (ES)-like cycle 2, and a bioassay-based cycle 3 which includes the selection of peptides by manual inspection.
Internal cycle 1: fitness assignment to lead or parent peptides, generation of a mating pool of m or m* peptides, nonlinear fitness scaling of all the
assigned values and afterwards -times stochastic universal sampling (SUS) by a roulette wheel function of the peptides from the mating pool for
recombination. General cycle 2: -times recombination and subsequent mutation with specific gaussian variation of the recombination and mutation
setup thereby creating a filial population of peptides. Cycle 3: biochemical testing and manual inspection of the resulting population in the bioassay
and manual selection of m* peptides out of peptides in the filial population to act as new parent peptides in the next generation.
doi:10.1371/journal.pcbi.1002800.g002
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diversity and was therefore deemed inappropriate for a successful

optimization and not pursued further.

Manual population inspection as the driving force of a directed

selection process (cycle 3) was embedded into the flow of the

evolutionary algorithm (Figure 2) thereby introducing research

experience into each optimization cycle. This knowledge was

utilized to choose the number of succeeding peptides out of a

population that shall - according to their fitness - serve as

‘‘parents’’ for the next generation. The influence of larger and

smaller populations of such parent peptide sequences on the

optimization process was investigated using sequence data from

the second generation (gen2). We compared a choice of the 20

fittest (‘‘very fit’’) versus the 32 fittest peptides (‘‘very fit+fit’’) from

gen2 as parent sequences to generate two populations of the third

generation (gen3). While we observed that the increase in average

fitness of the 22 top candidates of the filial generation was higher

with only 20 ‘‘very fit’’ parents (1.8 fold) than with 32 ‘‘very fit+fit’’

parents (1.5 fold), the total number of peptides with high fitness

values was lower in the filial population derived from the smaller

parent population than in the filial population derived from the

larger parent population. We therefore chose a compromise

between high increase in average fitness and high number of very

fit filial peptides and decided on using the 25 fittest peptides of

each generation as parents for the next evolution round from

generation 4 onwards.

A careful balance between the decrease of diversity in the

peptide population and the increase in fitness of the candidate

peptides had to be preserved in order to prevent inbreeding. The

evenness of amino acid distribution in the peptide populations was

therefore continually monitored [25] (Figure 3 A) and the decrease

in diversity in the populations was counteracted by an elevation of

the mutation rate to 12% in order to prevent premature

termination of the optimization process.

Even so, in 10 rounds of evolution consensus sequences had

emerged (Figure 3 B–E) which could not be broken by a

mutational rate of 12% and appeared to be a local fitness

optimum reachable from the population sets of lead peptide

sequences. Although the fraction of peptides which carried the

consensus motif still increased at this point of the evolution - and

hence the mean fitness of the population – no new sequence motifs

were obtainable because of the lack of diversity in the peptide

population and consequently no further optimization could be

achieved. While we could observe basically no homology between

the consensus motif and the respective sequence positions in the

lead peptides, it is noteworthy that the amino acids identified by an

alanine-scan in the lead peptides as ‘‘beneficial’’ for binding of the

GM1-probe were - independent of their position - mostly aromatic

(tryptophan, phenylalanine) and, to a lesser extent, apolar (leucine,

isoleucine) and positively charged (arginine, lysine) amino acids.

This tendency is reflected in the consensus motifs formed in

generation 10 where the tryptophan content in the L-peptides rose

to 18% and where the D-peptides even had a tryptophan at 50%

of the N-terminal positions 1–8. Our data are consistent with other

studies [26] where arginine, phenylalanine and tryptophan were

found to be important for binding in phage-mutant experiments

with non-labeled GM1.

In the course of the 10-round molecular optimization process

performed the fitness of the candidate L- and D-peptide

sequences progressed steadily as shown in Figure 4. The increase

in fitness of the peptides could be determined by normalization of

the fitness values of all peptides in one generation on the values of

their respective parent peptides which were always synthesized

and tested anew along with each filial generation (Figure 1). Since

the parent peptides of a filial generation were identical to the

fittest candidates of the previous generation a normalization

chain over the entire evolutionary process was possible and

eliminated potential synthesis-to-synthesis variations. This ren-

dered data from different peptide array experiments comparable

and also allowed readjustment of the laser intensity settings used

for readout in the imager. The adaption of laser intensity used for

the readout of the peptide arrays from different generations was

necessary in order to stay in the maximal dynamic measuring

range of the instrument. Over the total evolutionary process

encompassing ten generations, the fitness of the 25 fittest

candidates of each generation of L- and D-peptides increased

steadily but the improvement did not follow a simple exponential

growth curve. Logarithmic transformation revealed two expo-

nential growth phases, a fast one over the first 5 generations and a

second, slower one for the last five generations (Figure S2).

Whether this deceleration is due to the increased mutation rate

that was necessary to prevent inbreeding beyond generation 5 or

whether it already represents the logistic growth typical for

natural growth processes remains disputable. Over all ten

generations an average fitness improvement factor per generation

of 1.6 for the L- and 1.7 for the D-peptides was observed leading

to a cumulative affinity improvement of about 100-fold for the L-

and 400-fold for the D-peptide candidates (Figure 4). This gain in

affinity was attained by synthesizing a total of just 2400 16mer L-

and 2000 D-peptides out of a peptide space of 1021 permutations

imaginable.

These results demonstrate that the evolutionary optimization of

a peptidic 16mer GM1 ligand is possible, that the improvement

progresses rapidly, that in just 10 generations of 200 peptides each

a 400fold improvement in affinity is achievable and that both L-

and D-peptides can be optimized this way. Such a dramatic and

rapid improvement is not self-evident. Yokobayashi and colleagues

[20] for instance achieved only a 3fold improvement over 6

generations when optimizing a 6mer peptidic trypsin inhibitor.

The reasons for this discrepancy may reside in the length of the

peptide since the peptide space of a 6mer peptide solely composed

of proteinogenic amino acids is 1014-times smaller than that of a

respective 16mer; the lead structure may already be close to

perfection such that there is only little room for improvement; and

there may be colliding features in the optimization parameters that

per se preclude the existence of an optimal candidate. Such

limitations must always be kept in mind when setting up an EA-

based molecular evolution procedure. An EA optimizes a molecule

within a preset selection of constraints, nothing less but also

nothing more. Neither does it correct shortcomings in assay

design, ill-chosen amino acid pools or peptide length nor does it

introduce properties one has not asked for. For example, a GM1-

ligand evolved in a solid phase assay where solubility was not an

issue may not be optimally suited for soluble GM1-targeting

systems but could perform well on a particulate vaccine delivery

system or contrast agent. Likewise, an all-D peptidic GM1-ligand

can be perfect for gastrointestinal applications where all-L-

peptides are broken down quickly [27] but the same all-D-peptide

may be toxic upon systemic application because of its high

stability. Another difficulty in the application of the procedure

presented here might arise when peptidic ligands for large protein

targets are to be developed. Here, the pool of lead sequences must

be chosen carefully in order to prevent crossing of leads directed

against topologically different binding sites on the target surface.

Yet, even though such limitations exist, the EA-based molecular

optimization procedure presented in this work is superior to

classical high-throughput screening approaches as the latter suffer

from similar shortcomings without the time- and material-saving

advantages of the evolution process.

Molecular Evolution of Peptides
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In light of these considerations we are confident that the work

presented in this study will be a valuable stimulus to fields where

site specific delivery is crucial, such as drug targeting, molecular

imaging and personalized medicine.

Materials and Methods

Casein (Hammarsten grade) was obtained from BDH (via VWR

International, Darmstadt, Germany). Cellulose membranes

(Whatman 540) were from Whatman International (Dassel,

Germany). Fmoc amino acid building blocks with side chain

protecting groups if required (tBu (serine, threonine and tyrosine),

OtBu (aspartic- and glutamic acid), Boc (lysine and tryptophan),

Acm (cysteine), Trt (histidine, asparagine and glutamine), Pbf

(arginine)) were obtained from Merck Biosciences (Bad Soden,

Germany). Anhydrous hydroxybenzotriazole (HOBt) was from

Dojindo Laboratories (Kumamoto, Japan) and dimethylforma-

mide (DMF) from LGC Promochem (Wesel, Germany). N-

methylpyrrolidone (NMP; Fluka, Taufkirchen, Germany) was

deionised by treatment with dried ion exchange mixed bed resin

AG501-X8 (Bio Rad Laboratories, München, Germany). Lyso-

ganglioside GM1 was from Sigma-Aldrich (Taufkirchen, Germany)

and DY650-NHS was from Dyomics (Jena, Germany). All other

chemicals and solvents were of analytical grade and purchased

from Sigma-Aldrich; they were used without further purification.

Fluorescence intensities were quantified with an Odyssey

Infrared Imager running software version 2.1.12 (LI-COR

Biosciences, Bad Homburg, Germany). Spatially addressable

multiple peptide synthesis was carried out using a pipetting robot

ASP 222 (Intavis Bioanalytical Instruments, Köln, Germany).

Peptide libraries
Peptide arrays were synthesized onto cellulose membranes

following a modified version of the procedure described by Frank

[28]. The cellulose membranes were derivatized with epibromo-

hydrine in dioxane (10% (v/v) containing 1% of 60% perchloric

acid, 0.02 ml/cm2 membrane), for 3 h at room temperature (RT)

according to Ast et al. [29]. The membranes were washed 36with

dioxane (0.13 ml/cm2 membrane, 5 min, RT) and subsequently

exposed to a solution of 4,7,10-trioxa-undecane-1,13-diamine

(20% (v/v) in DMF, 0.21 ml/cm2 membrane) for 3 h at RT. This

solution was removed and the membranes were incubated in a

Figure 3. Emergence of consensus sequences. A. Change in evenness of the amino acid distribution in each generation. The diversity of the
peptide sequences is expressed by Pielou’s evenness index (full circles: complete populations of 200 peptides of each generation, open circles:
subpopulations of 25 ‘‘fittest’’ peptides chosen as parents for the next generation; red: L-peptides, green: D-peptides). B–E. Formation of a consensus
sequence for L- (B, C) and D-peptide populations (D, E). The frequencies of the individual amino acids (given in one letter code; capital letters for L
amino acids, small letters for D amino acids) were determined in the lead peptides (B, D) and the 25 best GM1-binders of the 10th generation (C, E).
The sequence positions 1–16 are plotted versus the respective amino acid residues. Color codes show how often a certain amino acid is found at the
respective position (‘‘Amino Acid Frequency’’): purple-blue staining indicates a uniform occurrence of all amino acids, yellow-red reveals frequent
occurrence of a certain amino acid at the respective sequence position.
doi:10.1371/journal.pcbi.1002800.g003

Figure 4. Increase in target-binding strength of peptide sequences in the course of the molecular evolution process. A. L-peptides B.
D-peptides. The relative fitness (compared to the lead peptides) of the 25 best lysoGM1/Dy650 binding peptides from each generation is shown.
Horizontal bars indicate the arithmetic mean of the 25 best fitness values of each generation.
doi:10.1371/journal.pcbi.1002800.g004
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solution of NaOMe in Methanol (5 M, 0.21 ml/cm2 membrane)

for 30 min, washed 76 with aqueous methanol (0.21 ml/cm2

membrane, 5 min, RT) and air dried.

For definition of the synthesis areas, 0.1 ml of 0.2 M Fmoc-b-

alanine-pentafluorophenyl (Pfp) ester (0.2 M Fmoc-b-alanine-Pfp-

ester in NMP) were applied by the pipetting robot at defined

positions on the membrane, then excess hydroxyl groups were

blocked (‘‘capping’’) with a solution of acetic anhydride (Ac2O)

and diisopropylethylamine in DMF (8% Ac2O, 15% diisopropy-

lethylamine (v/v), 0.13 ml/cm2 membrane, 1 h, RT, rocking) and

the membranes were washed 36 with DMF (0.13 ml/cm2

membrane, 3 min, RT). The Fmoc protecting groups were

cleaved using piperidine (20% (v/v) in DMF, 1 ml/cm2 mem-

brane, 20 min, RT). To confirm the presence of free amino

functions in the spot areas, the membranes were washed 56with

DMF (0.13 ml/cm2 membrane, 3 min, RT), stained with

bromophenol blue in DMF (0.01% (v/v), 0.13 ml/cm2 mem-

brane, 10 min, RT, rocking), washed 36 with 100% ethanol

(0.13 ml/cm2 membrane, 3 min, RT) and air dried.

The above capping, washing, Fmoc-cleavage and staining steps

were repeated between all synthesis cycles from the definition of

the synthesis areas (spots) onwards, but after the third synthesis

cycle capping was performed for 20 min only using 2% Ac2O (v/

v) in DMF.

For all peptide synthesis cycles, the amino acid building blocks

were converted into their corresponding HOBt esters immediately

before use by adding 1.25 moles diisopropylcarbodiimide per mole

amino acid to a solution containing 0.4 M N-a-Fmoc-protected

amino acid and 0.7 M HOBt in NMP (final concentration: 0.2 M

amino acid, 0.35 M HOBt, 0.25 M diisopropylcarbodiimide) and

allowing the mixture to react for 30 min at RT. Precipitates were

removed by a short centrifugation step and 0.2 ml of these N-a-

Fmoc-protected amino acid active esters were applied to the

respective synthesis areas. Coupling of each amino acid was

repeated 3 times and a minimum of 40 min reaction time was

allowed in each synthesis cycle. After the last cycle the peptides

were N-terminally acetylated with 2% (v/v) Ac2O in DMF (15 ml

(0.13 ml/cm2 membrane), 20 min, RT, rocking).

Side chain protecting groups (except for Acm) were removed by

immersing the membranes twice in a cleavage cocktail (50% (v/v)

trifluoroacetic acid, 3% (v/v) triisobutylsilane, 2% (v/v) water in

dichloromethane, 0.09 ml/cm2 membrane, 1 h each, RT, rock-

ing). Subsequently, membranes were washed 46 with dichloro-

methane, 36with DMF, 46with 1 M acetic acid and finally 36
with 100% ethanol (each 0.13 ml/cm2 membrane, 3 min, RT).

Membranes were air-dried, desiccated overnight in vacuo and

stored in the presence of desiccant at 220 uC.

GM1-binding assays
To obtain a fluorescent GM1 without modification of its

carbohydrate part which is essential for ligand binding, we

substituted the generic fatty acid of the ganglioside’s ceramide

moiety with a dark red fluorescent dye. Lysoganglioside GM1

(lysoGM1) was chosen as starting material as it already lacks the

fatty acid residue and contains a free amino function instead. For

preparation of the lysoGM1/DY650 conjugate, 200 ml of 2 mg/ml

lysoGM1 in dry DMF were mixed with 225 ml of 2 mg/ml DY650-

NHS in dry DMF, 7 ml of diisopropylethylamine were added, and

the mixture was incubated for 36 h at 30uC under an argon

atmosphere. The solvent was removed in vacuo, the residue was

dissolved in 500 ml of acetonitrile/water (20% (v/v)) and purified

by HPLC on RP-18 silica gel (A = water, B = acetonitrile, 20% B

to 70% B, 1 ml/min, 60 ml, retention volume 40 ml).

For screening of the peptide libraries, the cellulose membranes

carrying the peptide arrays were blocked with casein/PBS (1%

casein in Dulbecco’s PBS (D-PBS) (1.47 mM KH2PO4, 8.10 mM

Na2HPO4, 137 mM NaCl, 2.68 mM KCl, pH 7.4) for 3 h at RT

and incubated over night at RT with a solution of lysoGM1/Dy650

(approx. 10 ng/ml (approx. 5 nM)) in casein/PBS. Then they

were washed at RT 6610 min with D-PBS-Tween (D-PBS

containing 0.5% (v/v) Tween20), 2610 min with D-PBS and

the bound lysoGM1/DY650 was quantitated on the wet mem-

branes in an Odyssey Infrared Imager (excitation wavelength

680 nm, emission wavelength 700 nm). All experiments were

performed in duplicate using 2 identical libraries that had been

synthesized in parallel.

Alanine scan experiments in the lead peptide sequences
Peptide sequences for alanine scan experiments were

synthesized on cellulose membranes as described above. All

sequence-positions in the L- and D-lead peptides were replaced

with L-alanine for the L-peptides and D-alanine for the D-

peptides, and the ‘‘point-mutated’’ sequences were probed for

their lysoGM1/DY650 binding capacity as described above. An

influence on the GM1 binding capacity due to an amino acid

that had been replaced by alanine was assumed, if the

fluorescence signal of the mutated peptide spot was increased

or decreased by 50% in comparison to the original sequence. If

the exchange of an amino acid residue lead to a decrease in

signal of the mutated peptide by 50% the replaced residue was

judged to be beneficial in GM1 binding and highlighted by

boldface in table 1. If the exchange of a residue lead to an

increase in signal of the mutated peptide by 50% the replaced

residue was judged to be disadvantageous for binding in the

original sequence and underlined in table 1.

Generation of peptide sequences using the evolutionary
algorithm

The work flow in the software for the evolutionary

optimization of peptides is summarized in Figure 1 and

depicted in detail in form of a 10-step-flow chart in

Supplementary Figure S1. L-Peptide lead sequences for the

evolution process were identified (step 1) by manual inspection

from a library of 64 alleged GM1 binding peptides (Supple-

mentary Table S1) which had been screened with fluorophore-

labeled lysoGM1/Dy650 [17]. Eleven peptides (m = 11) display-

ing a GM1-probe binding affinity above background, as

determined by applying a statistically defined cut-off value

[18], were character encoded using a 1-letter code for the

respective amino acids (step 2), assigned fitness-values (step 3)

according to their fluorescence signals in the assay and entered

as lead peptides into the evolution process.

Different parameter settings in the EA - fitness scaling function,

parent population size, crossover rate, number of fracture sites and

mutation rate - were worked out in an empirical simulation study

based on a ‘‘pseudo’’ fitness function and artificial peptide motifs

and optimized experimentally in the first generations of the

evolution process. The initial gaussian configuration interval of

probabilities for recombination and mutation was equal for all

positions in the peptide sequences [23]. During the evolutionary

process, each setup of the recombination and mutation operators

was generated within the pre-configured gaussian distribution

interval [23]. As a starting point a crossover rate of 100% with one

fracture site in each sequence and a mutation rate of 7% were

chosen. In generation 1 two subpopulations of = 200 peptide

sequences each were generated by applying different scaling

functions to the fitness values (x) of the lead peptides (step 4); the
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first subpopulation (gen1sq) was created by using a square fitness

scaling function:

f (x)~7x2z3xz1,

whereas the second subpopulation (gen1ex) was generated by

using an exponential scaling function:

f (x)~2ex

Both functions have been chosen to markedly scale the fitness

values within the entire dataset range and therefore increase the

selection pressure. Generation 2 (gen2, = 200 peptides) was

created by using the m* = 16 sequences with the highest fitness

values from each, gen1sq and gen1ex, as parents. From this point

onward, only the square fitness scaling function was used. In

generation 3 the influence of the size m* of the parent population

resulting from manual inspection of the peptides (step 9) was

investigated. For that purpose, a first subpopulation (gen3a,

= 200 peptides) was created from m* = 32 good parents out of

gen2 while a second subpopulation (gen3b, = 200 peptides) was

based on the m* = 20 best sequences from gen2. The m* = 25

sequences with the highest fitness values from gen3a and gen3b

were taken as parent peptides for the creation of generation 4. For

all the following generations (gen5–gen10, = 200 peptides each),

always the m* = 25 best motifs of the entire population were used

as parents. From generation 6 onwards (gen6–gen10, = 200

peptides each) the mutational rate was elevated to 12% but the

crossover rate of 100% and the single fracture site were kept.

For identification of D-peptide lead sequences, the 64 alleged

GM1 binding peptides were synthesized in form of their retro-

inverso peptide isomers and the resulting library of D-peptides

was analyzed as described for the L-peptides. The D-peptide

lead sequences were selected accordingly (Supplementary Table

S1). For the optimization process of the D-peptides, the

parameter settings were adopted from the procedure conducted

with the L-peptides (crossover rate 100%; mutation rate 7% in

gen 1–5, 12% in gen 6–10; square scaling function). From the

m= 13 lead peptides selected as a starting population, = 200

filial peptides were generated in gen1. The m* = 17 fittest

peptides from gen1 were chosen as parent peptides for gen2,

for all the following generations (gen3–gen10, = 200 peptides

each) the best m* = 25 peptides were selected as parent

sequences.

For the L- and the D-peptides the evolutional process was

continued until a consensus motif was reached (step 10) and the

evenness in the populations had reached a low plateau (Figure 3).

All peptides synthesized and analyzed in this evolutionary process

are listed in Supplementary Table S2.

Determination of evenness
In all populations of D- and L-peptides, the evenness was

calculated which is a measure of the population diversity. To do

so, the frequency f of any individual amino acid (i) at each

sequence position in a population of peptides was counted, and the

species richness S (number of different amino acids which occur in

total at this position) was determined. The individual amino acid

frequency fi was divided by the population size (N) (i.e. number of

peptides in the respective population) to compute Pi (Pi = fi/N)

which is the relative frequency of an amino acid in a given

sequence position. With the relative frequency P for each amino

acid (i) which is present at this sequence position, the Shannon

Index (H) can be determined:

H~
XS

i

Pi
: ln Pi

On the basis of the Shannon index H the Pielou evenness index (E)

(E = H/Hmax) [25] can be calculated with Hmax being the value for

H in case that all amino acids available are present and equally

distributed at this sequence position (Hmax = lnS). The evenness

index E can assume values between 1 (all amino acids present in

equal numbers at the respective sequence position, i.e. ‘‘even

distribution’’ of all amino acid species) and 0 (only one amino acid

present at the respective sequence position, i.e. ‘‘maximally uneven

distribution’’ of the amino acid species). For the 16 mer peptides

the evennesses per position were summed up to calculate the

population evenness.

Supporting Information

Figure S1 Flow chart of the evolutionary algorithm for
function-driven peptide optimization. A population of m
lead peptides is chosen (step 1) and character encoded (step 2). To

each peptide, a fitness value is assigned according to the results of

the biochemical assay (step 3). The fitness values assigned are

scaled by a fitness scaling function (step 4) and fitness proportional

selection by stochastic universal sampling (SUS) of the peptides is

performed to create a mating pool of peptide sequences (step 5).

Sequences from that pool are l-times recombined with gaussian

variation of the recombination points (step 6), and the resulting

sequence motifs are then mutated with specific gaussian variation

(step 7) to establish a filial generation of l peptides. The peptide

sequences created that way are synthesized in parallel and their

fitness is determined in the biochemical assay (step 8). The results

are manually inspected to select m* candidates (step 9) to act as

parent peptides for the next generation. This process is repeated

until optimized peptides are obtained (step 10). The character

encoding (step 2) of the peptide sequence data is a more intuitive

one in comparison to binary coding which has often been used for

genetic algorithms. Character encoding ensures a higher efficiency

in the coding space and an easier manual inspection of the results.

The stochastic universal sampling (SUS, step 5) as performed here

is a state of the art selection method used for genetic algorithms

(GAs) and is used as a GA-like internal cycle 1 to select the parents

for each recombination repeatedly - depending on their fitness

status - from the mating pool. The evolutionary strategy (ES)-like

general cycle 2 starts with a number of m lead peptides or with m*

manually selected ones from the overall population in each

following generation. The default gaussian probability onset of the

recombination (step 6) and mutation (step 7) operator configura-

tion was determined by a simulation study based on a ‘‘pseudo’’

fitness function and an artificial peptide-motif. The values of m and

l reflect the generation changes and selection pressure. In that

regard the manual selection of e. g. m* = 25 from an intermediate

population size l= 200 stands for a selection pressure of 8. In

contrast to standard ES the population size of l peptides is here

generated by breeding out of a limited mating pool, i.e. l-times

recombination (step 5+6) of the manually selected m or m*-

peptides.

(PDF)

Figure S2 Fitness ‘‘growth’’ over 10 generations of
evolution. Mean fitness of the 25 best candidates of each

generation (normalized to fitness of lead peptides = 1) is shown

after logarithmic transformation. Ideal exponential growth is

reflected in a linear relationship between ‘‘log Fitness’’ and
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‘‘Generation’’. Here, improvement of fitness can be divided into

two ‘‘exponential’’ phases: ‘‘fast’’ growth in generation 0–5,

‘‘slower’’ growth in generation 5–10.

(PDF)

Table S1 Identification of lead sequences for the
molecular evolution of GM1-binding peptides.
(PDF)

Table S2 List of all peptides generated in the course of
the evolutionary process of optimization for GM1-binding.
(PDF)
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13. Schneider G, Schrödl W, Wallukat G, Müller J, Nissen E, et al (1998) Peptide
design by artificial neural networks and computer-based evolutionary search.

Proc Natl Acad Sci U S A 95: 12179–12184.

14. Fjell CD, Hiss JA, Hancock REW (2012) Designing antimicrobial peptides: form
follows function. Nat Rev Drug Dis 11: 37–51.

15. Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, et al (1996) Role of
the glycocalyx in regulating access of microparticles to apical plasma membranes

of intestinal epithelial cells: implications for microbial attachment and oral
vaccine targeting. J Exp Med 184: 1045–1059.

16. Frank M, Schloissnig S (2010) Bioinformatics and molecular modelling in

glycobiology. Cell Mol Life Sci 67: 2749–2772.
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