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Abstract

Background: Benznidazole (BZL) is the only antichagasic drug available in most endemic countries. Its effect on the
expression and activity of drug-metabolizing and transporter proteins has not been studied yet.

Methodology/Principal Findings: Expression and activity of P-glycoprotein (P-gp), Multidrug resistance-associated protein
2 (MRP2), Cytochrome P450 3A4 (CYP3A4), and Glutathione S-transferase (GST) were evaluated in HepG2 cells after
treatment with BZL. Expression was estimated by immunoblotting and real time PCR. P-gp and MRP2 activities were
estimated using model substrates rhodamine 123 and dinitrophenyl-S-glutathione (DNP-SG), respectively. CYP3A4 and GST
activities were evaluated through their abilities to convert proluciferin into luciferin and 1-chloro-2,4-dinitrobenzene into
DNP-SG, respectively. BZL (200 mM) increased the expression (protein and mRNA) of P-gp, MRP2, CYP3A4, and GSTp class. A
concomitant enhancement of activity was observed for all these proteins, except for CYP3A4, which exhibited a decreased
activity. To elucidate if pregnane X receptor (PXR) mediates BZL response, its expression was knocked down with a specific
siRNA. In this condition, the effect of BZL on P-gp, MRP2, CYP3A4, and GSTp protein up-regulation was completely
abolished. Consistent with this, BZL was able to activate PXR, as detected by reporter gene assay. Additional studies, using
transporter inhibitors and P-gp-knock down cells, demonstrated that P-gp is involved in BZL extrusion. Pre-treatment of
HepG2 cells with BZL increased its own efflux, as a consequence of P-gp up-regulation.

Conclusions/Significance: Modifications in the activity of biotransformation and transport systems by BZL may alter the
pharmacokinetics and efficiency of drugs that are substrates of these systems, including BZL itself.
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Introduction

Chagas disease or American trypanosomiasis is an endemic

infection caused by the protozoa parasite Trypanosoma cruzi (T. cruzi).

It is widely extended in Latin America and affects 8 million people,

and at least 100 million are at risk of infection [1]. Many reports

have recognized the occurrence of this zoonosis in areas where the

disease is not endemic, such as the United States and Europe,

mainly due to the migration of infected people [2,3]. Currently,

benznidazole (BZL, 2-(2-nitroimidazol-1-yl)-N-(phenylmethyl) acet-

amide) is the unique drug commercially available for treatment in

most endemic countries. It was recently reported that in T. cruzi

BZL is metabolized by a NADH-dependent type I nitroreductase

rendering the cytotoxic and mutagenic agent glyoxal [4]. In

mammalian, the nitro group is reduced to an amino group by a type

II nitroreductase, with formation of free radical intermediaries and

reactive oxygen species (ROS) [4–6]. BZL exerts its trypanocidal

effect against all forms of the parasite (intra or extracellular) through

these metabolites that likely bind to parasite macromolecules [7,8].

The liver plays a major role in the elimination of endogenous

and exogenous compounds. Biliary excretion of drugs is mainly

mediated by members of the ATP-binding cassette (ABC) family of

transporters such as P-glycoprotein (P-gp/ABCB1/MDR1), mul-

tidrug resistance-associated protein 2 (MRP2/ABCC2) and breast

cancer resistance protein (BCRP/ABCG2). These transporters act

coordinately with phase I and II biotransformation reactions to

metabolize and excrete a wide variety of endo- and xenobiotics

into bile. P-gp transports a broad diversity of lipophilic and

cationic compounds including therapeutic agents and environ-

mental pollutants [9]. MRP2 extrudes bilirubin, bile salts,

carcinogens and therapeutic drugs in the form of conjugates with

glutathione (GSH), glucuronic acid or sulfate [10–13]. BCRP

transports a wide range of compounds including sulfated

estrogens, anticancer drugs, antibiotics, etc [14].
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The expression and activity of biotransformation systems and

transporters can be altered by many factors including diet, hormones,

aging, diseases, or inducing substances. Due to the co-localization and

coordinated function between enzymes and transporters a simulta-

neous regulation of these systems has been suggested [10,13,15].

Regulation may occur either at the transcriptional or post-

transcriptional level, resulting in changes in mRNA and protein

contents, or at the level of post-translational processing [16,17]. In

general, transcriptional regulation involves ligand-activated nuclear

receptors. Pregnane X-receptor (PXR, NR1I2) is a very promiscuous

nuclear receptor considered the main xenosensor regulating genes

involved in biotransformation and elimination of endo- and

exogenous compounds. These include those of phase I enzymes

(e.g. CYP3A4), phase II enzymes (e.g. glutathione S-transferase

(GST)) and transporters such as P-gp and MRP2 [18,19]. PXR

functions as a defense mechanism against toxic insults, but it also

constitutes the molecular basis for undesired drug-drug interactions.

The drug mediated activation of PXR can accelerate its own

depuration (auto-induction) or the clearance of co-administered drugs

leading to reduced plasma concentrations and thus diminished

efficacy of therapy. Interestingly, a study carried out in patients

receiving BZL (7 mg/kg/day for 30 days, twice a day) indeed

demonstrated that maximal plasma concentrations of BZL after the

first dose in the morning tends to decrease with treatment time

(220% in average after 25 days of treatment) [20], suggesting the

possibility of auto-induction of metabolism or absorption limiting

mechanisms. At present there is no information on whether BZL

truly modulates expression or activity of biotransformation systems

and transporters with potential impact on its own disposition or on

disposition of other therapeutic agents co-administered with BZL. In

an attempt to clarify this point, in this study we explored the effect of

BZL on expression and activity of the biotransformation enzymes

CYP3A4 and GST classes a, m and p, and the transporters P-gp,

MRP2 and BCRP in HepG2 cells, a hepatoma cell line. The

potential mediation of PXR was also evaluated.

Materials and Methods

Chemicals
1-chloro-2,4-dinitrobenzene (CDNB), GSH, probenecid, rho-

damine 123 (Rh123), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltre-

tazolium bromide (MTT), rifampicin (RIF), verapamil (VER),

phenylmethylsulfonyl fluoride and leupeptin were from Sigma-

Aldrich (St. Louis, MO, USA). Benznidazole was from Roche (Rio

de Janeiro, Brazil). DMSO was purchased from Merck (Darm-

stadt, HE, Germany). All other chemicals were of analytical grade

purity.

Cell culture and treatments
The human HepG2 cell line is utilized as an approach to

human hepatocytes since it is easily available and retains features

that are normally lost during culturing of primary hepatocytes

[21]. For example, preservation of polarity in HepG2 cells is

essential for proper localization of apical membrane transporters

[22]. HepG2 cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM) and Ham’s F-12 medium (Invitrogen, Carlsbad,

CA, USA) at a 1:1 proportion, supplemented with 10% FBS (PAA,

Pasching, Austria), 2 mM L-glutamine, a mixture of antibiotics

(5 mg/ml penicillin, 5 mg/ml streptomycin and 10 mg/ml

neomycin) and 0.1 mg% insulin (Invitrogen).

Cells were incubated at 37uC in a humidified atmosphere

containing 5% CO2 as described [23]. For the treatments, unless

otherwise stated, HepG2 cells were seeded in 6-well plates at a

density of 56105 cells/well. BZL was dissolved in DMSO and

added at different concentrations (2, 20, 200 or 1000 mM). Only

DMSO was added to control cells (C). The final concentration of

DMSO in the culture media was always below 0.1%. The medium

was systematically renewed every 24 h.

LS180 intestinal cells were used as a model for PXR activation

because these cells exhibit high PXR expression levels and are a

well-known induction model [24]. Cells were grown in DMEM

supplemented with 10% FBS, 2 mM L-glutamine, antibiotics

(penicillin 5 mg/ml and streptomycin 5 mg/ml) and non-essential

aminoacids and incubated as described for HepG2 cells.

Cell viability was assessed measuring the conversion of MTT to

its formazan as described [23]. The rate of conversion in all

treated groups was not statistically different from the respective

control cells (data not shown).

Western blot and real time RT-PCR studies
The effect of BZL on protein expression of biotransformation

enzymes and transporters was initially assessed in cell lysates.

HepG2 cells were washed twice with cold PBS and scraped with

RIPA buffer (Thermo Scientific, Rockford, IL, USA) supplement-

ed with phenylmethylsulfonyl fluoride (17 mg/ml) and leupeptin

(15 mg/ml) as protease inhibitors. Lysates were passed 20 times

through a 25G needle and subjected to protein concentration

assay [25].

To evaluate the expression of P-gp and MRP2 at the cell

surface, plasma membranes from HepG2 cells were isolated as

described by Kubitz et al. [26]. Briefly, the cells were scraped in a

buffer containing Tris 20 mM, sucrose 250 mM, EGTA 5 mM

and MgCl2 1 mM supplemented with protease inhibitors. Cell

lysis was achieved through passing the cell suspension 20 times

through a 25G needle, followed by protein concentration

assessment [25].

Western blotting and bands quantification were performed as

previously described [27]. Primary antibodies were: CYP3A4,

AB1254 (Millipore, Darmstadt, HE, Germany); GSTp, ADI-

MSA-102-E and MRP2, M2III-6 (Enzo Life Sciences, Farming-

dale, NY, USA); BCRP, BXP-21; glyceraldehyde-3-phosphate

dehydrogenase (GAPDH, FL-335) and P-gp, H-241 (Santa Cruz

Biotechnology, Santa Cruz, CA, USA); GSTYa (a class), GS-09

and GSTYb (m class), GS23 (Oxford Biomedical Research,

Rochester Hills, MI, USA) and b-actin, A-2228 (Sigma-Aldrich).

Author Summary

Chagas disease is an endemic infection caused by Trypano-
soma cruzi. Benznidazole (BZL) is the only antichagasic drug
available in most endemic countries. The liver plays a major
role in disposition of endogenous and exogenous compounds
and their excretion is mainly mediated by transporter proteins
(such as P-gp and MRP2) that act coordinately with
biotransformation enzymes (such as CYP3A4 and GST). At
present there is no information on whether BZL may modulate
major biotransformation systems and transporters, with
potential impact on its disposition or on disposition of other
therapeutic agents co-administered with BZL. BZL (200 mM)
altered the expression (protein and mRNA) and activity of P-
gp, MRP2, CYP3A4, and GSTp in HepG2 cells (a cell model that
retains many biochemical, morphological and functional
properties of the human hepatocytes), being the nuclear
receptor PXR a key mediator. Additional studies demonstrated
that P-gp is involved in BZL extrusion. Alterations in the
pharmacokinetics and efficiency of drugs that are substrates of
these systems, including BZL itself, would be expected.

BZL Induces Enzymes and Transporters via PXR
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Real time RT-PCR study was performed only if alterations in

protein expression were detected by western blotting. Total RNA

was isolated using TRIzol reagent (Invitrogen). cDNA was

synthesized from 1 mg of total RNA with the Superscript III

Reverse Transcriptase (Invitrogen) using random hexamers

according to manufacturer’s instructions. Real time PCR reactions

were carried out on a MX3000P system (Agilent Technologies,

Santa Clara, CA, USA) with Platinum Taq DNA Polymerase

(Invitrogen). The amount of template was quantified with SYBR

Green (Invitrogen). Primers were used at a final concentration of

1 mM. Primer sequences were: MDR1(F): 59CCAAAGACAA-

CAGCTGAAA39; MDR1(R): 59TACTTGGTGGCACA-

TAAAC39; MRP2(F):59AGGTTTGCCAGTTATCCGTG39;

MRP2(R): 59AACAAAGCCAACAGTGTCCC39; CYP3A4 (F)

59-GTGGGGCTTTTATGATGGTCA-39; (R) 59-GCCTCA-

GATTTCTCACCAACACA-39; GSTP1(F): 59TATTTCCCA-

GTTCGAGGCCG39; GSTP1(R): 59TGGTACAGGGTGAGG-

TCTCC39; 18S(F): 59CGCCGCTAGAGGTGAAATTC39;

18(R): 59TTGGCAAATGCTTTCGCT39. The thermocycling

regime was 95uC for 2 min followed by 40 cycles of 95uC for

15 sec, 55uC for 30 sec and 72uC for 30 sec. Relative levels of

MDR1, MRP2, CYP3A4 and GSTP1 mRNA normalized to 18S

rRNA were calculated based on the 22DDCt method [28].

Specificity of each reaction was verified with a dissociation curve

between 55uC and 95uC with continuous fluorescence measure.

Activity of transporters and biotransformation systems
The activity of P-gp in HepG2 cells was assessed measuring the

intracellular content of the fluorescent compound Rh123, which

inversely associates with the amount of substrate extruded [23,29].

It is known that the probe is transported by P-gp and to some

extent by BCRP [30]. To confirm P-gp participation in the efflux

of Rh123, we repeated the experiments in the presence of

verapamil (VER), an inhibitor of P-gp but not BCRP [31]. For this

purpose, cells were cultured and treated with BZL (200 mM, 48 h)

as described above. Then, treatment medium was replaced with

fresh medium containing Rh123 (5 mM), with or without VER

(100 mM) [32], both dissolved in DMSO. Cells were incubated for

2 h to allow the probe to enter the cells. At the end of the

incubation, they were promptly washed twice with cold PBS,

scraped with sucrose 0.3 M and lysed by sonication. The amount

of Rh123 in the lysates was determined fluorometrically using a

Multimode Detector DTX-880 (Beckman Coulter, Palo Alto, CA,

USA), lexcitation = 485 nm, lemission = 535 nm.

The activity of MRP2 was determined as previously reported by

Zhang et al. [33] through determination of the amount of

dinitrophenyl-S-glutathione (DNP-SG) extruded by HepG2 cells

into culture medium. Briefly, cells were cultured in 6-well plates and

treated with BZL (200 mM, 48 h) as described above. Then,

treatment medium was replaced with fresh medium containing

CDNB (0.5 mM) and cells were incubated at 10uC for 30 min to

allow CDNB to passively diffuse into the cytosol. In this condition,

most of CDNB conversion to DNP-SG is spontaneous, i.e

independent of GST activity [34]. At the end of incubation the

medium was rinsed and cells were promptly washed twice with cold

PBS. To evaluate the rate of DNP-SG secretion, cells were

incubated with Hank’s balanced salt solution at 37uC for 60 min.

Samples were taken and centrifuged (3 min, 300 g, 4uC). Super-

natants were treated with 10% perchloric acid and centrifuged

again (2 min, 14000 g, 4uC). Remaining supernatants were used for

DNP-SG detection by HPLC (Waters 600; Waters, Milford, MA,

USA) as described [35]. Results are expressed as nmol of DNP-SG

extruded per 106 cells. To confirm MRP2 participation, probenecid

(PRO, 1 mM) was added as an inhibitor [36].

To determine the effect of BZL (200 mM, 48 h) on CYP3A4

activity, cells were cultured at a density of 26104 cells/well in 96

well plates. Then, the enzyme activity was measured using the

P450-Glo Luciferin-IPA CYP3A4 kit (Promega, Mannheim, BW,

Germany), based on the CYP3A4 catalyzed conversion of a

proluciferin substrate into a luciferin product, that can be detected

in a luminometric assay using a Glomax Luminometer (Promega).

GST activity was measured according to the method of Habig

et al. [37] based on the enzymatic conjugation of CDNB with

GSH, thus generating DNP-SG. HepG2 cells were cultured and

treated with BZL (200 mM) as already described. Then cells were

harvested, lysed by sonication, and centrifuged (20 min, 10000 g,

4uC), and the supernatants were used in the assays. The reaction

mixture contained PBS pH 6.50, 1 mM CDNB and 1 mM GSH.

Reaction was initiated by addition of cell supernatants. Formation

of DNP-SG was determined spectrophotometrically at 340 nm.

Knock down of PXR
HepG2 cells (56104 cells/well) were seeded in 24-well plates,

incubated at 37uC and subjected to transfection 24 h later.

Human PXR was transiently knock down with PXR siRNA (h)

(Santa Cruz Biotechnology, sc-44057) targeting the human

nuclear receptor mRNA. Control siRNA-A (Santa Cruz Biotech-

nology, sc-37007), a non-targeting siRNA, was used as a negative

control. Transfections were performed using Dharmafect4 Trans-

fection Reagent (Dharmacon, Lafayette, CO, USA) as described

[23]. Twenty four h after transfection initiation, cells were

incubated with BZL at a 200 mM final concentration for 48 h.

At the end of the incubation, they were rinsed, scraped and used in

western blot studies as described above.

Activity of PXR
The activation of a reporter gene under the control of a

proximal sequence of CYP3A4 gene promoter and a distal

xenobiotic enhancer module (XREM), both of them containing

PXR response elements is a well accepted method to quantify

PXR activity [38,39]. The plasmid pGL4.21-PXRRE-Luc was

constructed as described by Gu et al. (2006) [38] with minor

modifications. Human CYP3A4 proximal promoter was isolated

by PCR from human genomic DNA using the primers

59CATTGCTGGCTGAGGTGGTT39 and 59CATAAGCTTT-

GTTGCTCTTTGCTGGGCTATGTGC39. The product was

digested with BglII and HindIII and cloned into the pGL4.21

(Promega). The distal XREM was amplified with the primers

59GGGGTACCATTCTTAGAGAGATGGTTCATTCC39 and

59CCGCTCGAGATCTTCGTCAACAGGTTAAAGGAG39,

digested with KpnI and BglII and cloned in the pGL4.21 plasmid

already containing the proximal sequence. LS180 intestinal cells

were transfected with pGL4.21-PXRRE-Luc by electroporation

using the Lonza V-Kit (Lonza, Basel, Switzerland) followed by

selection with Puromycin (10 mM). After successful selection, cells

were seeded at a density of 30000 cells/well in 96-well plates and

treated with different concentrations of BZL or RIF as a positive

control for 24 h. Luminescence was measured using the Steady

Glo Luciferase Assay System (Promega).

Metabolism and transport of BZL
To estimate the amount of BZL metabolized in our experi-

mental conditions, the amount of BZL initially added to the

incubation medium was contrasted with the total amount

(intracellular+extracellular) of unmodified BZL determined at

the end of the incubation with 100 mM BZL for 2 h. At the end of

the incubation, the medium was separated from the cells. To

quantify the intracellular content of BZL, cells were lysed by

BZL Induces Enzymes and Transporters via PXR
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sonication. Lysates were subjected to solvent extraction with

acetonitrile/DMSO (1:1) and deproteinized with 10% trichlor-

oacetic acid. BZL was measured in supernatants by HPLC (Waters

600, Waters, Milford, MA, USA). Isocratic elution was performed

with a C18 column (Luna 5 m, Phenomenex) with a mobile phase

of acetonitrile and water (2:3, vol/vol) at a flow rate of 1.0 ml/min

as described by Morilla et al. [40]. BZL was detected at 324 nm

and quantified by the external standard method by the height of

the peak. Culture medium was subjected to acetonitrile/DMSO

extraction and deproteinization followed by assessment of BZL

content, as described above.

To evaluate the possibility of BZL to be a substrate of P-gp and/

or MRP2, as a first approach untreated HepG2 cells were loaded

with this compound (100 mM) for 2 h, in the presence of either

PRO (1 mM) or VER (100 mM). Due to its lipophilicity, it is

assumed that BZL passively enters the cells. Retention of BZL into

the cells after this period was inversely correlated with its

extrusion. Intracellular content of BZL was determined as

described above.

To further confirm the involvement of P-gp in BZL extrusion,

accumulation experiments were repeated in HepG2 cells trans-

fected with a siRNA against human P-gp (sc-29395, Santa Cruz)

or with a control non-silencing siRNA (Control siRNA-A, sc-

37007, Santa Cruz). Cells were seeded in 24-well plates (100000

cells/well) and 24 h later exposed to 100 nM siRNA (or control

siRNA) for 48 h in the presence of Dharmafect4 (Dharmacon) as

transfection reagent. Cells were further incubated for 24 h in fresh

culture medium and used for BZL accumulation studies as

described above.

Additionally, to assess whether BZL modulates its own

excretion, cells were pre-treated with this drug (200 mM) or

vehicle for 48 h and then subjected to BZL transport studies.

Treated cells were washed twice with cold PBS, exposed to fresh

medium containing BZL (100 mM) and VER (100 mM) or its

vehicle, and further incubated for 2 h. Subsequently, BZL

intracellular content was measured as described above.

Statistical analysis
Data are presented as mean 6 S.D. Statistical analysis was

performed using the Student t test (two groups) or One-Way

ANOVA followed by Newman-Keuls post hoc test (for more than

two groups). Significance was set at p,0.05. Studies were

performed using the GraphPad Prism 3.0 software (GraphPad

Software, La Jolla, CA, USA).

In the case of PXR activation studies, PXR activation

luminescence units were plotted as a function of the logarithm of

agonist concentration. The curves were best adjusted to a sigmoid

using the GraphPad Prism 3.0 software (GraphPad Software, La

Jolla, CA, USA). The goodness of adjustments was confirmed with

R2 values, which were 0.949 and 0.954 for BZL- and RIF-treated

cells, respectively.

Results

Effect of BZL treatment on the expression and activity of
drug transporters

BZL treatment for 48 h increased P-gp and MRP2 protein

contents at 200 mM (+60% and +75%, respectively) and 1000 mM

(+180% and +390%, respectively), with no changes at 2 or 20 mM

concentrations, clearly showing a concentration-dependent effect

(Fig. 1A and 1B, respectively) as detected in cell lysates. Since

1000 mM is higher than usual plasma concentrations reached during

BZL treatment (30–100 mM) [41,42], the lowest concentration

(200 mM) producing a significant induction of P-gp and MRP2 was

subsequently used.

P-gp and MRP2 are efflux proteins mainly localized at the

plasma membrane. BZL (200 mM, 48 h) increased P-gp and

MRP2 protein expression in crude plasma membranes by 138%

and 150%, respectively (Fig. 2A and 2B).

To determine whether up-regulation of P-gp and MRP2 results

from increased mRNA levels, we determined their expression by real

time PCR. BZL treatment (200 mM, 48 h) produced a significant

increase in P-gp and MRP2 mRNA levels normalized to rRNA 18S

(3326151% vs 100669% and 2936137% vs 100657% for BZL and

controls, respectively, n = 6, p,0.05), suggesting transcriptional

regulation of the respective genes or stabilization of mRNA, both of

which are mediated by a nuclear receptor [43,44].

Figure 1. Effect of BZL on transporter expression in cellular
lysates. P-gp (panel A) and MRP2 (panel B) were detected by western
blotting in HepG2 total lysates after 48 h of treatment with BZL (2, 20,
200 and 1000 mM) or vehicle (C). Equal amounts of total protein (15 mg)
were loaded in the gels. MRP2 and P-gp O.D. were related to b-actin O.D.
Uniformity of loading and transfer from gel to PVDF membrane was also
controlled with Ponceau S. The data on O.D. (% of C) are presented as
mean 6 S.D. (n = 3). Typical western blot detections are shown at the
bottom. *Significantly different from C, p,0.05; **Significantly different
from C, p,0.01; ***Significantly different from C, p,0.001.
doi:10.1371/journal.pntd.0001951.g001

BZL Induces Enzymes and Transporters via PXR
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In contrast to P-gp and MRP2, BCRP protein expression was

not affected by BZL treatment (200 mM, 48 h, data not shown).

To evaluate the functional impact of P-gp and MRP2 up-

regulation, we estimated their transport activities using different

experimental strategies that were found optimal in each case

[29,33]. The up-regulation of P-gp by BZL indeed correlated well

with a reduced intracellular content of its substrate Rh123 (215%)

when compared to control cells (Fig. 3). Intracellular level of

Rh123 was increased by VER in both control and BZL-treated

cells (+30% and +37%, respectively), confirming the contribution

of P-gp to Rh123 efflux.

The excretion rate of DNP-SG in BZL-treated cells was higher

(about 80%) than in control cells (Fig. 4), agreeing well with the

higher content of MRP2 protein. The addition of PRO inhibited

the efflux of DNP-SG both in control and BZL-treated cells

(225% and 255%, respectively), consistent with participation of a

MRP transporter.

Effect of BZL on the expression and activity of CYP3A4
and GST

We additionally evaluated the effect of BZL treatment (200 mM,

48 h) on CYP3A4 and GST, as important biotransformation

systems which usually generate substrates for P-gp and MRP2.

CYP3A4 protein expression showed an induction of 43% in BZL

treated cells (Fig. 5A). GSTp class was the only GST induced by

BZL (+75%, Fig. 5D). No changes were observed in expression of

a or m GSTs (Fig. 5B and 5C). A higher stability of mRNA or a

transcriptional up-regulation by BZL of CYP3A4, and GSTP1, the

gene that encodes for the only human isoform of GSTp, is inferred

from the Real Time PCR study, as more mRNA was detected in

BZL treated cells (150623% vs 100621% for CYP3A4, n = 4,

p,0.05, and 173684% vs 100618%, n = 7, p,0.05 for GSTP1).

Figure 2. Effect of BZL on transporter expression in crude
plasma membranes. P-gp (panel A) and MRP2 (panel B) were detected
by western blotting in HepG2 plasma membranes after 48 h of treatment
with BZL (200 mM) or vehicle (C). Equal amounts of total protein (5 mg)
were loaded in the gels. MRP2 and P-gp O.D. were related to b-actin O.D.
Uniformity of loading and transfer from gel to PVDF membrane was also
controlled with Ponceau S. The data on O.D. (% of C) are presented as
mean 6 S.D. (n = 3). Typical western blot detections are shown at the
bottom. *Significantly different from C, p,0.05.
doi:10.1371/journal.pntd.0001951.g002

Figure 3. Effect of BZL on P-gp activity. Accumulation of Rh123, in
the presence or absence of verapamil (VER; 100 mM), was inversely
correlated with P-gp activity in cells pretreated with BZL (200 mM) or
vehicle (C) for 48 h. Data are presented as percentages referred to the
accumulation in C, considered as 100%, and were expressed as means
6 S.D. (n = 3). a: significantly different from C; b: significantly different
from C+VER; c: significantly different from BZL. Significance levels were
set at p,0.05.
doi:10.1371/journal.pntd.0001951.g003

Figure 4. Effect of BZL on MRP2 activity. Extrusion of DNP-SG in
the presence or absence of probenecid (PRO; 1 mM), was determined in
supernatants of cells pretreated with BZL (200 mM, 48 h) or vehicle (C)
by HPLC. Samples were taken after 60 min of incubation. Data (means
6 S.D, n = 3) are presented as percentage of DNP-SG extruded in
control cells. a: significantly different from C; b: significantly different
from C+PRO; c: significantly different from BZL. Significance levels were
set at p,0.05.
doi:10.1371/journal.pntd.0001951.g004
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Although an induction of CYP3A4 at protein and mRNA levels

was observed, BZL decreased its activity (5866% vs 10064%,

n = 3, p,0.05), consistent with an inhibitory action.

BZL increased GST activity towards CDNB (208631% vs

10068% for BZL and controls, respectively, n = 3, p,0.05),

agreeing well with up-regulation of GSTp.

Metabolism and transport of BZL
No difference was observed between the amount of intact

BZL assessed at the beginning and at the end of the incubations

(data not shown), suggesting that metabolism, if any, was of

minor significance in our experimental conditions (100 mM

BZL, 2 h).

To elucidate if P-gp and/or MRP2 are involved in BZL efflux,

HepG2 cells were incubated with BZL (100 mM) in the presence

or absence of VER (100 mM) or PRO (1 mM), for 2 h. At the end

of incubation, intracellular concentration of BZL was measured by

HPLC. As shown in Fig. 6A the intracellular accumulation of BZL

was not modified by PRO, excluding participation of MRP2 or

other MRPs as potential BZL transporters. In contrast, intracel-

lular accumulation was higher in cells exposed to VER (+28%),

suggesting that P-gp was at least partially involved in the efflux of

the drug. To further confirm this assumption, BZL intracellular

accumulation was measured in P-gp knock down cells (P-gp2) or

in cells transfected with a non-silencing RNA (P-gp+). P-gp2 cells

exhibited a diminished P-gp expression (250%) (Fig. 6B), and

increased BZL accumulation (+15%, Fig. 6C), strongly suggesting

participation of P-gp in BZL transport. As a positive control,

accumulation of Rh123 was increased by 70% in P-gp2 cells

(n = 4, p,0.05).

When HepG2 cells were pretreated with BZL (200 mM, 48 h) or

vehicle, and further incubated with BZL (100 mM, 2h) for BZL

transport studies, its intracellular accumulation was significantly

lower in pretreated cells (227%), indicating increased efficiency of

drug extrusion. The addition of VER (100 mM) abolished this

difference (Fig. 7) suggesting that P-gp induction was responsible for

the increased excretion of BZL in cells pretreated with this same

drug.

Mediation of BZL effects by nuclear receptors
Given that PXR is a key mediator in the co-regulation of drug

metabolism and transport by xenobiotics, it was of interest to

evaluate if the effects of BZL on P-gp, MRP2, CYP3A4 and GST

were associated with the activation of PXR. We used a siRNA-

driven mechanism to knock down its expression. Using this same

strategy we previously observed a significant decrease in PXR

expression (275%) in PXR2 cells when compared to cells exposed

to a non-targeting siRNA (PXR+) [23]. P-gp, MRP2, CYP3A4

and GST expression in control cells was set at 100%. PXR+ cells

exhibited induction of P-gp (Fig. 8A), MRP2 (Fig. 8B), CYP3A4

(Fig. 8C) and GSTp (Fig. 8D) by BZL (+86%, +88%, +178%, and

+31%, respectively) similar to that previously observed in wild-type

cells. The siRNA-mediated PXR knock down completely abol-

ished BZL-mediated induction for these proteins, strongly

suggesting that this nuclear receptor is indeed implicated in the

regulation of human MDR1, MRP2, CYP3A4 and GSTP1 genes by

this drug (Fig. 8A, 8B, 8C and 8D, respectively).

PXR activation by BZL was measured using a reporter system,

in which RIF was used as a positive control. Results show that

BZL was indeed able to activate PXR, being the calculated EC50

259638 mM (Fig. 9).

Discussion

The interplay between biotransformation systems and drug

transporters and its significance in drug disposition is well

recognized [45]. Using the HepG2 cell model, we evaluated the

effect of the antichagasic drug BZL on expression and activity of

CYP3A4 and GST biotransformation systems and MRP2 and P-

gp transporters, as representatives of major drug eliminating

systems.

Data on CYP3A4 shows an increase in its protein and mRNA

expression after treatment with BZL, with no concomitant

increase in its enzyme activity. In contrast, BZL even significantly

decreased CYP3A4 activity. Masana et al. [46] reported that acute

administration of BZL to rats (30 mg/kg, i.p.) prolongs pentobar-

bital induced sleeping time. This effect was attributed to the

inhibition of the hepatic microsomal biotransformation systems

Figure 5. Effect of BZL on CYP3A4 and GST expression. Cells were exposed either to vehicle (C) or BZL (200 mM) for 48 h. CYP3A4 (panel A),
GSTa (panel B), GSTm (panel C), and GSTp (panel D) levels were estimated by western blotting. Equal amounts of total protein (15 mg) were loaded in
the gels. CYP3A4 or GST O.D. was related to b-actin O.D. Uniformity of loading and transfer from gel to PVDF membrane was also controlled with
Ponceau S. The data on O.D. (% of C) are presented as mean 6 S.D. (n = 3). Typical western blot detections are shown at the bottom. *Significantly
different from C, p,0.05.
doi:10.1371/journal.pntd.0001951.g005
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aminopyrine and ethylmorphine N-demethylases (phase I reac-

tions), consequence of their covalent interactions with BZL

electrophilic metabolites (non-competitive inhibition). It is possible

that a similar phenomenon occurred in our model as a

consequence of post-translational regulation of CYP3A4. This

isoform is the most abundant CYP450 enzyme expressed in

human liver, metabolizing over 50% of therapeutic drugs [47].

Whether administration of BZL to chagasic patients results in

suppression of hepatic CYP3A4 activity is not known. If so, a

significant influence on the disposition of a wide range of co-

administered drugs can be expected.

Regarding Phase II systems, GSTs catalyze the conjugation of

GSH to electrophilic substrates, which are often products of oxidative

phase I metabolism. Here we report up-regulation of GST activity

towards CDNB by BZL, agreeing well with up-regulation of GSTp
protein and GSTP1 mRNA. Hepatic GSTp is predominantly

expressed in ductular epithelial cells under physiological conditions,

and is hardly expressed in parenchymal cells [48]. GSTs, particularly

GSTP1, conjugate and protect against the cytotoxic effects of

endogenous and exogenous electrophilic agents. In T. cruzi BZL is

metabolized by a NADH-dependent type I nitroreductase rendering

the cytotoxic and mutagenic agent glyoxal, and this is tentatively

linked to its antiparasitic action, whereas in mammals, the nitro group

is reduced to an amino group by a type II nitroreductase, with

formation of free radical intermediaries [4]. Augmented hepatic GST

activity by BZL pre-treatment could additionally contribute to

neutralize electrophilic derivatives from BZL itself, thus protecting

the liver cells from potential deleterious effects.

More efficient detoxification of endo- and xenobiotics is also

associated with higher levels of efflux transporter proteins such as

P-gp and/or MRPs. As a most significant finding, we observed a

concentration-dependent effect of BZL on the expression of both

P-gp and MRP2 potentially leading to changes of pharmacoki-

netics of co-administered drugs. The auto-inducer effect of BZL

could additionally modify its own disposition as suggested by the

experiments of BZL transport in BZL pre-treated cells. These cells

showed a decreased intracellular accumulation of BZL, partially

reversed by VER, a P-gp inhibitor. The contribution of P-gp to

BZL transport was further confirmed in P-gp knock down cells.

However, accumulation of a model P-gp substrate was more

affected than BZL in P-gp2 cells. In consequence, it is likely that

additional transporters are also involved in BZL efflux. MRP2

induction by BZL could lead to alterations in the disposition of co-

administered drugs, substrates of this transporter.

Figure 6. Role of P-gp in BZL transport. A. Confluent HepG2 cells were loaded with BZL (100 mM, 2 h) in the presence of either verapamil (VER;
100 mM) or probenecid (PRO, 1 mM). Control cells (C) were exposed to inhibitors vehicle. BZL accumulation was determined in cellular lysates by
HPLC. Data (means 6 S.D, n = 3) are expressed as percentage of BZL accumulated in control cells. *Significantly different from all the other groups,
p,0.05. B. P-gp levels were estimated by western blotting in lysates from HepG2 cells transfected either with 100 nM Control siRNA-A (P-gp+) or with
100 nM Mdr-1 (h) si-RNA (P-gp2). Equal amounts of total protein (7 mg) were loaded in the gels. O.D. from P-gp was related to GAPDH O.D. Typical
western blot detections from both groups are shown at the bottom. The results (% of P-gp+ cells) are expressed as mean 6 S.D. (n = 3). *Significantly
different from P-gp+, p,0.05. C. P-gp+ and P-gp2 cells were loaded with BZL (100 mM, 2 h). BZL accumulation was determined in cellular lysates by
HPLC. Data (means 6 S.D., n = 4) are expressed as percentage of BZL accumulated in P-gp+ cells. *Significantly different from P-gp+.
doi:10.1371/journal.pntd.0001951.g006

Figure 7. Effect of BZL on its own transport. HepG2 cells were
pretreated with BZL in conditions shown to induce P-gp expression
(200 mM, 48 h) or (C) vehicle. Then they were loaded with BZL (100 mM,
2 h) with or without verapamil (VER; 100 mM). BZL accumulation was
determined in cellular lysates by HPLC. Data (means 6 S.D, n = 3) are
expressed as percentage of BZL accumulated in control (C) cells. a:
significantly different from C; b: significantly different from C+VER; c:
significantly different from BZL, p,0,05.
doi:10.1371/journal.pntd.0001951.g007
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Whether the current findings on induction of biotransformation

and transport systems also occur in patients receiving BZL is not

known. The doses used for the treatment of Chagas disease (5–

10 mg/kg body weight, administered for 30–60 days) lead to

plasma concentrations varying from 30 to 100 mM [41,42], which

are slightly below the lowest concentration used in this study

showing inductive properties, i.e. 200 mM. In unpublished

experiments, we observed that exposure of HepG2 cells to

100 mM BZL induced CYP3A4, GSTp, P-gp and MRP2 as

detected by western blotting. As the treatment period of chagasic

patients is between 30 to 60 days (or even up to five months in case

of disease reactivation), an effect of BZL in humans cannot be

ruled out since our experimental approach only covered a few

days. In addition, plasma levels of BZL higher than the

concentrations currently used could be reached in chagasic

patients under pre-operative procedures for cardiac transplanta-

tion, since doses of BZL 4- to 5-fold higher than regular ones are

used [49].

P-gp is significantly expressed at the apical membrane of

enterocytes limiting the absorption of respective substrates [9].

BZL is orally administered and in consequence, intestinal

induction of P-gp expression or activity would affect its absorption.

Additional experiments in Caco-2 cells, a cell line used as a model

for intestinal human epithelium, showed that BZL (200 mM, 48 h)

increased protein expression of P-gp, CYP3A4, GSTp, and MRP2

to a similar extent as found in HepG2 cells (unpublished results).

Interestingly, Raaflaub reported that the maximal plasma

concentrations in patients receiving BZL for 30 days (7 mg/kg/

day) tend to decrease with the course of treatment [20]. Taken

together the data from the current study suggest the possibility of a

progressive decrease in BZL absorption and/or increase in BZL

metabolism/elimination after its therapeutic administration. Un-

fortunately, we found no studies in the literature evidencing this

possibility, or a link with decreased therapeutic efficacy. Exper-

iments in animals, evaluating the effect of BZL on hepatic vs

intestinal systems after in vivo administration, could represent an

approach to overcome these questions.

Results demonstrating that the knock down of PXR prevents

the induction of P-gp, MRP2, CYP3A4 and GSTp in HepG2

Figure 8. Effect of PXR knock down on BZL mediated P-gp, MRP2, CYP3A4 and GSTp induction. P-gp (panel A), MRP2 (panel B), CYP3A4
(panel C) and GSTp (panel D) levels were estimated by western blotting in lysates from HepG2 cells transfected either with 100 nM Control siRNA-A
(PXR+) or 100 nM PXR siRNA (h) (PXR2) and exposed to BZL (200 mM, 48 h) or vehicle (C). Equal amounts of total protein (7 mg) were loaded in the
gels. O.D. from each protein was related to GAPDH O.D. Uniformity of loading and transfer from gel to PVDF membrane was also controlled with
Ponceau S. Typical western blot detections from each group are shown at the bottom of bar graphics. The results (% of each control) are expressed as
mean 6 S.D. (n = 3). *Significantly different from C, p,0.05.
doi:10.1371/journal.pntd.0001951.g008

Figure 9. BZL-mediated activation of PXR. PXR activation was
measured through the activation of the firefly luciferase gene under
control of two PXR responsive elements after treatment with different
concentrations of BZL (panel A) or RIF as positive control (panel B).
doi:10.1371/journal.pntd.0001951.g009
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cells, indicate that this nuclear receptor is causally involved as a

mediator. In addition, using a reporter gene assay we demon-

strated PXR activation by BZL (Fig. 9). This is the first study

reporting PXR activation by BZL and mediation of BZL effects.

We found that BZL does not modulate BCRP protein expression,

which is consistent with preferential regulation of BCRP by other

factors, rather than by PXR [14]. Ketoconazole, a recognized

PXR antagonist and CYP3A4 inhibitor, has demonstrated in vitro

activity against T. cruzi [7,50]. A higher cure rate was observed

when infected mice were treated with a combination of BZL and

ketoconazole in comparison with those treated with ketoconazole

or BZL alone [51]. A synergistic effect was proposed as an

explanation. It is also possible that ketoconazole increases

exposure to BZL by inhibiting CYP3A4, PXR, and P-gp [52].

This evidence would imply changes in BZL pharmacokinetics and

consequently could lead to a higher time of drug-parasite contact,

thus improving efficacy of treatment.

Because PXR knock down procedure totally prevented BZL

mediated induction of biotransformation and transporter systems

(Fig. 8), these results unambiguously demonstrate PXR’s high

relevance. However, influence of nuclear receptors other than

PXR cannot be entirely ruled out. This might especially come to

the fore in different experimental conditions, e.g. involving

different treatment protocols, cell models, etc. Moreover, in

conditions of altered cellular redox status, ROS modulate these

same systems via the nuclear factor erythroid 2-related factor 2

[53]. BZL is in turn known to stimulate ROS formation in a dose-

dependent manner [6].

Other antiparasitic drugs have shown to modulate biotransfor-

mation and transporter genes with important impact on drug

disposition. On this regard, Bapiro et al. [54] demonstrated that

quinine and albendazole induced CYP1A1 and CYP1A2 in

HepG2 cells at concentrations equivalent to those achieved in

therapeutic protocols alerting about the risk of combining quinine

or albendazole with other drugs that are metabolized by these

systems. During antimalarial treatment with artemisinin, disease

reactivation during monotherapy was associated with decreased

artemisinin plasma levels [55]. The authors postulate that

artemisinin induces its own elimination probably by increasing

first pass metabolism. More recently, Burk et al. [56] demonstrated

that LS174T cells and primary human hepatocytes treated with

artemisinin showed specific selective induction of CYP2B6,

CYP2C19, CYP3A4 and MDR1 mRNA expression mediated

by activation of PXR and constitutive androstane receptor.

Antiparasitic drugs can also modulate biotransformation enzymes

or ABC transporters in parasites, thus leading to increased

resistance to treatment. On this regard, Portal et al. [57] and

Murta et al. [58] reported on development of BZL resistance in T.

cruzi as a consequence of changes in parasitic cytochrome P450

enzyme or P-gp activities.

In conclusion, our data demonstrate the simultaneous induction

of P-gp, MRP2, CYP3A4 and GSTp expression by BZL mediated

through increased activity of PXR. These findings suggest a

potential impact of BZL administration on the pharmacokinetics

of BZL itself (auto-induction) and of compounds that are

eliminated by these biotransformation and excretion systems.
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resistance in Trypanosoma cruzi is not associated with amplification or

overexpression of P-glycoprotein (PGP) genes. Mol Biochem Parasitol 117:

223–228.

BZL Induces Enzymes and Transporters via PXR

PLOS Neglected Tropical Diseases | www.plosntds.org 10 December 2012 | Volume 6 | Issue 12 | e1951


